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Abstract

Given a set of vertices S = {v1,v2,...,v} of a connected graph
G, the metric representation of a vertex v of G with respect to S
is the vector r(v|S) = (d(v, w1),d(v, v2), ...,d(v, v&)), where d(v,v;),
i € {1,..., k} denotes the distance between v and v;. S is a resolving
set of G if for every pair of distinct vertices u, v of G, r(ul|S) # »(v|S).
The metric dimension dim(G) of G is the minimum cardinality of any
resolving set of G. Given an ordered partition Il = {Py, Ps, ..., P:}
of vertices of a connected graph G, the partition representation of a
vertex v of G, with respect to the partition II is the vector »(v|II) =
(d(v, P1),d(v, P2), ...,d(v, P;)), where d(v, F;), 1 < i < t, represents
the distance between the vertex v and the set F;, that is d(v, P;) =
minyep; {d(v,u)}. II is a resolving partition for G if for every pair of
distinct vertices u, v of G, r(u|II) # »(v|IT). The partition dimension
pd(G) of G is the minimum number of sets in any resolving partition
for G. Let G and H be two graphs of order ny and na respectively.
The corona product G ® H is defined as the graph obtained from G
and H by taking one copy of G and n1 copies of H and then joining
by an edge, all the vertices from the i**-copy of H with the i**-vertex
of G. Here we study the relationship between pd(G ® H) and several
parameters of the graphs G ® H, G and H, including dim(G © H),
pd(G) and pd(H).
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1 Introduction

The concepts of resolvability and location in graphs were described indepen-
dently by Harary and Melter [10] and Slater [19], to define the same struc-
ture in a graph. After these papers were published several authors develo-
ped diverse theoretical works about this topic (3, 4, 5, 6, 7, 8, 9, 16, 18, 20].
Slater described the usefulness of these ideas into long range aids to na-
vigation [19]. Also, these concepts have some applications in chemistry
for representing chemical compounds {14, 15] or to problems of pattern
recognition and image processing, some of which involve the use of hierar-
chical data structures [17]. Other applications of this concept to navigation
of robots in networks and other areas appear in [6, 12, 16]. Some varia-
tions on resolvability or location have been appearing in the literature, like
those about conditional resolvability [18], locating domination (11], resol-
ving domination [1] and resolving partitions [5, 8, 9]. In this work we are
interested into study the relationship between pd(G ® H) and several pa-
rameters of the graphs GO H, G and H, including dim(G ® H), pd(G) and
pd(H).

We begin with some basic concepts and notations. Let G = (V, E)
be a simple graph. Let u,v € V be two different vertices in G, the
distance dg(u,v) between two vertices u and v of G is the length of a
shortest path between u and v. If there is no ambiguity, we will use
the notation d(u,v) instead of dg(u,v). The diameter of G is defined as
D(G) = maxy,vev{d(u,v)}. Given u,v € V, u ~ v means that u and v are
adjacent vertices. Given a set of vertices S = {v;, vy, ..., vk} of a connected
graph G, the metric representation of a vertex v € V with respect to S is
the vector r(v|S) = (d(v, v1), d(v, v2), ..., d(v, vk )). We say that S is a resol-
ving set for G if for every pair of distinct vertices u,v € V, r(u|S) # r(v|S).
The metric dimension of G is the minimum cardinality of any resolving set
for G, and it is denoted by dim(G).

Given an ordered partition II = {Py, P, ..., P.} of vertices of a con-
nected graph G, the partition representation of a vertex v € V with respect
to the partition II is the vector r(v|II) = (d(v, P,),d(v, ), ...,d(v, P.)),
where d(v, P;), 1 < i <t, represents the distance between the vertex v and
the set P;, that is d(v, P;) = minyep, {d(v,u)}. We say that I1 is a resolving
partition of G if for every pair of distinct vertices u,v € V, r(u|II) # r(v|II).
The partition dimension of G is the minimum number of sets in any resol-
ving partition for G and it is denoted by pd(G). The partition dimension
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of graphs is studied in {5, 8, 18, 20, 21].

