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Abstract

For an ordered set W = {w;, ws, ..., wi} of vertices and a vertex
v in a connected graph G, the ordered k-vector r(v|W) := (d(v,w1),
d(v,wz),...,d(v, wx)) is called the (metric) representation of v with
respect to W, where d(z,y) is the distance between the vertices
and y. The set W is called a resolving set for G if distinct vertices
of G have distinct representations with respect to W. A minimum
resolving set for G is a basis of G and its cardinality is the metric
dimension of G. The resolving number of a connected graph G is the
minimum k, such that every k-set of vertices of G is a resolving set.
A connected graph G is called randomly k-dimensional if each k-set
of vertices of G is a basis. In this paper, along with some properties
of randomly k-dimensional graphs, we prove that a connected graph
G with at least two vertices is randomly k-dimensional if and only if
G is complete graph K41 or an odd cycle.

Keywords: Resolving set; Metric dimension; Basis; Resolving number; Basis

number; Randomly k-dimensional graph.

1 Preliminaries

In this section, we present some definitions and known results which are necessary
to prove our main theorems. Throughout this paper, G = (V, E) is a finite,
simple, and connected graph with ¢(G) edges. The distance between two vertices
u and v, denoted by d(u,v), is the length of a shortest path between u and v
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in G. The eccentricity of a vertex v € V(G) is e(v) = max,ev(c) d(u,v) and
the diameter of G is max,ev(c) e(v). We use I'y(v) for the set of all vertices
u € V(G) with d(u,v) = i. Also, Ng(v) is the set of all neighbors of vertex
v in G and deg (v) = |[Ng(v)| is the degree of vertex v. For a set § C V(G),
Ng(S) = UvE s Ne(v). If G is clear from the context, it is customary to write
N(v) and deg(v) rather than Ng(v) and deg_(v), respectively. The mazimum
degree and minimum degree of G, are denoted by A(G) and 6(G), respectively.
For a subset S of V(G), G\ S is the induced subgraph (V(G)\ S) of G. A set
8§ C V(G) is a separating set in G if G \ S has at least two components. Also,
aset T C E(G) is an edge cut in G if G\ T has at least two components. A
graph G is k-(edge-)connected if the minimum size of a separating set (edge cut)
in G is at least k. We mean by w(G), the number of vertices in a maximum
clique in G. The notations u ~ v and u » v denote the adjacency and non-
adjacency relations between u and v, respectively. The symbols (vy,v2,...,va)
and (vi,v2,...,Vn,v1) represent a path of order n, P,, and a cycle of order n,

Ch, respectively.

For an ordered set W = {w;,ws,...,wx} € V(G) and a vertex v of G, the

k-vector
r(v|W) = (d(v, w1),d(v,w2),...,d(v,wk))

is called the (metric) representation of v with respect to W. The set W is called
a resolving set for G if distinct vertices have different representations. In this
case, we say set W resolves G. To see whether a given set W is a resolving set for
G, it is sufficient to look at the representations of vertices in V(G)\W, because
w € W is the unique vertex of G for which d(w,w) = 0. A resolving set W for G
with minimum cardinality is called a basis of G, and its cardinality is the metric
dimension of G, denoted by B(G). The concepts of resolving sets and metric
dimension of a graph are introduced independently by Slater [15] and Harary and
Melter [10]. For more results related to these concepts see [1, 2, 3, 5, 9, 13, 14].

We say an ordered set W resolves a set T of vertices in G, if the representations
of vertices in T are distinct with respect to W. When W = {z}, we say that
vertex z resolves T. The following simple result is very useful.

Observation 1. [11] Suppose that u,v are vertices in G such that N(v)\{u} =
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Nu)\{v} and W resolves G. Then u or v is in W. Moreover, if u € W and
v¢g W, then (W \ {u}) U {v} also resolves G.

Let G be a graph of order n. It is obvious that 1 < B(G) < n — 1. The following
theorem characterize all graphs G with 8(G) =1 and S(G)=n - 1.

