The partition dimension of corona product graphs

Juan A. Rodríguez-Velázquez¹, Ismael G. Yero² and Dorota Kuziak¹

¹Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain. juanalberto.rodriguez@urv.cat, dorota.kuziak@urv.cat
² Departamento de Matemáticas, Escuela Politécnica Superior Universidad de Cádiz, Av. Ramón Puyol s/n, 11202 Algeciras, Spain. ismael.gonzalez@uca.es

Abstract

Given a set of vertices $S = \{v_1, v_2, ..., v_k\}$ of a connected graph G, the metric representation of a vertex v of G with respect to Sis the vector $r(v|S) = (d(v, v_1), d(v, v_2), ..., d(v, v_k))$, where $d(v, v_i)$, $i \in \{1, ..., k\}$ denotes the distance between v and v_i . S is a resolving set of G if for every pair of distinct vertices u, v of $G, r(u|S) \neq r(v|S)$. The metric dimension dim(G) of G is the minimum cardinality of any resolving set of G. Given an ordered partition $\Pi = \{P_1, P_2, ..., P_t\}$ of vertices of a connected graph G, the partition representation of a vertex v of G, with respect to the partition Π is the vector $r(v|\Pi) =$ $(d(v, P_1), d(v, P_2), ..., d(v, P_t))$, where $d(v, P_i), 1 \le i \le t$, represents the distance between the vertex v and the set P_i , that is $d(v, P_i) =$ $\min_{u \in P_i} \{d(v, u)\}$. Π is a resolving partition for G if for every pair of distinct vertices u, v of $G, r(u|\Pi) \neq r(v|\Pi)$. The partition dimension pd(G) of G is the minimum number of sets in any resolving partition for G. Let G and H be two graphs of order n_1 and n_2 respectively. The corona product $G \odot H$ is defined as the graph obtained from G and H by taking one copy of G and n_1 copies of H and then joining by an edge, all the vertices from the i^{th} -copy of H with the i^{th} -vertex of G. Here we study the relationship between $pd(G \odot H)$ and several parameters of the graphs $G \odot H$, G and H, including $dim(G \odot H)$, pd(G) and pd(H).

Keywords: Resolving sets; resolving partition; metric dimension; partition dimension; corona graph.

1 Introduction

The concepts of resolvability and location in graphs were described independently by Harary and Melter [10] and Slater [19], to define the same structure in a graph. After these papers were published several authors developed diverse theoretical works about this topic [3, 4, 5, 6, 7, 8, 9, 16, 18, 20]. Slater described the usefulness of these ideas into long range aids to navigation [19]. Also, these concepts have some applications in chemistry for representing chemical compounds [14, 15] or to problems of pattern recognition and image processing, some of which involve the use of hierarchical data structures [17]. Other applications of this concept to navigation of robots in networks and other areas appear in [6, 12, 16]. Some variations on resolvability or location have been appearing in the literature, like those about conditional resolvability [18], locating domination [11], resolving domination [1] and resolving partitions [5, 8, 9]. In this work we are interested into study the relationship between $pd(G \odot H)$ and several parameters of the graphs $G \odot H$, G and H, including $dim(G \odot H)$, pd(G) and pd(H).

We begin with some basic concepts and notations. Let G = (V, E) be a simple graph. Let $u, v \in V$ be two different vertices in G, the distance $d_G(u, v)$ between two vertices u and v of G is the length of a shortest path between u and v. If there is no ambiguity, we will use the notation d(u, v) instead of $d_G(u, v)$. The diameter of G is defined as $D(G) = \max_{u,v \in V} \{d(u,v)\}$. Given $u,v \in V$, $u \sim v$ means that u and v are adjacent vertices. Given a set of vertices $S = \{v_1, v_2, ..., v_k\}$ of a connected graph G, the metric representation of a vertex $v \in V$ with respect to S is the vector $r(v|S) = (d(v,v_1), d(v,v_2), ..., d(v,v_k))$. We say that S is a resolving set for G if for every pair of distinct vertices $u, v \in V$, $r(u|S) \neq r(v|S)$. The metric dimension of G is the minimum cardinality of any resolving set for G, and it is denoted by dim(G).