Let G and H be two graphs of order n; and ng, respectively. The
corona product G ® H is defined as the graph obtained from G and H
by taking one copy of G and n; copies of H and joining by an edge each
vertex from the i**-copy of H with the i**-vertex of G. We will denote by

= {v1,v2,...,9n} the set of vertices of G and by H; = (V;, E;) the copy
of H such that v; ~ v for every v € V,.

2 Majorizing pd(G © H)

It was shown in [8] that for any nontrivial connected graph G we have
pd(G) < dim(G) + 1. Thus,

pd(G © H) < dim(G © H) + 1. 1)

In order to give another interesting relationship between pd(G © H)
and dim(G ® H) that allow us to derive tight bounds on pd(G ® H), w
present the following lemma.

Lemma 1. [22] Let G = (V, E) be a connected graph of order n > 2 and
let H be a graph of order at least two. Let H; = (V;, E;) be the subgraph of
G ® H corresponding to the i** copy of H.

(i) If uw,v € V;, then dgou(u,z) = deou(v,z) for every verter z of
G ® H not belonging to V;.
(ii) If S is a resolving set for GOH, then V;NS # O for everyi € {1,...,n}.
(iii) If S is a resolving set for GO H of minimum cardinality, then VNS =
9.

Theorem 2. Let G be a connected graph of order ny > 2 and let H be a
graph of order na. Then

pd(G @ H) < —dim(G © H) + pd(G) + 1.
1

Proof. Let S be a resolving set for G ©® H of minimum cardinality. By
Lemma 1 (ii) and (m) we conclude that S = U2, S;, where @ # S; C V;. We
note that |S;| = 2 = -L-dim(G © H) for every i € {1,..,m}. In order to
build a resolving partltlon for GO H, we need to mtroduce some additional
notation. Let II(G) = {W), Wy, ..., Wpa(c)} be a resolving partition for G,
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let A =U32,(Vi-8;), let S; = {vi1,viz, ..., vie}, and let B; = U2 {vi;}, 5 =
1,...,t. Let us prove that Il = {4, By, ..., B;, W1, ..., Wpq(c)} is & resolving
partition for G ® H. Let z,y be two different vertices of G ® H. We have

the following cases.

Case 1. z,y € V;. Ifx € S; or y € S; then = and y belong to
different sets of I, so r(z|II) # r(y|II). We suppose z,y € V; — S;. Since
S is a resolving set for G ® H, we have r(z|S) # r(y|S). By Lemma 1
(i), deon(z,u) = deow(y,u) for every vertex u of G ® H not belonging
to Vi. So, there exists v € S; such that dggy(z,v) # dgeu(y,v). Thus,
either (v ~ 2 and v # y) or (v # z and v ~ y). In the first case we have
deon(z,v) =dy,(z,v) = 1 and deon(y,v) =2 < dy,(y,v). The case v %
z and v ~ y is analogous. Therefore, for every z,y € V; there exists vy € S;
such that deeu(z, Bi) = deon(z,vi) # deen(y,vit) = deon(y, B).

Case 2. z € V; and y € Vj, j # i. There exists Wy, € II(G) such
that dG(vi,Wk) #* dG(’vj,Wk). Thus, dgen(z, Wk) =1+ dc('vi,Wk) #
da(vj, Wi) + 1 = deon(y, Wk).

Case 3. z,y € V. There exists Wy € II(G) such that dg(z, W;) #
dc(y, Wk). Thus, dG@H(x, Wk) 75 chH(y, Wk).

Case 4. z € V and y ¢ V. In this case = and y belong to different sets
of II, so r(z|II) # r(y|II).

Therefore, II is a resolving partition for G® H. O

We denote by K,, and P, the complete graph and the path graph of
order n, respectively. The following proposition allows us to conclude that
for every connected graphs G and H of order greater than or equal to two
such that GO H ¥ K,, ® P, and GO H % K,, ® Ps, the equation in
Theorem 2 is never worse than equation (1).