Theorem A. [4] Let G be a graph of order n. Then,

(i) B(G) = 1 if and only if G = P,,
(if) B(G) =n —1 if and only if G = K.

The basis number of G, bas(G), is the largest integer r such that every r-set
of vertices of G is a subset of some basis of G. Also, the resolving number of G,
res(G), is the minimum k such that every k-set of vertices of G is a resolving set
for G. These parameters are introduced in [6] and (7], respectively. Clearly, if
G is a graph of order n, then 0 < bas(G) < B(G) and B(G) < res(G) < n-1.
Chartrand et al. [6] considered graphs G with bas(G) = B(G). They called these
graphs randomly k-dimensional, where & = 8(G). Obviously, bas(G) = 8(G) if
and only if res(G) = B(G). In other words, a graph G is randomly k-dimensional

if each k-set of vertices of G is a basis of G.

The following properties of randomly k-dimensional graphs are proved in [12].

Proposition A. [12] If G # K, is a randomly k-dimensional graph, then for
each pair of vertices u,v € V(G), N(v)\{u} # N(u)\{v}.

Theorem B. [12] If kK > 2, then every randomly k-dimensional graph is 2-

connected.

Theorem C. [12] If G is a randomly k-dimensional graph and T is a separating
set of G with |T'| = k — 1, then G\ T has exactly two components. Moreover,
for each pair of vertices u,v € V(G)\ T with r(u|T) = r(v{T), u and v belong to

different components.

Theorem D. [12] If res(G) = k, then each two vertices of G have at most k— 1

common neighbors.
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Chartrand et al. in [6] characterized the randomly 2-dimensional graphs and
proved that a graph G is randomly 2-dimensional if and only if G is an odd cycle.
Furthermore, they provided the following question.

Question A. [6] Are there randomly k-dimensional graphs other than complete

graph and odd cycles?

In this paper we answer Question A in the negative and prove that G is randomly

k-dimensional, k£ > 3 if and only if G = Kiq41.

2 Some Properties of Randomly k-Dimensional
Graphs

Let V, denote the collection of all ('2‘) pairs of vertices of G. Currie and Oeller-
mann (8] defined the resolving graph R(G) of G as a bipartite graph with bipar-
tition (V(G), V;), where a vertex v € V(G) is adjacent to a pair {z,y} € V; if
and only if v resolves {z,y} in G. Thus, the minimum cardinality of a subset S
of V(G), where Ny, (S) =V, is the metric dimension of G.

In the following through some propositions and lemmas, we prove that if G

is a randomly k-dimensional graph of order n and diameter d, then k > 23%.

Proposition 1. If G is a randomly k-dimensional graph of order n, then

(’2‘) (n—k+1) < e(R(G)) < n( (’2‘) —k+1).

Proof. Let z € V, and S = {v € V(G)|v » z}. Thus, Np)(S) # V, and
(@) (2) £ n—k, then |S] > k, which
(2) 2 n—k + 1 and consequently,

hence, S is not a resolving set for G. If deg
contradicts res(G) = k. Therefore, deg
e(R(G)) > (;)(n —k+1).

R(G)

Now, let v € V(G). Ifdegmc) (v) 2 ('2‘) —k+2, then there are at most k—2 ver-
tices in V;, which are not adjacent to v. Let Vu\Npg(c)(v) = {{u1,n1}, {uz,v2},...,
{us,v:}}, where t < k — 2. Note that, u; ~ {ui,v:} in R(G) foreach i, 1 <i <t
Therefore, Np(c)({v,u1,uz,...,ue}) = Vp. Hence, (G) < t+1 < k-1,
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which is a contradiction. Thus, degR( & (v) < ('2‘) — k + 1 and consequently,
e(R(G) < n((3) —k+1). [ |