Given an ordered partition $\Pi = \{P_1, P_2, ..., P_t\}$ of vertices of a connected graph G, the partition representation of a vertex $v \in V$ with respect to the partition Π is the vector $r(v|\Pi) = (d(v, P_1), d(v, P_2), ..., d(v, P_t))$, where $d(v, P_i)$, $1 \le i \le t$, represents the distance between the vertex v and the set P_i , that is $d(v, P_i) = \min_{u \in P_i} \{d(v, u)\}$. We say that Π is a resolving partition of G if for every pair of distinct vertices $u, v \in V$, $r(u|\Pi) \ne r(v|\Pi)$. The partition dimension of G is the minimum number of sets in any resolving partition for G and it is denoted by pd(G). The partition dimension

of graphs is studied in [5, 8, 18, 20, 21].

Let G and H be two graphs of order n_1 and n_2 , respectively. The corona product $G \odot H$ is defined as the graph obtained from G and H by taking one copy of G and n_1 copies of H and joining by an edge each vertex from the i^{th} -copy of H with the i^{th} -vertex of G. We will denote by $V = \{v_1, v_2, ..., v_n\}$ the set of vertices of G and by $H_i = (V_i, E_i)$ the copy of H such that $v_i \sim v$ for every $v \in V_i$.

2 Majorizing $pd(G \odot H)$

It was shown in [8] that for any nontrivial connected graph G we have $pd(G) \leq dim(G) + 1$. Thus,

$$pd(G \odot H) \le dim(G \odot H) + 1. \tag{1}$$

In order to give another interesting relationship between $pd(G \odot H)$ and $dim(G \odot H)$ that allow us to derive tight bounds on $pd(G \odot H)$, we present the following lemma.

Lemma 1. [22] Let G = (V, E) be a connected graph of order $n \geq 2$ and let H be a graph of order at least two. Let $H_i = (V_i, E_i)$ be the subgraph of $G \odot H$ corresponding to the i^{th} copy of H.

- (i) If $u, v \in V_i$, then $d_{G \odot H}(u, x) = d_{G \odot H}(v, x)$ for every vertex x of $G \odot H$ not belonging to V_i .
- (ii) If S is a resolving set for $G \odot H$, then $V_i \cap S \neq \emptyset$ for every $i \in \{1, ..., n\}$.
- (iii) If S is a resolving set for $G \odot H$ of minimum cardinality, then $V \cap S = \emptyset$.

Theorem 2. Let G be a connected graph of order $n_1 \geq 2$ and let H be a graph of order n_2 . Then

$$pd(G \odot H) \leq \frac{1}{n_1} dim(G \odot H) + pd(G) + 1.$$

Proof. Let S be a resolving set for $G \odot H$ of minimum cardinality. By Lemma 1 (ii) and (iii) we conclude that $S = \bigcup_{i=1}^{n_1} S_i$, where $\emptyset \neq S_i \subset V_i$. We note that $|S_i| = \frac{|S|}{n_1} = \frac{1}{n_1} dim(G \odot H)$ for every $i \in \{1, ..., n_1\}$. In order to build a resolving partition for $G \odot H$, we need to introduce some additional notation. Let $\Pi(G) = \{W_1, W_2, ..., W_{pd(G)}\}$ be a resolving partition for G,

let $A = \bigcup_{i=1}^{n_1} (V_i - S_i)$, let $S_i = \{v_{i1}, v_{i2}, ..., v_{it}\}$, and let $B_j = \bigcup_{i=1}^{n_1} \{v_{ij}\}$, j = 1, ..., t. Let us prove that $\Pi = \{A, B_1, ..., B_t, W_1, ..., W_{pd(G)}\}$ is a resolving partition for $G \odot H$. Let x, y be two different vertices of $G \odot H$. We have the following cases.

Case 1. $x,y\in V_i$. If $x\in S_i$ or $y\in S_i$ then x and y belong to different sets of Π , so $r(x|\Pi)\neq r(y|\Pi)$. We suppose $x,y\in V_i-S_i$. Since S is a resolving set for $G\odot H$, we have $r(x|S)\neq r(y|S)$. By Lemma 1 (i), $d_{G\odot H}(x,u)=d_{G\odot H}(y,u)$ for every vertex u of $G\odot H$ not belonging to V_i . So, there exists $v\in S_i$ such that $d_{G\odot H}(x,v)\neq d_{G\odot H}(y,v)$. Thus, either $(v\sim x$ and $v\not\sim y)$ or $(v\not\sim x$ and $v\sim y)$. In the first case we have $d_{G\odot H}(x,v)=d_{H_i}(x,v)=1$ and $d_{G\odot H}(y,v)=2\leq d_{H_i}(y,v)$. The case $v\not\sim x$ and $v\sim y$ is analogous. Therefore, for every $x,y\in V_i$ there exists $v_{il}\in S_i$ such that $d_{G\odot H}(x,B_l)=d_{G\odot H}(x,v_{il})\neq d_{G\odot H}(y,v_{il})=d_{G\odot H}(y,B_l)$.

