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ABSTRACT. A paired-dominating set of a graph G is a dominat-
ing set of vertices whose induced subgraph has a perfect match-
ing. The paired-domination number is the minimum cardinality
of a paired-dominating set of G. In this paper we investigate the
paired-domination number in claw-free graphs with minimum de-
gree at least four. We show that a connected claw-free graph G
with minimum degree at least four has paired-domination number
at most four-sevenths its order.
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1 Introduction

In this article, we continue the study of paired-domination in graphs. Paired-
domination in graphs is now well studied in graph theory. The literature
on this subject has been surveyed and detailed in the two books by Haynes
et al. [8, 9].

A matching in a graph G is a set of independent edges in G. A perfect
matching M is a matching such that every vertex of G is incident with
an edge of M. A paired-dominating set, abbreviated PDS, of G is a set
S of vertices of G such that every vertex is adjacent to some vertex in S
and the subgraph G[S] induced by S contains a perfect matching. (not
necessarily induced). Clearly, every graph without isolated vertices has a
PDS, since the end-vertices of any maximal matching form such a PDS.
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The paired-domination number is the minimum cardinality of a paired-
dominating set of G, denoted by 7, (G). Paired-domination was introduced
by Haynes and Slater {10, 11] as a model for assigning backups to guards
for security purposes. Recent progress on this subject can be found in
(2, 3, 5, 6, 12, 13, 16] and elsewhere.

The decision problem to determine the paired-domination number of a
graph is known to be NP-complete [10]. Hence it is of interest to determine
bounds on the paired-domination number of graphs. Upper bounds on
the paired-domination number of graphs in terms of their order under the
minimum degree condition have been investigated in recent years (see, (1,
7, 10, 12]). In {7] Goddard and Henning posed the following conjecture.

Conjecture 1. (Goddard and Henning [7]) If G # P s a connected graph
of order n with minimum degree §(G) > 3, then v, (G) < #n, where P is
the Petersen graph.

In this paper we show that Conjecture 1 is true for claw-free graphs
with minimum degree at least four. Our main result is as follows.

Theorem 2. If G is a connected claw-free graph of order n with minimum
degree 6(G) > 4, then v,.(G) < #n.

For notation and graph theory terminology we in general follow [8].
Specifically, let G = (V, E) be a graph with vertez set V and edge set E.
For a set § C V, the subgraph induced by S is denoted by G[S]. We
denote the degree of a vertex v in G by dg(v), and the minimum degree
among the vertices of G is denoted by 6(G). The open neighborhood of
a vertex v € V is denoted by N(v) = {u € Viuv € E}, and the closed
neighborhood of v is denoted by N[v] = {v} U N(v). For aset S C V, the
open neighborhood of S is N(S) = J,¢s N(v) and the closed neighborhood
of Sis N[S] = SUN(S). For a vertex z € V, we define Ng(z) = N(z)N S.
If X and Y are two subsets of V, we say that X dominates Y if Y C N[X],
and denote by [X, Y] the set of edges between X and Y. A graph is called
claw-free if it does not contain the complete bipartite graph K; 3 as an
induced subgraph. Let P, denote a path on n vertices. A component of a
disconnected graph H is called an F-component of H if it is isomorphic to
a given graph F.

We shall proceed as follows. In Section 2, we start with some preliminary
results that will help to prove our main result, and define a weight function
on which our proof is hased. In Section 3, we prove our main result.

2 Preliminary results

In this section we first describe the structure of a special minimum PDS
S of G. Secondly, we define a weight function and give some properties of
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this function.

2.1 The paired-dominating set S

From now on, we begin to consider a connected claw-free graph with mini-
mum degree at least four. Let G = (V, E) be a connected claw-free graph
of order n with §(G) > 4. For a subset T' C V, let A(T") be the number of
edges in G[T]. Among all the minimum paired-dominating sets of G, let us
choose a PDS S of G so that A(S) is minimized.

Fix some perfect matching M in G[S]. For each v € S, let T denote
the vertex such that v € M. We define T as the partner of v. Let S, =
{v,7}. We will refer S, as a pair in S. For a vertex v € S, the S-private
neighborhood of v is the set pn(v, S) = N[v] \ N[S \ {v}]. We call a vertex
u € pn(v, S) an S-private neighbor of v. Obviously, pn(v,S) C V'\ S.

We partition S into four subsets as follows:

A = {v € S| both v and 7 have an S-private neighbor},

B = {v € S| v has an S-private neighbor and 7 has no S-private
neighbor},

C={ve S|7e B},

D = {v € S| neither v nor T has an S-private neighbor}.