Proposition 2. If G is a randomly k-dimensional graph of order n, then for

each v € V(G),
e(v)
degﬂ(a) (v) = (g) Z (IP (‘U)l)

i=1

Proof. Note that, a vertex v € V(G) resolves a pair {z,y} if and only if there
exist 0 € ¢ # j < e(v) such that ¢ € I';(v) and y € T';(v). Therefore, a
vertex {u,w} € V} is not adjacent to v in R(G) if and only if there exists an
i, 1 £ i < e(v), such that u,w € I';(v). The number of such vertices in V; is

e(v v n e(v) (IT; (v
) (1)) Therefore, deg,, ., (¥) = (3) — Xy (M5, ]

=1

Since R(G) is bipartite, by Proposition 2,
e(v) e(v)
_ n Il"e(v)l |T; (v)l
awen= 3 ((5)-3 (" SPIPD
veEV(G) i=1 veV(G) i=1
Thus, by Proposition 1,

e(v)
nk-n< S ('F'(””) < (’2‘) (k—-1). (1)

veV(G) i=1

Observation 2. Let n,,...,n, and n be positive integers, with ) ._,

Then, Z‘_l ("2‘) is minimum if and only if |ni — nj| < 1, for each 1 <i,5 <.

Ny = N.

Lemma 1. Let n,p1,p2,91,q92,71 and r2 be positive integers, such that n =

pigi +1i and i < pi, for 1 <1< 2. If p1 < pa, then

(pr=r1) (‘121) +n (QI ;- l) 2 (p2 —12) (q;> + 72 (‘h;— 1) .

Proof. Let f(p:) = (pi — ri)(%) +7:(%7%), 1 < i < 2. We just need to prove
that f(p1) = f(p2).

f@) = f(p2) = %[(Pl —r)a(g —1)+rq{a +1) -
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(P2 — r2)g2(g2 — 1) — T292(g2 + 1))
= %th [p1g1 — p1 + 2r1) — %qz[}m]z — p2 + 2r3)
= %m[n—pl +71] - %Q2[n—p2+7‘2]
= ';'["(‘11 —q2) — P11 +T1q1 + P2g2 — 122}
Since p1 < p2, we have g2 < q1. If ¢1 = g2, then r2 < 1. Therefore,

1
fpr) = f(p2) = sa1l(p2 — p1) + (1 —2)] 2 0.
If g2 < q1, then ¢1 — g2 > 1. Thus,

f(;) = f(p2) 2 %[n —p1q1 +71q1 + g2(p2 — )] = %[n +7r1q1 + g2(p2 —r2)] 2 0.

Theorem 1. If G is a randomly k-dimensional graph of order n and diameter

n-—1
> —_—
d, then k > 7

Proof. Note that, for each v € V(G), | Ti(v)] =n — 1. For v € V(G), let
— 1 = g(v)e(v) + r(v), where 0 < r(v) < e(v). Then, by Observation 2,

e(v)
o) o)) o

Let w € V(G) with e(w) = d, r(w) = r, and g(w) = g, then n—1 = gd+r. Since
for each v € V(G), e(v) < e(w), by Lemma 1,

(d-r) (g) +r ( ) < (e(v)—r('u))(q( )) + (o )(q(v)+l)

Therefore,

nl(d—1) (g) +r (" : 1)] < ¥ ((e(v) - r()) ("(2")) +1(v) ("(”)2+ 1)}.

vEV(G)

Thus, by Relations (2) and (1),

w1 )s B E )3 (e
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Hence, q[(d—7)(¢—1) +r(g+1)] < (n—1)(k— 1), which implies, g[(r —d) + (d —
r)g+r(g+1)] £ (n — 1)(k — 1). Therefore, g(r —d) +g(n — 1) < (n = 1)(k ~ 1).

Since g = [ 251, we have

SN Y o o -
n-1 n-1
T
2> q+ g 3" 1.
Thus, k > | 231 ] + ;5. Note that, 225 > 0. If 225 > 0, then k > [23], since
k is an integer. If ;&5 =0, then r =0 a.nd consequently, d divides n — 1. Thus,
(252 ] = [252]. Therefore, k > [231] > 232 |

The following theorem shows that there is no randomly k-dimensional graph of
order n, where4 < k <n-—2.