Case 2. $x \in V_i$ and $y \in V_j$, $j \neq i$. There exists $W_k \in \Pi(G)$ such that $d_G(v_i, W_k) \neq d_G(v_j, W_k)$. Thus, $d_{G \odot H}(x, W_k) = 1 + d_G(v_i, W_k) \neq d_G(v_j, W_k) + 1 = d_{G \odot H}(y, W_k)$.

Case 3. $x, y \in V$. There exists $W_k \in \Pi(G)$ such that $d_G(x, W_k) \neq d_G(y, W_k)$. Thus, $d_{G \odot H}(x, W_k) \neq d_{G \odot H}(y, W_k)$.

Case 4. $x \in V$ and $y \notin V$. In this case x and y belong to different sets of Π , so $r(x|\Pi) \neq r(y|\Pi)$.

Therefore,
$$\Pi$$
 is a resolving partition for $G \odot H$.

We denote by K_n and P_n the complete graph and the path graph of order n, respectively. The following proposition allows us to conclude that for every connected graphs G and H of order greater than or equal to two such that $G \odot H \ncong K_{n_1} \odot P_2$ and $G \odot H \ncong K_{n_1} \odot P_3$, the equation in Theorem 2 is never worse than equation (1).

Proposition 3. Let G and H be two connected graphs of order greater than or equal to two. Let n_1 denote the order of G. If $G \odot H \not\cong K_{n_1} \odot P_2$ and $G \odot H \not\cong K_{n_1} \odot P_3$, then

$$dim(G \odot H) \ge \frac{n_1}{n_1 - 1} pd(G).$$

Proof. It was shown in [22] that

$$dim(G \odot H) \ge n_1 dim(H). \tag{2}$$

So we differentiate two cases. Case 1: $dim(H) \ge 2$. Since $n_1 \ge 2$, we have $2n_1(n_1-1) \ge n_1^2$. Thus,

$$dim(H)n_1(n_1-1) \ge 2n_1(n_1-1) \ge n_1^2 \ge n_1pd(G).$$

Hence, by equation (2) we obtain $dim(G \odot H)(n_1 - 1) \ge n_1 pd(G)$.

Case 2: dim(H) = 1. It was shown in [6] that a connected graph H has dimension 1 if and only if H is a path graph. So we have $H \cong P_{n_2}$. Now we consider two subcases.

Subcase 2.1: $G \not\cong K_{n_1}$ and $n_2 \geq 2$. Then by equation (2) we obtain

$$(n_1-1)dim(G \odot P_{n_2}) \ge n_1(n_1-1) \ge n_1pd(G)$$

and, as a consequence, $dim(G \odot H) \ge \frac{n_1}{n_1-1}pd(G)$.

Subcase 2.2: $G\cong K_{n_1}$ and $n_2\geq 4$. Let S be a resolving set for $K_{n_1}\odot P_{n_2}$ of minimum cardinality. As above we denote by $\{v_1,...,v_{n_1}\}$ the set of vertices of K_{n_1} and by $H_i=(V_i,E_i),\,i\in\{1,...,n_1\}$ the corresponding copies of P_{n_2} in $K_{n_1}\odot P_{n_2}$. By Lemma 1 (ii) we know that $V_i\cap S\neq\emptyset$, for every $i\in\{1,...,n_1\}$. We suppose $V_i\cap S=\{x_i\}$. In this case, since $n_2\geq 4$ and $H_i\cong P_{n_2}$, there exist $a,b\in V_i$ such that either $d_{K_{n_1}\odot P_{n_2}}(a,x_i)=d_{K_{n_1}\odot P_{n_2}}(b,x_i)=1$ or $d_{K_{n_1}\odot P_{n_2}}(a,x_i)=d_{K_{n_1}\odot P_{n_2}}(b,x_i)=2$. Thus, By Lemma 1 (i) we conclude that r(a|S)=r(b|S), a contradiction. Hence, $|V_i\cap S|\geq 2$ and, as a consequence, $dim(K_{n_1}\odot P_{n_2})\geq 2n_1$. Then

$$dim(K_{n_1} \odot P_{n_2})(n_1-1) \ge 2n_1(n_1-1) \ge n_1^2 = n_1 pd(K_{n_1}).$$

Therefore, the result follows.