Furthermore, we define a pair of vertices in S (that are partners) to be
as follows:

e an A-pair if both belong to A;

e a BC-pair if one belongs to B and the other to C; and

e a D-pair if both belong to D.

According to the definition above, we can see that each pair of S is
either an A-pair or a BC-pair or a D-pair. By the choice of S and the
claw-freeness of G, the following Claims 1-5 are given by Huang and Shan
in [15], which are useful in our proof.

Claim 1. Each vertez in C is a degree-1 vertez in G[S].
Claim 2. Each vertez in B is a degree-1 verter in G[S).
By Claims 1 and 2, every BC-pair is a P,-component in G[S].

Claim 3. At least one vertexr from every D-pair is a degree-1 vertez in
G[S].
Claim 4. If there is an edge joining vertices from two distinct D-pairs,

then the set of these four vertices forms a Py-component in G[S].

By Claim 4, we see that if a D-pair is joined to another D-pair of S,
then it must be joined to such a unique D-pair. We define a D-pair to be
a linked D-pair if it is joined to some other D-pair by an edge; and a solo
D-pair if it is not a linked D-pair.
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For two disjoint vertex subsets X and Y of V, we call that X is adjacent
to Y if [X,Y] # 0. Clearly, if an A-pair is adjacent to D-pairs, then it is
only adjacent to solo D-pairs by Claim 4. More precisely, we have

Claim 5. Each A-pair is adjacent to at most one solo D-pair.

2.2 Weight functions

Now by the claw-freeness of G and the Claims above, we can give the
following lemma.

Lemma 1. For each z € V'\ S, we have

(1) |Ne(z)| € 2. If |[Nc(z)| = 2, then = has no neighbor in D; and if
|[Nc(x)| =1, then x has at most two neighbors in D, actually, if x has two
neighbors in D, the two neighbors must be adjacent vertices.

(2) [Ncup(z)| £ 4. If |[Ncup(z)| = 4, then = has no neighbor in C.

(3) If x has at least three neighbors in some Py-component H in G(S)]
Jormed by two linked D-pairs, then Ns(z) C V(H).

(4) If = is adjacent to some vertez v € D of degree 1 in G[S] but not to
3, then |Ncup(z)| < 3.

Proof. Let z be a vertex in V' \ S.

(1) Suppose that |[Nc(z)| > 2. Then x has at least three neighbors in
C, say a, b and c. By Claim 1, each one of a, b and ¢ has degree 1 in G[S],
thus a claw occurs at z, a contradiction. Similar reasoning shows that if
[Ne(z)| = 2, then z has no neighbor in D; and if |No(z)| = 1, then z has
a neighbor or two adjacent neighbors in D.

(2) Suppose that |Noyp(z)| > 4. By Claims 1, 3, 4 and the result in (1),
there would be a claw at z, a contradiction. Specially, if |[Ncup(z)| = 4,
the four neighbors of £ must be two linked D-pairs.

(3) The result follows directly from (2).

(4) The result follows directly from the claw-freeness of G. O

We are going to prove our main result by using the weight function given
below. We-begin to define a weight function w on all the edges between S
and V'\ S. The weight function is defined so that for each vertex in V' \ S,
the total weight of the edges incident with it sums to 1. Hence the total
weight of all edges incident with vertices in V'\ S is equal to n — |S|. At
the same time, we calculate the weight of edges incident with each pair in
S. If we can prove that the sum of the weight of edges incident with each
pair in S is at least 3 , then the total weight of edges between S and V' \ S
is at least 31S]. Smce the total weight is exactly n — |S|, it follows that
IS| <4

Now we begin to formally define our weight function w: [S,V \ S] —
[0,1). For each vertex = € V'\ S, the weights of the edges that from z to §
are defined as follows:



(1) If z is an S-private neighbor, then assign the weight 1 to the unique
edge from x to S.

(2) Assume that z is not an S-private neighbor. If z has no neighbor in
C U D, share the weight 1 equally among the edges from z to AU B.

(3) Assume that x has at least one neighbor in CUD. If |Neup(z)| = 1,
assign the weight 1 to the unique edge from z to C or D; and assign the
weight 0 to each edge from z to AU B.