Theorem 2. If G is a randomly k-dimensional graph of order n, then k < 3 or
k>n-1.

Proof. For each W C V(G), let N(W) Ve \ N(W) in R(G). We claim
that, if §,T C V(G) with |S] = |T| = k— 1 and T # S, then N(S) N N(T) =
Otherwise, there exists a pair {z,y} € N(S)ON(T). Therefore, {x,y} ¢ N(S UT)
and hence, SUT is not a resolving set for G. Since S # T, |SUT| > |S| =k -1,
which contradicts res(G) = k. Thus, N(S) " N(T) =

Since B(G) = k, for each S C V(G) with |S| = k — 1, N(S) # 0. Now, let
Q= {S CV(G)||S| = k — 1}. Therefore,

N TS > _(n
JSROESLOTE 3 (")
On the other hand, Jgcq N(S) € Vp. Hence, |Ugeq N(S)| <€ (3). Conse-
quently, (,7,) < (3)- If » < 4, then k < 3. Now, let n > 5. Thus, 2 < 2fL
We know that for each a,b < L‘-ﬂ (“) < (") if and only if a < b. There-
fore, if k — 1 < 24, then k — 1 < 2, which implies k < 3. If k-1 > 2f!,
thenn —k+1 < 2. Since (,_ k+l) (x2,), we have (nrs) < (3) and
consequently, n —k+ 1 < 2, which yields k> n—1. ]
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By Theorem 2, to characterize all randomly k-dimensional graphs, we only need
to consider graphs of order k+1 and graphs with metric dimension less than 4. By
Theorem A, if G has k+1 vertices and 8(G) = k, then G = Ki41. Also, if k=1,
then G = P,. Clearly, the only paths with resolving number 1 are P, = K, and
P, = K,. Furthermore, randomly 2-dimensional graphs are determined in {6} and
it has been proved that these graphs are odd cycles. Therefore, to complete the

characterization, we only need to determine all randomly 3-dimensional graphs.

3 Randomly 3-Dimensional Graphs

In this section, through several lemmas and theorems, we prove that the complete

graph K} is the unique randomly 3-dimensional graph.
Proposition 3. Ifres(G) =k, then A(G) £ 2" '+ k—1.

Proof. Let v € V(G) be a vertex with deg(v) = A(G) and T = {v,v1,v,...,
vk—1}, where v1, vz, . .., vk—1 are neighbors of v. Since res(G) = k, T is a resolving
set for G. Note that, d(u,v) = 1 and d(u,v:) € {1,2} for each v € N(v)\ T and
each i, 1 < i € k—1. Therefore, the maximum number of distinct representations
for vertices of N(v)\T is 2*~!. Since T is a resolving set for G, the representations
of vertices of N(v) \ T are distinct. Thus, [N(v) \ T| < 2*~! and hence, A(G) =
INW)| <25 +k-1. [ ]

Lemma 2. Ifres(G) = 3, then A(G) < 5.

Proof. By Proposition 3, A(G) < 6. Suppose, on the contrary that, there
exists a vertex v € V(G) with deg(v) = 6 and N(v) = {=,y,v1,...,v4}. Since
res(G) = 3, set {v,z,y} is a resolving set for G. Therefore, the representations
of vertices v1,...,vq with respect to this set are 1 = (1,1,1), 72 = (1,1,2),
r3 = (1,2,1), and 74 = (1,2,2). Without loss of generality, we can assume

r(vi|{v,z,y}) = 7y, for each 4, 1 < i < 4. Thus, y % v2, y * vq, and y ~ v3.

On the other hand, set {v,y,va} is a resolving set for G, too. Hence, the

representations of vertices z, v, vz, v4 with respect to this set are ry,72,73,74 in
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some order. Therefore, the vertex y has two neighbors and two non-neighbors
in {z,v1,v2,v4}. Since y = v2 and y » v4, the vertices z,v; are adjacent to y.
Thus, r(y|{z,v1,v3}) = (1,1, 1) = r(v|{z, v1,v3}), which contradicts res(G) = 3.
Hence, A(G) < 5. |

Lemma 3. If res(G) = 3 and v € V(G) is a vertez with deg(v) = 5, then the
induced subgraph (N (v)) is a cycle Cs.