In [22] it was shown that for every connected graph G of order $n_1 \geq 2$ and every graph H of order $n_2 \geq 2$,

$$dim(G\odot H) \leq \left\{ egin{array}{ll} n_1(n_2-lpha-1) & ext{for } lpha \geq 1 ext{ and } eta \geq 1, \\ n_1(n_2-lpha) & ext{for } lpha \geq 1 ext{ and } eta = 0, \\ n_1(n_2-1) & ext{for } lpha = 0, \end{array}
ight.$$

where α denotes the number of connected components of H and β denotes the number of isolated vertices of H.

By using the above bound on $dim(G \odot H)$ we obtain the following direct consequence of Theorem 2.

Corollary 4. Let G be a connected graph of order $n_1 \geq 2$ and let H be a graph of order $n_2 \geq 2$. Let α be the number of connected components of H of order greater than one and let β be the number of isolated vertices of H.

Then

$$pd(G\odot H) \leq \left\{ egin{array}{ll} pd(G)+n_2-lpha & ext{for $lpha\geq 1$ and $eta\geq 1$,} \\ pd(G)+n_2-lpha+1 & ext{for $lpha\geq 1$ and $eta=0$,} \\ pd(G)+n_2 & ext{for $lpha=0$.} \end{array}
ight.$$

The reader is referred to [22] for several upper bounds on $dim(G \odot H)$ which lead to bounds on $pd(G \odot H)$.

Theorem 5. Let G and H be two connected graphs of order $n_1 \geq 2$ and $n_2 \geq 2$, respectively. If $D(H) \leq 2$, then

$$pd(G \odot H) \leq pd(G) + pd(H)$$
.

Proof. Let $P = \{A_1, A_2, ... A_k\}$ be a resolving partition in G and let $Q_i = \{B_{i1}, B_{i2}, ... B_{it}\}$ be a resolving partition in the corresponding copy H_i of H. Let $B_j = \bigcup_{i=1}^{n_1} B_{ij}, j \in \{1, ..., t\}$. We will show that

$$\Pi = \{A_1, A_2, ..., A_k, B_1, B_2, ..., B_t\}$$

is a resolving partition for $G \odot H$. Let x, y be two different vertices of $G \odot H$. If $x, y \in A_i$, then there exists $A_j \in P \subset \Pi$, $j \neq i$, such that $d(x, A_j) \neq d(y, A_j)$. On the other hand, if $x, y \in B_j$, then we have the following cases.

Case 1: $x,y \in B_{ij}$. Hence, there exists $B_{ik} \in Q_i$, $k \neq j$, such that $d_{H_i}(x,B_{ik}) \neq d_{H_i}(y,B_{ik})$. Since $D(H) \leq 2$, for every $u \in B_{ij}$ we have $d_{H_i}(u,B_{ik}) = d_{G \odot H}(u,B_k)$ and $d_{H_i}(u,B_{ik}) = d_{G \odot H}(u,B_k)$. So, we obtain $d_{G \odot H}(x,B_k) = d_{H_i}(x,B_{ik}) \neq d_{H_i}(y,B_{ik}) = d_{G \odot H}(y,B_k)$.

Case 2: $x \in B_{ij}$ and $y \in B_{kj}$, $k \neq i$. If $v_i, v_k \in A_l$, then there exists $A_q \in P \subset \Pi$ such that $d_G(v_i, A_q) \neq d_G(v_k, A_q)$. So, we have $d_{G \odot H}(x, A_q) = 1 + d_G(v_i, A_q) \neq 1 + d_G(v_k, A_q) = d_{G \odot H}(y, A_q)$.

On the other hand, if $v_i \in A_p$ and $v_k \in A_q$, $q \neq p$, then we have $d_{G \odot H}(x, A_q) = 1 + d_G(v_i, A_q) > 1 = d_G(y, A_q) = d_{G \odot H}(y, A_q)$.

Thus, for every two different vertices x, y of $G \odot H$ we have $r(x|\Pi) \neq r(y|\Pi)$ and, as a consequence, Π is a resolving partition for $G \odot H$.

Corollary 6. Let G and H be two connected graphs of order $n_1 \geq 2$ and $n_2 \geq 2$, respectively. If $D(H) \leq 2$, then

$$pd(G \odot H) \leq dim(G) + dim(H) + 2.$$

In the next section we will show that all the above inequalities are tight.