(4) Assume that = has at least two neighbors in C U D. If |[N¢(z)| = 2,
assign the weight 1 to each edge from z to C; if [Nc(z)| = 1, then assign
the weight } to the edge from z to C, and share the weight Z equally among
the edges (one or two, by Lemma 1 (1)) from = to D. If |N¢(z)| = 0, then
share the weight 1 equally among the edges from = to D. In these three
cases, assign the weight 0 to each edge from = to AU B.

From the definition of the weight function w, we can straightly get the
following claim:

Claim 6. Let £ € V\ S and let e be an edge from = to S. Then the
following properties hold:

(1) The sum of the weights assigned to the edges from z to S is 1.

(2) If e joins z to C, then w(e) € {§, 3,1}, and w(e) = % if and only if
{Ncup(z)| = 2 and |[Ng(z)| = 1.

(3) If e joins x to D then w(e) € {3,5,-1-2-,-2-,5,1}, and w(e) = % if
and only if |INp(z)| =

We next define a function f that assigns to each subset S’ C S the sum
of the weights of the edges from S’ to V' \ S; that is,

f8Y=" Y wle.
e€[S',V\S]
Specially, if S’ = S, then f(S) is the sum of the weight of all edges in
[S,V'\ 8] (namely, |V \ S]).
Finally, we define another function g that assigns to each pair S, =
{v,7} in S the weight as follows:

F(Sy) — %|[S,,,D]| ifve 4
9(Sv) £(Sy) + 3l(Sy, Al ifv e D;
f(Sy) ifveBorveC.

3 Proof of main result

In this section we are going to prove our main result. Before the proof
of Theorem 2, we need to establish a lemma by the definition of weight
function g.
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Lemma 2. Let S be a minimum PDS of G such that it is chosen and
partitioned into four groups A, B, C and D in the same way as we did in
the last section. Then for each pair S, of vertices in S, we have g(S,) = -g-

Proof. We consider each type of the pair S,.

Suppose that the pair S, is a.n A-pair. Then by Cla1m 5, we have
|[Sv, D]| £ 2. So g(Su) = f(Sv) — §|[Sw, D)l 22-2x ;= 3.

Suppose that the pair S, is a BC—palr Without loss of generality, let
v € Band ¥ € C. Since §(G) > 4 and T is a degree-1 vertex in G[S], ¥ has at
least three neighbors in V\S. By Claim 6(2), g(S,) = f(S,) > 1+3x3 = 3.

Suppose that the pair S, is a solo D-pair, by Claim 3, we may assume
that ¥ is a degree-1 vertex in G(S]. Thus v has at least three neighbors
outside S. By Claim 6(3), we have w(e) > } for each edge e € [S.,, V\S).
We know that v is only adjacent to vertices of A-pairs in S. If v is adjacent
to a.t least two A-pa.lrs then |[S,, 4]| > 4. So g(Sy) = F(Su) + 31(Sv, 4| >
3x 4 + x4 > 2 If S, is adjacent to exactly one A-pair, then |[S,, A]| = 2.
Smce J(G) > 4, v has at least one neighbor outside S. So g(S,) = f(S,) +
%l[S,,,A“ > 4% % + % X2 = % If S, has no neighbor in G[S], that is,
[[Sv, A]| = 0, then we have that g(S,) = f(S,). Since §(G) > 4, both v and
7 have at least three neighbors in V'\ S. So g(S,) = f(S,) > 6x 3 = 3.

Suppose that S, and S, are linked D-pairs such that uv € E Recall
that a linked D-pair forms a P;-component of G[S]. We consider the set
S" = S\ {7,%}. Since |S’| < |S|, S’ is not a PDS of G, so there exists at
least one vertex z € V' \ S such that Ng(z) C {7,%}. Furthermore, since
neither 7 nor @ has an S-private neighbor, there exists one vertex z € V\ S
such that Ns(z) = {7,7}. By the definition of the function f, we have
that w(7z) = w(Tx) = . Since 6(G) > 4, both v and u have at least two
neighbors in V'\ S, and both ¥ and % have at least two neighbors in V'\ S
other than z. So g(S,) = f(S,) > 3 +4x =3 O

Proof of Theorem 2. Let Sp be a subset of S that consists of one vertex
from each pair in S. By Lemma 2, we have

3" o(s.) > Sispl =

vESp

151 _3
X 3 _4|S|.

o) w

Since

U (Sv, D] =[A,D] = U (S, A,

vEA veD
we have that

> (S)—Zf(s)— (4, DIl + 7 I[ADJI— f(8) =n—|S|.

vESP vESP

Therefore, n — |S| > %|S|, that is, v, (G) = |S| < %n. m]
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