Proof. Let H = (N(v)). By Theorem D, for each z € N(v) we have, |[N(z)N
N(w)| € 2. Therefore, A(H) < 2, thus, each component of H is a path or a cycle.
If the largest component of H has at most three vertices, then there are two ver-
tices z,y € N(v) which are not adjacent to any vertex in N(v)\ {z,y}. Thus, for
each u € N(v) \ {z,y}, r(u|{v,z,y}) = (1,2,2), which contradicts the fact that
res(G) = 3. Therefore, the largest component of H, say Hj, has at least four ver-
tices and the other component has at most one vertex, say {z}. Let (y1,y2,y3) be
a path in Hy. Hence r(yn1{{v,z,y2}) = (1,2,1) = r(y3|{v, z,y2}), which is a con-
tradiction. Therefore, H = Cs or H = Ps. If H = Ps = (y1,¥2,¥3,¥4,Ys5), then
r(yal{v,y1,92}) = (1,2,2) = r(ys|{v,¥1,%2}), which is impossible. Therefore,
H=Cs. |

Lemma 4. If res(G) = 3 and v € V(G) is a vertez with deg(v) = 4, then the
induced subgraph (N(v)) is a path P,.

Proof. Let H = (N(v)). By Theorem D, for each z € N(v), we have |[N(z) N
N(v)| £ 2. Hence, A(H) < 2 thus, each component of H is a path or a cycle. If
H has more than two components, then it has at least two components with one
vertex say {z} and {y}. Thus, r(u|{v, z,¥}) = (1,2, 2), for each u € N(v)\{z, ¥},
which contradicts res(G) = 3. If H has exactly two components H, = {z,y}
and Hz = {u,w}, then r(u|{v,z,y}) = (1,2,2) = r(w|{v,z,y}), which is a
contradiction. Now, let H has a component with one vertex, say {z}, and a
component contains a path (y1,y2,y3). Consequently, »(u|{v,z,¥2}) = (1,2,1),
for each u € N(v) \ {z,y}, which is a contradiction. Therefore, H = C; or
H = P. If H=Cy = (y1,y2,¥3,¥4,%1), then r(n1|{v,y2,54}) = (1,1,1) =
r(y3|{v,y2,va}), which is impossible. Therefore, H = P,. ]
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Proposition 4. If G is a randomly 3-dimensional graph, then A(G) < 3.

Proof. By Lemma 2, A(G) < 5. If there exists a vertex v € V(G) with deg(v) =
5, then, by Lemma 3, (N(v)) = Cs. If T'2(v) = 0, then G = Cs V K (the join
of graphs Cs and K)) and hence, 8(G) = 2, which is a contradiction. Thus,
I2(v) # 0. Let u € ['2(v). Then u has a neighbor in N(v), say =. Since (N(v)) =
Cs, = has exactly two neighbors in N(v), say z1,z2. Therefore, deg(z) > 4.
By Lemmas 3 and 4, ({u,v,z1,z2}) = Ps. Note that, by Theorem D, u has
at most two neighbors in N(v). Thus, u is adjacent to exactly one of z; and
Z, say ;. As in Figure 1(a), the set {u,v,s} is not a resolving set for G,
because r(z|{u,v,s}) = (1,1,2) = r(z1{{u,v,s}). This contradiction implies
that A(G) < 4.