3 Minorizing $pd(G \odot H)$

Theorem 7. Let G and H be two connected graphs. Let Π be a resolving partition of $G \odot H$ of minimum cardinality. Let $H_i = (V_i, E_i)$ be the subgraph of $G \odot H$ corresponding to the i^{th} -copy of H, and let Π_i be the set composed by all non-empty sets of the form $S \cap V_i$, where $S \in \Pi$. Then Π_i is a resolving partition for H_i .

Proof. If Π_i is composed by sets of cardinality one, then the result immediately follows. Now, let x,y be two different vertices of H_i belonging to the same set of Π . We know that there exists $S \in \Pi$ such that $d_{G \odot H}(x,S) \neq d_{G \odot H}(y,S)$. By Lemma 1 (i) we have that for every vertex v of $G \odot H$ not belonging to V_i , it follows that $d_{G \odot H}(x,v) = d_{G \odot H}(y,v)$. Hence we conclude $S' = S \cap V_i \neq \emptyset$ and we can assume, without loss of generality, that $d_{G \odot H}(x,S) = 1$ and $d_{G \odot H}(y,S) = 2$. As a result, $S' \in \Pi_i$ and $d_{H_i}(x,S') = d_{G \odot H}(x,S) = 1 < 2 = d_{G \odot H}(y,S) \le d_{H_i}(y,S')$. Therefore, the result follows.

Corollary 8. For any connected graphs G and H,

$$pd(G \odot H) \ge pd(H)$$
.

It is easy to check that for the star graph $K_{1,n}$, $n \geq 2$, it follows $pd(K_{1,n}) = n$. So the following result shows that the above inequality is tight.

Proposition 9. Let G denote a connected graph of order n_1 and let n be an integer. If $n \geq 2n_1 \geq 4$ or $n > 2n_1 = 2$, then

$$pd(G\odot K_{1,n})=n.$$

Proof. Let us suppose $n \geq 2n_1 \geq 4$. For each $v_i \in V$, let $\{a_i, u_{i1}, u_{i2}, ..., u_{in}\}$ be the set of vertices of the i^{th} copy of $K_{1,n}$ in $G \odot K_{1,n}$, where a_i is the vertex of degree n.

We will show that $\Pi = \{S_1, S_2, ..., S_n\}$ is a resolving partition for

 $G \odot K_{1,n}$, where

$$S_{1} = \{a_{1}, u_{11}, u_{21}, ..., u_{n_{1}1}\},$$

$$S_{2} = \{v_{1}, u_{12}, u_{22}, ..., u_{n_{1}2}\},$$

$$S_{3} = \{a_{2}, u_{13}, u_{23}, ..., u_{n_{1}3}\},$$

$$S_{4} = \{v_{2}, u_{14}, u_{24}, ..., u_{n_{1}4}\},$$

$$\vdots$$

$$S_{2n_{1}} = \{v_{n_{1}}, u_{1(2n_{1})}, u_{2(2n_{1})}, ..., u_{n_{1}(2n_{1})}\},$$

$$S_{2n_{1}+1} = \{u_{1(2n_{1}+1)}, u_{2(2n_{1}+1)}, ..., u_{n_{1}(2n_{1}+1)}\},$$

$$\vdots$$

$$S_{n} = \{u_{1n}, u_{2n}, ..., u_{n,n}\}.$$

Let x, y be two different vertices of $G \odot K_{1,n}$. We differentiate three cases. Case 1: $x = u_{il}$ and $y = u_{il}$, $i \neq j$. If $l \neq 2i - 1$, then

$$d(u_{il}, S_{2i-1}) = d(u_{il}, a_i) = 1 < 2 = d(u_{jl}, u_{j(2i-1)}) = d(u_{jl}, S_{2i-1}).$$

If l=2i-1, then

$$d(u_{jl}, S_{2j-1}) = d(u_{jl}, a_j) = 1 < 2 = d(u_{il}, u_{i(2j-1)}) = d(u_{il}, S_{2j-1}).$$

Case 2: $x = v_i$ and $y = u_{j(2i)}$. If j = i, then

$$d(v_i, S_i) = d(v_i, u_{ii}) = 1 < 2 = d(u_{i(2i)}, u_{ii}) = d(u_{i(2i)}, S_i).$$

If $j \neq i$, then

$$d(v_i, S_i) = d(v_i, u_{ii}) = 1 < 2 = d(u_{j(2i)}, u_{ji}) = d(u_{j(2i)}, S_i).$$

Case 3: $x = a_i$ and $y = u_{i(2i-1)}$. If j = i, then

$$d(a_i, S_i) = d(a_i, u_{ii}) = 1 < 2 = d(u_{i(2i-1)}, u_{ii}) = d(u_{i(2i-1)}, S_i).$$

If $j \neq i$, then

$$d(a_i, S_i) = d(a_i, u_{ii}) = 1 < 2 = d(u_{i(2i-1)}, u_{ii}) = d(u_{i(2i-1)}, S_i).$$

Therefore, we conclude that Π is a resolving partition for $G \odot K_{1,n}$.