Proposition 3. Let G and H be two connected graphs of order greater than
or equal to two. Let n) denote the order of G. If GO H % K,, ® P; and
GOHZK,, OP;, then

dim(G® H) > ——pd(G).

n
n1—1

Proof. It was shown in [22] that
dim(G © H) > nidim(H). (2)

So we differentiate two cases. Case 1: dim(H) > 2. Since n; > 2, we have
2ny(n; — 1) > n?. Thus,

dim(H)ny(ny — 1) > 2n1(ny — 1) > n? > nypd(G).
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Hence, by equation (2) we obtain dim(G @ H)(n; — 1) > nypd(G).
Case 2: dim(H) = 1. It was shown in [6] that a connected graph H

has dimension 1 if and only if H is a path graph. So we have H & P,,.
Now we consider two subcases.

Subcase 2.1: G ¥ K,,, and ny > 2. Then by equation (2) we obtain
(n1 — 1)dim(G @ Py,) 2 n1(ny — 1) 2 n1pd(G)

and, as a consequence, dim(G © H) 2 77%5pd(G).

Subcase 2.2: G & K,, and ny > 4. Let S be a resolving set for
K,, © P,, of minimum cardinality. As above we denote by {vy, ..., v, } the
set of vertices of K, and by H; = (V;, Ei), i € {1, ...,n1} the corresponding
copies of P,, in K,,, ® P,,. By Lemma 1 (ii) we know that V; NS # @, for
every i € {1,...,,n1}. We suppose V; NS = {z;}. In this case, since ny > 4
and H; = Py, there exist a,b € V; such that either dg, op,,(a,7:) =
dK,, 0P, (b:T:) = 1 or dk, oP.,(a,Zi) = dk, oP.,(b,2:) = 2. Thus, By
Lemma 1 (i) we conclude that r(a|S) = r(b|S), a contradiction. Hence,
|V;N'S| > 2 and, as a consequence, dim(K,, ® P,,) > 2n;. Then

dim(Kp, ® Pn,)(n — 1) > 2ny(ny — 1) > n? = nypd(K,,, ).
Therefore, the result follows. (|

In [22] it was shown that for every connected graph G of order n; > 2
and every graph H of order ny > 2,

nifng—a—1) fora>1land 82>1,
dim(GOH)<{ ni(ny—a) fora>1land 8 =0,
nl(ng - 1) for @ = 0,

where o denotes the number of connected components of H and § denotes
the number of isolated vertices of H.

By using the above bound on dim(G ® H) we obtain the following
direct consequence of Theorem 2.

Corollary 4. Let G be a connected graph of order ny > 2 and let H be a
graph of order ny > 2. Let a be the number of connected components of H
of order greater than one and let 8 be the number of isolated vertices of H.
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Then
pd(G)+ne2 —a fora>land 8 >1,

pd(GOH)<{ pd(G)+n2—a+1 fora>1landf =0,
pd(G) + ng fora=0.

The reader is referred to [22] for several upper bounds on dim(G © H)
which lead to bounds on pd(G © H).

Theorem 5. Let G and H be two connected graphs of order n; > 2 and
ng > 2, respectively. If D(H) < 2, then

pd(G 0 H) < pd(G) + pd(H).

Proof. Let P = {A,, As,...Ar} be a resolving partition in G and let Q; =
{Bi1, Biz,...Bit} be a resolving partition in the corresponding copy H; of
H. Let B; =2, Bij, j € {1,...,t}. We will show that

H = {Al, Az, weey Ak,Bl, Bg, reey Bg}

is a resolving partition for G ® H. Let z,y be two different vertices of
GO H. If z,y € A;, then there exists A; € P C II, j # %, such that
d(z,A;) # d(y,A;). On the other hand, if x,y € B;, then we have the
following cases.