If v is a vertex of degree 4 in G, then by Lemma 4, {(N(v)) = Py. Let (N(v)) =
(z1,z2,23,24). If T2(v) = 0, then G = P4V K, and consequently, 5(G) = 2, which
is a contradiction. Thus, ['2(v) # @. Let u € [2(v). Then, u has a neighbor in
N(v) and by Theorem D, u has at most two neighbors in N(v). If u has only one
neighbor in N(v), then by symmetry, we can assume u ~ z; or u ~ z2. If u ~ 22
and u ~ z,, then deg(z2) = 4 and by Lemma 4, ({u, z1,23,v}) = Ps. Therefore,
u has two neighbors in N(v), which is a contradiction. If w ~ z; and u » z2,
then r(v|{z1, z3,u}) = (1, 1,2) = r(z2|{z1, 23, u}), which contradicts res(G) = 3.
Hence, u has exactly two neighbors in N(v). Let T = N(u) N N(v). By sym-
metry, we can assume that T is one of the sets {z1,z2}, {z1,z3}, {T1,z4}, and
{z2,2z3}. I T = {z1,x2}, then r(z1|{v,z4,u}) = (1,2,1) = r(z2|{v,z4,u}). If
T = {z1,z3}, then r(z1|{v,z2,2}) = (1,1,1) = r(z3|{v, z2,u}). If T = {z1, 24},
then r(v|{z1,z3,u}) = (1,1,2) = r(x2|{z1,3,u}). These contradictions, imply
that T = {z2,z3}. Thus, |I2(v)[ = 1, because each vertex of I'2(v) is adja-
cent to both vertices zz and z3 and if ['2(v) has more than one vertex, then
deg(x2) = deg(xs) > 5, which is impossible. Now, if ['3(v) = @, then {z;,xz4} is
a resolving set for G, which is a contradiction. Therefore, I's(v) # @ and hence,
u is a cut vertex in G, which contradicts the 2-connectivity of G (Theorem B).
Consequently, A(G) < 3. |

Theorem 3. If G is a randomly 3-dimensional graph, then G is 3-regular.
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N(v) Fa(v) N(w) Ta(v)

/ t z w
e 8
v S \>u v,
N~ /
., > ]
(a) (b)

Figure 1: (a) A(G) = 5, (b) Neighbors of a vertex of degree 2.

Proof. By Proposition 4, A(G) £ 3 and by Theorem B, §(G) > 2. Suppose
that, v is a vertex of degree 2 in G. Let N(v) = {z,y}. Since N(v) is a separating
set of size 2 in G, Theorem C implies that G \ {v,z,y} is a connected graph and
there exists a vertex v € V(G) \ {v,2,y} such that u ~ z and u ~ y. Note
that G # K., because G has a vertex of degree 2 and B(G) = 3. Thus, by

Proposition A, there exists a vertex w € V(G) such that w ~ u and w =~ v.

If w is neither adjacent to z nor y, then r(z|{v, u,w}) = (1,1,2) = r(y|{v, v, w}),
which contradicts the fact that res(G) = 3. Also, if w is adjacent to both = and y,
then r(z|{v,u,w}) = (1,1,1) = r(y{{v, v, w}), which is a contradiction. Hence,
w is adjacent to exactly one of the vertices z and y, say z. Since A(G) < 3, the
graph in Figure 1(b) is an induced subgraph of G. Clearly, the metric dimension
of this subgraph is 2. Therefore, G has at least six vertices.

If |[F2(v)| = 2, then w is a cut vertex in G, because A(G) < 3. This contradic-
tion implies that there exists a vertex z in I'2(v) \ {u, w}. Since A(G) < 3,z ~y.
If z ~ w, then the graph in Figure 2(a) is an induced subgraph of G with metric
dimension 2. In this case, G must have at least seven vertices and consequently, z
is a cut vertex in G, which contradicts Theorem B. Hence, z » w. By Theorem B,
deg(z) = 2. Therefore, z has a neighbor in I'3(v). If there exists a vertex s € I's(v)
such that s ~ z and s » w, then r(v{{y, z,3}) = (1,2, 3) = r(ul{y, 2, s}), which
contradicts res(G) = 3. Thus, w is adjacent to all neighbors of z in I'3(v). Since
A(G) < 3, z has exactly one neighbor in I's(v), say t. Hence I's(v) = {t}.
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If G has more vertices, then t is a cut vertex in G, which contradicts the 2-

connectivity of G. Therefore, G is as in Figure 2(b) and consequently, 5(G) = 2,

which is a contradiction. Thus, G does not have any vertex of degree 2. [ ]
N(v)  Ta(v) N(v) Ta(v) Ts(v)
z w x w
v v t
A %% g
N N i
y z Y z

(2) (b)

Figure 2: The minimum degree of G is more than 2.