For $n_1 = 1$ and $n \ge 3$ we denote by v the vertex of G, by a the vertex of $K_{1,n}$ of degree n, and by $\{u_1, u_2, ..., v_n\}$ the set of leaves of $K_{1,n}$. Thus, from $d(v, u_3) = 1 < 2 = d(u_2, u_3)$ and $d(a, u_3) = 1 < 2 = d(u_1, u_3)$, we conclude that $\Pi = \{S_1, S_2, ..., S_n\}$ is a resolving partition for $G \odot K_{1,n}$, where $S_1 = \{a, u_1\}$, $S_2 = \{v, u_2\}$, $S_3 = \{u_3\}$, ..., $S_n = \{u_n\}$.

Lemma 10. Let G be a connected graph. If Π is a resolving partition for $G \odot K_n$ of cardinality n+1, then for every vertex v of $G \odot K_n$ and every $A \in \Pi$, it follows $d(v, A) \leq 3$.

Proof. Let v_i, v_j be two adjacent vertices of G and let $H_l = (V_l, E_l)$ ($l \in \{i, j\}$) be the copy of K_n in $G \odot K_n$ such that v_l is adjacent to every vertex of H_l . If there exists a vertex v of the subgraph of $G \odot K_n$ induced by $V_i \cup V_j \cup \{v_i, v_j\}$ such that d(v, A) > 3, for some $A \in \Pi$, then, since different vertices of V_i (respectively, V_j) belong to different sets of Π , there exist $B, C \in \Pi$, $u_i \in V_i$ and $u_j \in V_j$ such that $u_i, v_i \in B$ and $u_j, v_j \in C$.

If B=C, then $d(u_i,A)=d(v_j,A)$ or $d(v_i,A)=d(u_j,A)$. Hence, $r(u_i|\Pi)=r(v_j|\Pi)$ or $r(v_i|\Pi)=r(u_j|\Pi)$, a contradiction. If $B\neq C$, then there exist two vertices $u_i'\in V_i\cap C$ and $u_j'\in V_j\cap B$ and, as a consequence, then $d(u_i',A)=d(v_j,A)$ or $d(v_i,A)=d(u_j',A)$. Thus, $r(u_i'|\Pi)=r(v_j|\Pi)$ or $r(v_i|\Pi)=r(u_j'|\Pi)$, a contradiction. Therefore, $d(v,A)\leq 3$, for every $A\in \Pi$.

Given a graph H which contains a connected component isomorphic to a complete graph, we denote by c(H) the maximum cardinality of any connected component of H which is isomorphic to a complete graph.

Theorem 11. Let G be a connected graph of order n. Then for any graph H such that $n > 2c(H) + 1 \ge 5$,

$$pd(G \odot H) \ge c(H) + 2.$$

Proof. We denote by S_i a connected component of H_i isomorphic to $K_{c(H)}$, $i \in \{1, ..., n\}$. Since different vertices of S_i belong to different sets of any resolving partition for $G \odot H$, we conclude $pd(G \odot H) \geq c(H)$. If $pd(G \odot H) = c(H)$, then there exist two vertices $a, b \in S_i \cup \{v_i\}$ such that they belong to the same set of any resolving partition for $G \odot H$. Thus, a and b have the same partition representation, which is a contradiction. So, $pd(G \odot H) \geq c(H) + 1$. Now, let us suppose $pd(G \odot H) = c(H) + 1$ and let $\Pi(G \odot H) = \{A_1, A_2, ..., A_{c(H)+1}\}$ be a resolving partition for $G \odot H$. Now, let $S = \bigcup_{i=1}^n (S_i \cup \{v_i\})$ and let $S \in S$. Suppose $S \in S$ suppose $S \in S$, $S \in S$