Case 1: z,y € B;;. Hence, there exists Byx € Q;, k # j, such that
dy,(z, Bix) # dn,(y, Bix). Since D(H) < 2, for every u € B;; we have
dH‘, (u, B,-k) = dG'@H(’U, Bk) and dH; (u, ng) = dg@):[(u, Bk). SO, we obtain
deoH(Z, Bk) = du.(z, Bix) # dn.(y, Bi) = dcon (¥, Bx).

Case 2: z € B;j and y € Byj, k # i. If v;, v € Ay, then there exists
Aq € P C IIsuch that dg(vi, Ag) # da(vk, Ag). So, we have dgou(z, Ag) =
1 +dc('v,~, AQ) #F1+ dG(vk7Aq) = dG@H(y’Aq)'

On the other hand, if v; € A, and vx € A,, ¢ # p, then we have
deoH(T, Ag) =1 +da(vi, Ag) > 1 =dc(y, 4q) = deon (¥, 4¢)-

Thus, for every two different vertices z,y of G ® H we have r(z|II) #
r(y|II) and, as a consequence, II is a resolving partition for G ® H. a

Corollary 6. Let G and H be two connected graphs of order ny > 2 and
ng > 2, respectively. If D(H) < 2, then

pd(G © H) < dim(G) + dim(H) + 2.

In the next section we will show that all the above inequalities are
tight.
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3 Minorizing pd(G © H)

Theorem 7. Let G and H be two connected graphs. Let II be a resolving
partition of G © H of minimum cardinality. Let H; = (V;, E;) be the sub-
graph of G © H corresponding to the it"-copy of H, and let II; be the set
composed by all non-empty sets of the form SNV, where S € Il. Then II;
is a resolving partition for H;.

Proof. If II; is composed by sets of cardinality one, then the result im-
mediately follows. Now, let z,y be two different vertices of H; belon-
ging to the same set of II. We know that there exists S € II such that
deon(z,S) # deou(y,S). By Lemma 1 (i) we have that for every vertex
v of G ©@ H not belonging to V;, it follows that dgou(z,v) = deon(v,v).
Hence we conclude S’ = SNV, # 0 and we can assume, without loss of gene-
rality, that dgou(z,S) =1 and dgox(y,S) = 2. As a result, S’ € II; and
dy,(z,8') = dgou(z,S) =1 < 2 = deou(y,S) < dy,(y,S’). Therefore,
the result follows. O

Corollary 8. For any connected graphs G and H,
pd(G ®© H) > pd(H).

It is easy to check that for the star graph K;,, n > 2, it follows
pd(K;,») = n. So the following result shows that the above inequality is
tight.

Proposition 9. Let G denote a connected graph of order ny and let n be
an integer. If n > 2ny > 4 orn > 2n; =2, then

pd(GO K1) =n.

Proof. Let us suppose n > 2n; > 4. For eachv; € V, let {a;, ui1, wiz, ..., Uin}
be the set of vertices of the it* copy of K 1,n in G © Ky 5, where a; is the
vertex of degree n.

We will show that II = {S},852,...,Sn} is a resolving partition for
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G O K1 5, where
S1 = {a1,u11, U215 s Uny1 }
Sy = {v1, %12, U422, -+ Uny2},

S3 = {az, u13, U23, -+ Un,3},
S4 = {v2aul4) U24y eey %14},

52"1 = {vn17u1(2n1)9u2(2n1)7'-';un;(2n;)}a
Son+1 = {%1(2n141)> Y2(2n1+1)s -+ Uny 20y +1) )
Sn = {ulna u2m---,un1n}-