Theorem 4. If G is a randomly 3-dimensional graph, then G is 3-connected.

Proof. Suppose, on the contrary, that G is not 3-connected. Therefore, by
Theorem B, the connectivity of G is 2. Since G is 3-regular, (by Theorem 4.1.11
in [16],) the edge-connectivity of G is also 2. Thus, there exists a minimum edge
cut in G of size 2, say {zu,yv}. Let H and H) be components of G \ {zu,yv}
such that z,y € V(H) and u,v € V(H;). Note that, z # y and u # v, because G
is 2-connected. Since G is 3-regular, |H| > 3 and |H:| > 3. Therefore, {z,y} is
a separating set in G and components of G \ {z,y} are H; and H; = H \ {z,y}.
Hence, each of the vertices = and y has exactly one neighbor in H;, u and v,
respectively. Since G is 3-regular, £ has at most two neighbors in H2 and u has
exactly two neighbors s,t in Hy. Thus, u has a neighbor in H; other than v, say

8. Therefore, s » z and s = y.

If = has two neighbors p, g in Ha, then r(p|{z, u, s}) = (1,2,3) = r(q|{z, u, s}),
which contradicts res(G) = 3. Consequently, = has exactly one neighbor in Ha,
say p. Since G is 3-regular, 2 ~ y and hence, y has exactly one neighbor in Hj.
Note that p is not the unique neighbor of y in Hz, because G is 2-connected.
Thus, d(t,p) = 3 and hence, r(s|{u,z,p}) = (1,2,3) = r(t|{v,z,p}), which is
impossible. Therefore, G is 3-connected. |
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Proposition 5. If G # Ky is a randomly 3-dimensional graph, then for each
v € V(G), N(v) is an independent set in G.

Proof. Suppose on the contrary that there exists a vertex v € V(G), such
that N(v) is not an independent set in G. By Theorem 3, deg(v) = 3. Let
N(v) = {u1,u2,us}. Since G # Ky, the induced subgraph (N(v)) of G has one
or two edges. If (N(v)) has two edges, then by symmetry, let u; ~ ua, ug ~ us
and u; » us. Since G is 3-regular, the set {u;,us} is a separating set in G,
which contradicts Theorem 4. This argument implies that for each s € V(G),
(N(s)) does not have two edges. Hence, (N(v)) has one edge, say uju2. Since
G is 3-regular, there are exactly four edges between N(v) and I'2(v). Therefore,
I2(v) has at most four vertices, because each vertex of I'2(v) has a neighbor in
N(v). On the other hand, 3-regularity of G forces I'2(v) to have at least two

vertices. Thus, one of the following cases can happen.

1. [T2(v)} = 2. In this case I's(v) = @, otherwise I'2(v) is a separating set of size
2, which is impossible. Consequently, G is as in Figure 3(a). Hence, 8(G) = 2.
But, by assumption 8(G) = 3, a contradiction.

2. |T2(v)| = 3. Let T'2(v) = {z,y,2} and N(us) NT2(v) = {y,z}. Also, by
symmetry, let u; ~ z, because each vertex of 's(v) has a neighbor in N(v).
Then the last edge between N(v) and I'2(v) is one of uaz, uzy, and uzz. But,
uzx ¢ E(G), otherwise (N(u2)) has two edges. Thus, by symmetry, we can
assume that uey € E(G) and uzz ¢ E(G). Since res(G) = 3, we have y ~ z,
otherwise r(v|{u2,us, z}) = (1,1, 2) = r(y}{u2, us, z}), which is impossible. For
3-regularity of G, I's(v) # 0. Hence, {z, 2} is a separating set of size 2 in G,
which contradicts Theorem 4.

