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Abstract

An L(2, 1)-labeling of a graph G is a function f from the vertex set
V(G) to the set of all nonnegative integers such that |f(z)— f(y)| 2> 2
if d(z,y) = 1 and |f(z) — f(y)| 2 1if d(z,y) = 2, where d(z,y)
denotes the distance between z and y in G. The L(2,1)-labeling
number, A(G), of G is the smallest number k such that G has an
L(2,1)-labeling f with max{f(v) : v € V(G)} = k. In this paper,
we present a new characterization on d-disk graphs for d > 1. As an
application, we give upper bounds on the L(2, 1)-labeling number for
this classes of graphs.
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1 Introduction

With the development of information technology, wireless communication
devices have become of widely use. Most of these devices are radio trans-
mitters which can emit and receive signals. If any two of these devices
are assigned nearby frequencies, they may interfere with one another. To
maintain satisfactory communication quality, any pair of devices have to
be assigned frequencies chosen so that no interference can take place; this

is the frequency assignment problem.
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To describe the frequency assignment problem more precisely, Roberts
considered two levels of interference: the first level is when two transmitters
are “very close” so they must be assigned frequencies that differ by no less
than two units; the second level is when transmitters are farther apart,
but they still could interfere with each other so they must be assigned
frequencies that differ by at least one unit. This description can be modelled
as a graph problem: the devices are the vertices of a graph; two vertices
are considered "very close” if they are at distance one and they are just
“close” if they are at distance two. Motivated by Roberts’ model, Griggs
and Yeh [12] defined an L(2,1)-labeling of a graph G as a function f from
the vertex set V(G) to the nonnegative integers such that |f(z) — f(y)| = 2
if z and y are at distance one from one another and |f(x) — f(y)| > 1
if z and y are at distance two from each other. A k-L(2,1)-labeling is
an L(2, 1)-labeling such that all labels are at most k. The L(2,1)-labeling
number of G, denoted by A(G), is the smallest number & such that G has
a k-L(2,1)-labeling.

The L(2, 1)-labeling problem has been generalized to the L(h, k)-labeling
problem (and L(p;,ps, ..., pr)-labeling problem) and a large amount of re-
search has been devoted to L(2,1)-labelings and their generalizations (see
references). The problem of computing the L(2,1)-labeling number of a
graph is a generalization of the vertex coloring problem, which is known to
be NP-hard. There are only a few general bounds known for A(G) and most
research has centered on computing A\(G) for particular classes of graph-
s. Griggs and Yeh [12] showed that A\(G) < A? for any diameter 2 graph
G and they conjectured that A(G) < A? for any graph G with maximum
degree A > 2 [12] (A =1 is an exception, since for example, A(K2) = 1
but A(K3) = 2.) Griggs and Yeh [12] gave an upper bound of A2 + 2A for
the L(2, 1)-labeling number of any graph with maximum degree A. Chang
and Kuo [5) improved the bound to A%+ A, and then Kral’ and Skrekovski
(17] reduced the bound to A% 4+ A — 1. Goncalves [11] further reduced the
bound to A%+ A —2. In 2008, Havet, Reed and Sereni [14] proved that the

conjecture of Griggs and Yeh is true for large values of A.
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Roberts [22] and Sakai [23] pointed out that the class of unit interval
graphs and its generalization, the class of unit d-disk graphs, are of partic-
ular interest in the frequency assignment problem. When transmitters are
located in RY, for d = 1,2 or 3, interference takes place if two transmitters
are within a certain distance from each other, so interfering transmitters
can be conveniently represented with a unit d-disk graph.

Disk graphs and unit disk graphs have been extensively studied due to
their many applications ({6], [15], [10]). The problem of deciding whether a
given graph is a disk graph or a unit disk graph has been proved to be NP-
hard ([3], [15]). The L(1,1)-labeling problem (also called the conflict-free
channel assignment problem) is like the L(2,1)-labeling problem, except
that any two neighboring vertices z,y just need to receive different labels,
i.e. |f(z) — f(y)] 2 1. The L(1,1)-labeling problem on unit disk graphs
is NP-hard ([24]). Sen and Malesinska [25] provided an approximation
algorithm with a performance guarantee of 14 for the L(1,1)-labeling of
disk graphs, which was improved by Wan et al. [34] to 13 ( 12 if the
radii are quasi-uniform) by using FIRST-FIT algorithms. In [25] and [34],
approximation algorithms were given for the L(1,1)-labeling of unit disk
graphs with performance guarantee of 7. For unit disk graphs whose vertices
lie in a horizontal strip with height v/3/2 it is proved in [34] that the L(1,1)-
labeling problem can be solved in polynomial time. Fiala, Fishkin and
Fomin [8] designed an approximation algorithm with performance ratio
bounded by 12 for the L(2,1)-labeling problem on disk graphs. For the
L(2,1)-labeling problem on unit disk graphs, they gave a labeling algorithm
with constant performance ratio bounded by 32/3. Their algorithm does
not require the disk representation of the graph and it either outputs a
feasible labeling, or answers that the input is not a unit disk graph. They
also studied the more general L(h, k)-labeling problem on disk graphs and
gave an approximation algorithm with performance ratio depending on the
diameter ratio, the ratio between the maximum and the minimum diameters
of disks.

Despite their importance, no useful characterizations of unit d-disk
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graphs are known except for d = 1,2,3. Sakai [23] gave upper bounds
for the L(2, 1)-labeling number of unit 1-disk graphs. Recently, Shao et al.
[30] characterized unit d-disk graphs for d = 2,3 and gave upper bounds
for the L(2, 1)-labeling number for this class of graphs.