Let z,y be two different vertices of G ® K ». We differentiate three cases.
Case 1: z =ujy and y = uj;, i # j. If [ # 2i — 1, then

d(uit, S2i-1) = d(ua, a:) = 1 < 2 = d(uji, uj2i-1)) = d(ujt, S2i-1).
Ifl=2i -1, then
d(ujt, S25-1) = d(uji, a;) = 1 < 2 = d(uir, uizj—1)) = d(uir, Szj-1)-
Case 2: £ = v; and y = u;(2. If j =14, then
d(v;, Si) = d(vi, uii) = 1 < 2 = d(ui(ay, uis) = d(us2sy, Si)-
If 7 # 4, then
d(v;, S;) = d(v;,u)=1< 2= d(uj(20), w4:) = d(uj(2q), Si).
Case 3: z = a; and y = u(9i~1). If j =4, then
d(ai, S;) = d(ai, uis) = 1 < 2 = d(ui2i1), i) = d(wi2i-1), Si)-
If j # 4, then
d(ai, Si) = d(ai, uis) =1 < 2 = d(uj2i—1), 4j:) = d(¥j(2i-1, Si).

Therefore, we conclude that II is a resolving partition for G ® K n.

For n; = 1 and n > 3 we denote by v the vertex of G, by a the vertex
of K,  of degree n, and by {u;,us,...,v} the set of leaves of K; . Thus,
from d(v,u3) = 1 < 2 = d(ug,u3) and d(a,u3z) =1 < 2 = d(u;,us), we
conclude that II = {5, S5,...,S,} is a resolving partition for G ® K} »,
where S; = {a,u1}, S2 = {v,uz2}, S3 = {us}, ..., Sn = {un}. O
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Lemma 10. Let G be a connected graph. IfII is a resolving partition for
G © K,, of cardinality n + 1, then for every vertex v of G © K,, and every
A €11, it follows d(v, A) < 3.

Proof. Let v;,v; be two adjacent vertices of G and let H; = (V;, Ey) (L €
{i,3}) be the copy of K, in G © K, such that v; is adjacent to every
vertex of H;. If there exists a vertex v of the subgraph of G ® K, induced
by V; UV; U {v;,v;} such that d(v, A) > 3, for some A € II, then, since
different vertices of V; (respectively, V;) belong to different sets of II, there
exist B,C €11, u; € V; and u; € V; such that u;,v; € B and u;,v; € C.

If B = C, then d(u;, A) = d(v;, A) or d(v;, A) = d(u;, A). Hence,
7(wi|IT) = r(v;|II) or r(v;|II) = r(u;|II), a contradiction. If B # C, then
there exist two vertices u} € V;NC and v} € V; N B and, as a consequence,
then d(u}, A) = d(v;, A) or d(v;, A) = d(u}, A). Thus, r(u{[II) = r(v;|II)
or r(v;|II) = r(uj|Il), a contradiction. Therefore, d(v,A) < 3, for every
Aell a

Given a graph H which contains a connected component isomorphic
to a complete graph, we denote by ¢(H) the maximum cardinality of any
connected component of H which is isomorphic to a complete graph.

Theorem 11. Let G be a connected graph of order n. Then for any graph
H such that n > 2c(H) +1 > 5,

pd(G ® H) > c(H) +2.

Proof. We denote by S; a connected component of H; isomorphic to K(sy,
i € {1,...,n}. Since different vertices of S; belong to different sets of any
resolving partition for G © H, we conclude pd(G © H) > ¢(H). If pd(G ©
H) = ¢(H), then there exist two vertices a,b € S; U {v;} such that they
belong to the same set of any resolving partition for G ® H. Thus, a and
b have the same partition representation, which is a contradiction. So,
pd(GO H) > ¢(H) + 1. Now, let us suppose pd(GO H) = ¢(H) +1 and let
I{GOH) = {A1, As, ..., Ac(t)+1} be a resolving partition for GO H. Now,
let § =J_,(S;U{v;}) and let u € S. Suppose u € A;, j € {1,...,c(H)+1}.
So, we have that the partition representation of u is given by

r@fIl) = (1,1,..., 1,0,1, .., L1, ..1),
J 1
where i,j € {1,...,c(H) + 1}, i # j, and, by Lemma 10, t € {1,2,3}.