$$r(u|\Pi) = (1,1,..., \quad 1,0,1, \quad ..., \quad 1,t,1, \quad ...,1),$$

$$j \qquad \qquad i$$

where $i, j \in \{1, ..., c(H) + 1\}$, $i \neq j$, and, by Lemma 10, $t \in \{1, 2, 3\}$. Since for every different vertices $a, b \in S$, $r(a|\Pi) \neq r(b|\Pi)$, the maximum number of possible different partition representations for vertices of S is

given by (c(H)+1)(2c(H)+1), i.e., for t=1 there are at most c(H)+1 different vectors and for $t \in \{2,3\}$ there are at most 2(c(H)+1)c(H). Hence, $n(c(H)+1)=|S| \leq (2c(H)+1)(c(H)+1)$ and, as a consequence, $n \leq 2c(H)+1$. Therefore, if n > 2c(H)+1, then $pd(G \odot H) \geq c(H)+2$. \square

Corollary 12. Let G be a graph of order n_1 and let $n_2 \geq 2$ be an integer. If $n_1 > 2n_2 + 1$, then

$$pd(G \odot K_{n_2}) \geq n_2 + 2.$$

From Theorem 5 and Corollary 12 we obtain that if $n_1 > 2n_2 + 1 \ge 5$, then $pd(G) + n_2 \ge pd(G \odot K_{n_2}) \ge n_2 + 2$. Therefore, since the partition dimension of a path P_n with n > 1 vertices is two, we obtain the following result.

Remark 13. Let n_1 and n_2 be integers such that $n_1 > 2n_2 + 1 \ge 5$. Then

$$pd(P_{n_1} \odot K_{n_2}) = n_2 + 2.$$

By Remark 13 we conclude that the inequalities in Theorem 2, Corollary 4, Theorem 5, Corollary 6 and Corollary 12 are tight.

An empty graph of order n, denoted by N_n , consists of n isolated nodes with no edges. In the following result $\beta(H)$ denotes the number of isolated vertices of a graph H.

Theorem 14. Let G be a connected graph of order $n \geq 2$ and let H be any graph. If $n > \beta(H) \geq 2$, then

$$pd(G \odot H) \ge \beta(H) + 1.$$

Proof. We will proceed similarly to the proof of Theorem 11. Let S_i denote the set of isolated vertices of H_i , $i \in \{1, ..., n\}$.

Since different vertices of S_i belong to different sets of any resolving partition for $G \odot H$, we have $pd(G \odot H) \geq \beta(H)$. Let us suppose $pd(G \odot H) = \beta(H)$ and let $\Pi(G \odot H) = \{A_1, A_2, ..., A_{\beta(H)}\}$ be a resolving partition for $G \odot H$. Now, let $S = \bigcup_{i=1}^{n} (S_i \cup \{v_i\})$ and let $u \in S$. If $u \in A_j \cap S_j$, $j \in \{1, ..., n_1\}$, then the partition representation of u is given by

$$r(u|\Pi) = (2, 2, ..., 2, 0, 2, ..., 2, t, 2, ..., 2),$$
 j

with $i, j \in \{1, ..., \beta(H)\}$, $i \neq j$ and $t \in \{1, 2\}$. On the other side, if $u \in A_j \cap V$, then

$$r(u|\Pi) = (1, 1, ..., 1, 0, 1, ..., 1),$$

 j

with $j \in \{1, ..., \beta(H)\}$. Thus, the maximum number of possible different partition representations for vertices of S is given by $(\beta(H)+1)\beta(H)$. Hence, $n(\beta(H)+1)=|S| \leq \beta(H)(\beta(H)+1)$. Thus, $n \leq \beta(H)$. Therefore, if $n > \beta(H)$, then $pd(G \odot H) \geq \beta(H)+1$.

Corollary 15. Let G be a graph of order n_1 and let $n_2 \geq 2$ be an integer. If $n_1 > n_2$, then