3. [T2(v)] = 4. Let I'2(v) = {w, z,y,z} and u1 ~ w, uz ~ z, u3 ~ y, and uz ~ z.
If £ » y and « » 2, then d(y,uz) = 3 = d(2,u2) and it yields r(y|{v,u2,u3s}) =
(2,3,1) = r(2|{v,u2,ua}). Therefore, G has at least one of the edges xy and zz. If
G has both zy and zz, then r(y|{v, z,ua}) = r(z]{v,z,u3}). Thus, G has exactly
one of the edges 2y and zz, say zy. In the same way, G has exactly one of the edges
wy and wz. If w ~ y, then r(z|{v,us,y}) = (2,2,1) = r(w|{v,u3,y}). Hence,
w » y and w ~ z. Note that, z = w, otherwise 7(uz|{u1,z,u3}) = (1,1,2) =
r(w|{u1,z,u3}). Therefore, N(w)N[['1(v)UT2(v)] = {u1,2}. Since G is 3-regular,
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[a(v) # 0. If z ~ y, then {w, z} is a separating set in G which is impossible. Thus,
z has a neighbor in I'3(v), say u. If u = w, then d(w,u) = 2 = d(ua, u) which
implies that r(us|{uz,z,u}) = (2,1,2) = r(w|{uz,z,u}). Hence, u ~ w and it
yields r(w|{u,v,z}) = r(z|{u,v,z}). Consequently, N(v) is an independent set

in G. B
N@)  Ty) N() i)
e /z</r .
/ t v ——y<>< Z:
w3 7< s N
\\u// \,<E< .
~ 2,

(2) (b)

Figure 3: Two graphs with metric dimension 2.

Theorem 5. If G is a randomly 3-dimensional graph, then G = Kj.

Proof. Suppose on the contrary that G is a randomly 3-dimensional graph and
G # K,4. Let v € V(G) be an arbitrary fixed vertex and N(v) = {z,y,z}. By
Proposition 5, N(v) is an independent set in G. Since G is 3-regular, there are six
edges between N(v) and I'2(v). If a vertex a € I's(v) is adjacent to z and y, then
r(z|{v,a,z}) = (1,1,2) = r(y|{v, a, z}), which is impossible. Therefore, by sym-
metry, each vertex of I'2(v) has exactly one neighbor in N(v) and hence I'2(v) has
exactly six vertices. If there exists a vertex a € I';(v) with no neighbor in 2(v),
then by symmetry, let a ~ 2. Thus, r(z|{v,2,a}) = (1,2,3) = r(y|{v,2,a}).
Also, if there exists a vertex a € I'2(v) with two neighbors b and ¢ in T'2(v),
by symmetry, let @ ~ z, b % z and ¢ » z. Then, 7(b|{v,2,a}) = (2,2,1) =
r(c/{v,z,a}). These contradictions imply that I'z(v) is a matching in G. Since
all neighbors of each vertex of G constitute an independent set in G, the induced
subgraph {{v} U N(v) UT2(v)) of G is as in Figure 3(b). Since G is 3-regular,
Ca(v) # @ and each vertex of I';(v) has one neighbor in I's(v). Let u € [3(v)
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be the neighbor of z;. Thus, y1 = u. If y; and 22 have no common neighbor
in ['3(v), then r(z|{z1,u,22}) = (1,2,3) = r(y1|{z1,u, 22}). Therefore, y1 and
z2 have a common neighbor in I's(v), say w. Consequently, r(y|{v,z,w}) =
(1,2,2) = r(z|{v, z,w}). This contradiction implies that G = Kj. [ ]

The next corollary characterizes all randomly k-dimensional graphs.

Corollary 1. Let G be a graph with B(G) = k > 1. Then, G is a randomly
k-dimensional graph if and only if G is a complete graph Ky, or an odd cycle.
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