Since for every different vertices a,b € S, 7(a|II) # r(b|II), the maximum
number of possible different partition representations for vertices of S is
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given by (c(H) + 1)(2¢(H) + 1), i.e., for t = 1 there are at most ¢(H) + 1
different vectors and for ¢t € {2,3} there are at most 2(c(H) + 1)c(H).
Hence, n(c(H) + 1) = |S| < (2¢(H) + 1)(c(H) + 1) and, as a consequence,
n < 2¢(H)+1. Therefore, if n > 2¢(H)+1, then pd(GOH) > ¢(H)+2. O

Corollary 12. Let G be a graph of order ny and let ny > 2 be an integer.
Ifny > 2nq + 1, then

pd(G O Kp,) 2 np + 2.

From Theorem & and Corollary 12 we obtain that if n; > 2ns+1 > 5,
then pd(G) 4+ n2 2> pd(G ® K,,) =2 ng + 2. Therefore, since the partition
dimension of a path P, with n > 1 vertices is two, we obtain the following
result.

Remark 13. Let ny and ng be integers such that ny > 2ns+1>5. Then
pd(Pnl ® an) = n2 + 2.

By Remark 13 we conclude that the inequalities in Theorem 2, Corol-
lary 4, Theorem 5, Corollary 6 and Corollary 12 are tight.

An empty graph of order n, denoted by N,, consists of n isolated
nodes with no edges. In the following result 3(H) denotes the number of
isolated vertices of a graph H.

Theorem 14. Let G be a connected graph of order n > 2 and let H be any
graph. If n > B(H) > 2, then

pd(GO H) > B(H)+ 1.

Proof. We will proceed similarly to the proof of Theorem 11. Let S; denote
the set of isolated vertices of H;, i € {1,...,n}.

Since different vertices of S; belong to different sets of any resolving
partition for GOH, we have pd(GOH) > B(H). Let us suppose pd(GOH) =
B(H) and let II(G © H) = {A,, A, ..., Aga)} be a resolving partition for
GOH. Now, let S = J_,(SiU{wvi}) andlet u € S. Ifu € 4; N S;,
7 €{1,...,n1}, then the partition representation of u is given by

rlfIl) = (2,2,..., 2,0,2, .., 2,t,2, ..,2),
j i

with 4,5 € {1,...,8(H)}, i # j and t € {1,2}. On the other side, if
u € A; NV, then

ruI) = (1,1,.., 1,0,1, ..,1),
J
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with j € {1,..., 8(H)}. Thus, the maximum number of possible different
partition representations for vertices of S is given by (8(H)+1)8(H). Hence,
n(B(H)+ 1) = |S| < B(H)(B(H) +1). Thus, n < B(H). Therefore, if
n > B(H), then pd(G© H) > B(H) + 1. 0

Corollary 15. Let G be a graph of order n; and let ny > 2 be an integer.
If ny > no, then
pd(GO Nyy) 2 mp +1.

Proposition 16. If ny > ny > 2, then

pd(Ppn, ® Np,) =ng2 + 1.

Proof. Let V = {vy,...,un} be the set of vertices of P,, and, for each
v; € V, let V; = {wi1, ..., Uin, } be the set of vertices of the i** copy of N, in
P,, ® Np,. Let I1 = {Ay, ..., An,+1}, where A; = {v1,u11}, A2 = {vi,ui1 :
i € {2,..,n1}} and A; = {uy_y) : i € {1,..,n1}} for j € {3,..,n2 +
1}. Note that dp, on,,(v1,A2) # dp., oN,,(v11, A2). Moreover, for two
different vertices x,y € A, j € {3,...,n2 + 1}, we have dp_ onN,, (2, A1) #
dP.,®Na, (¥, A1). Now on we suppose 7,y € A;. Ifz,y € Vorz,y € V;, for
some i, then dp, onN,, (%, A1) # dp, 0N., (¥, 41). Finally, ifz€ V and y ¢
V, then dp,,ONa, (z, A3) # dp,,]@an (y, Az). Therefore, II is a resolving
partition for P,, ® N,, and, as a consequence, pd(P,, ® N,,) < n2 +1. By
corollary 15 we conclude the proof. O
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