$$pd(G \odot N_{n_2}) \geq n_2 + 1.$$

Proposition 16. If $n_1 \ge n_2 \ge 2$, then

$$pd(P_{n_1} \odot N_{n_2}) = n_2 + 1.$$

Proof. Let $V=\{v_1,...,v_n\}$ be the set of vertices of P_{n_1} and, for each $v_i \in V$, let $V_i = \{u_{i1},...,u_{in_2}\}$ be the set of vertices of the i^{th} copy of N_{n_2} in $P_{n_1} \odot N_{n_2}$. Let $\Pi = \{A_1,...,A_{n_2+1}\}$, where $A_1 = \{v_1,u_{11}\}$, $A_2 = \{v_i,u_{i1}: i \in \{2,...,n_1\}\}$ and $A_j = \{u_{i(j-1)}: i \in \{1,...,n_1\}\}$ for $j \in \{3,...,n_2+1\}$. Note that $d_{P_{n_1} \odot N_{n_2}}(v_1,A_2) \neq d_{P_{n_1} \odot N_{n_2}}(u_{11},A_2)$. Moreover, for two different vertices $x,y \in A_j, j \in \{3,...,n_2+1\}$, we have $d_{P_{n_1} \odot N_{n_2}}(x,A_1) \neq d_{P_{n_1} \odot N_{n_2}}(y,A_1)$. Now on we suppose $x,y \in A_2$. If $x,y \in V$ or $x,y \in V_i$, for some i, then $d_{P_{n_1} \odot N_{n_2}}(x,A_1) \neq d_{P_{n_1} \odot N_{n_2}}(y,A_1)$. Finally, if $x \in V$ and $y \notin V$, then $d_{P_{n_1} \odot N_{n_2}}(x,A_3) \neq d_{P_{n_1} \odot N_{n_2}}(y,A_3)$. Therefore, Π is a resolving partition for $P_{n_1} \odot N_{n_2}$ and, as a consequence, $pd(P_{n_1} \odot N_{n_2}) \leq n_2 + 1$. By corollary 15 we conclude the proof.

References

- [1] R. C. Brigham, G. Chartrand, R. D. Dutton, P. Zhang, Resolving domination in graphs, *Mathematica Bohemica* 128 (1) (2003) 25-36.
- [2] P. S. Buczkowski, G. Chartrand, C. Poisson, P. Zhang, On k-dimensional graphs and their bases, *Periodica Mathematica Hungarica*, 46 (1) (2003) 9-15.
- [3] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, D. R. Wood, On the metric dimension of Cartesian product of graphs, SIAM Journal on Discrete Mathematics 21 (2) (2007) 273-302.
- [4] J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, On the metric dimension of some families of graphs, *Electronic Notes in Discrete Mathematics* 22 (2005) 129–133.
- [5] G. Chappell, J. Gimbel, C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria 88 (2008) 349-366.

- [6] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, *Discrete Applied Mathematics* 105 (2000) 99-113.
- [7] G. Chartrand, C. Poisson, P. Zhang, Resolvability and the upper dimension of graphs, Computers & Mathematics with Applications 39 (2000) 19-28.
- [8] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequationes Mathematicae (1-2) 59 (2000) 45-54.
- [9] M. Fehr, S. Gosselin, O. R. Oellermann, The partition dimension of Cayley digraphs Aequationes Mathematicae 71 (2006) 1-18.
- [10] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria 2 (1976) 191-195.
- [11] T. W. Haynes, M. Henning, J. Howard, Locating and total dominating sets in trees, *Discrete Applied Mathematics* **154** (2006) 1293–1300.
- [12] B. L. Hulme, A. W. Shiver, P. J. Slater, A Boolean algebraic analysis of fire protection, Algebraic and Combinatorial Methods in Operations Research 95 (1984) 215-227.
- [13] H. Iswadi, E. T. Baskoro, R. Simanjuntak, A. N. M. Salman, The metric dimension of graph with pendant edges, *Journal of Combinatorial Mathematics and Combinatorial Computing*, 65 (2008) 139-145.
- [14] M. A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, *Journal of Biopharmaceutical Statistics* 3 (1993) 203-236.
- [15] M. A. Johnson, Browsable structure-activity datasets, Advances in Molecular Similarity (R. Carbó-Dorca and P. Mezey, eds.) JAI Press Connecticut (1998) 153-170.
- [16] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics 70 (1996) 217-229.
- [17] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision Graphics and Image Processing 25 (1984) 113-121.
- [18] V. Saenpholphat, P. Zhang, Conditional resolvability in graphs: a survey, International Journal of Mathematics and Mathematical Sciences 38 (2004) 1997–2017.

- [19] P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium 14 (1975) 549-559.
- [20] I. Tomescu, Discrepancies between metric and partition dimension of a connected graph, Discrete Mathematics 308 (2008) 5026-5031.
- [21] I. G. Yero, J. A. Rodríguez-Velázquez, A note on the partition dimension of Cartesian product graphs, Applied Mathematics and Computation. 217 (7) (2010) 3571-3574.
- [22] I. G. Yero, D. Kuziak, J. A. Rodríguez-Velázquez, On the metric dimension of corona product graphs, Computers & Mathematics with Applications 61 (9) (2011) 2793-2798.