In this paper, we present a new characterization of d-disk graphs for
d > 1 and use it to obtain upper bounds on the L(2, 1)-labeling number for

this classes of graphs.

1.1 Unit d-Disk Graphs and d-Disk Graphs

A d-sphere, d > 2, is the set of points (z1,z2,++,Zq4) in R? such that
(z1 —e1)® + (z2 — c2)2 + - - - + (zq — ca)? = 72, where r is the radius and
(c1,62,+++ ,ca) € R? is the center of the d-sphere. The 2-sphere and 3-
sphere are the usual circle and sphere, respectively. The diameter of a
sphere is 2r. A d-sphere with diameter one is called a unit d-sphere.

A graph G is called a unit d-disk graph, if we can assign a unit d-

sphere to each vertex of G so that two vertices are adjacent if and only if
the corresponding spheres overlap. The set D of spheres assigned to the
vertices of G is called the disk representation of G.
Example. The right side of Figure 1 shows a unit 2-disk graph called the
triangular lattice graph, I', and its disk representation is shown on the left
side of Figure 1. T is an infinite graph and it is K 4-free (i.e. it does not
contain any induced K 4 although it contains K 4 as subgraph).

Let D be the disk representation of a d-disk graph G. Let dpi, and
dmaz be the minimum and maximum diameters of the d-spheres in D. The
value dmaz/dmin is called the diameter ratio of D, denoted by o(D). A
disk graph G is called a o(D)-disk graph if it has a disk representation D
of diameter ratio o(D). If o(D) = 1, then it is not restrictive to assume G

is a unit disk graph.
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Figure 1: The triangular lattice graph I, and its disk representation.

2 A New Characterization of d-Disk Graphs

Shao et al. [30] characterized unit d-disk graphs for d = 2,3. In this section,
we characterize the more general class of d-disk graphs for d > 2.

From the definition of d-disk graphs, we observe that the set of all d-disk
graphs is K ,-free if and only if it is not possible to pack n d-spheres around
and touching a central d-sphere without the surrounding spheres touching
each other. Hence, we consider the problem of bounding the minimum
value n such that for any d-disk graph G, G is K n-free, as this will allow
us to bound the L(2,1)-labeling number for d-disk graphs.

We first show that the smallest value n for which any 2-disk graph of
diameter ratio o is K\ ,-free is n = [/ arcsin(1/(c + 1))].

Theorem 2.1 Any 2-disk graph of diemeter ratio o is K, ,-free for any
n > [w/ arcsin(1/(c + 1))].

Proof. A 2-disk graph of diameter ratio ¢ is K ,-free if and only if for
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any collection D' of 2-spheres or circles of diameter ratio o it is not possible
to pack n circles from D’ around and touching a central circle Cp € D,
without the surrounding circles touching each other.

Let n(o) be the smallest value such that any 2-disk graph of diameter ra-
tio 0 is K1 n(0)-free. Let D = {Cp,C1,...,Cn(s)-1} be a collection of n(o)
circles of diameter ratio o such that Cj,...,Cp(s)-1 can be placed around
Cy in such a way that each C; # Cp touches Cp and no two C;,C; # Co
touch each other. Let dmin,dmaz be the minimum and maximum diame-
ters of the circles in D, respectively. Note that by the definition of n(¢), D
has the property that no additional circle of diameter d,dmin < d < dmagz,
can be packed around Cy along with Ci,...,Cy(s)-1 without causing the
circles surrounding Cy to touch each other.

Without loss of generality, let Cp have diameter d,q;. Consider a pack-
ing of Cy,...,Ch(s)—1 around Cp as described above. Let us assume that
each circle C;,i > 0, is glued to Cp at the point P; where they touch. Note
that if we reduce the radius of some circle C; while keeping C; glued to Cy at
P,, no intersections among circles can be created by this operation because
the distance between C; and its two adjacent circles does not decrease (see
Figure 2 ).

If we reduce the diameter of each circle Cj,1 < j < n(g)—1, to dmez/0,
we get a new packing where circles C;,1 < ¢ < n(o)—1 do not touch and the
corresponding disk graph has diameter ratio o. In this new packing consider
two adjacent circles C;, C(i11)(mod n(o)) (See Figure 3). The angle 6 between
the centers of C;,Cy, and C; is 8 > 2arcsin((dmaz/(20))/(dmaz/(20) +
dmaez/2)) = 2aresin(1/(o+1)) and thus n(o) < [27/8] < [7/ arcsin(1/(c+
1)) =n'.

It is now easy to show thatanydisk graph of diameter ratio o is K -
free for n > n’. To see this, for the sake of contradiction, let G be a disk
graph of diameter ratio o and let G have K} , as an induced subgraph. Let
D, , be the disk representation of K; . Then D;, consists of n circles
Cy,Cs,...,Cy that can be packed around a central circle Cp € Dj ,, but

as shown above, this is impossible for n > n'. ]
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Figure 2: Reducing the radius of a circle C; does not decrease the distance
from C; to its neighbouring circles.

Figure 3: Angle 8 between two neighbouring circles
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We now turn our attention to d-disk graphs for d > 3 and compute
an upper bound on the minimum value n such that any d-disk graph is
K n-free.

Consider a set D of d-spheres of diameter ratio o with |D| =d + 1. Let
the d-spheres in D be tangent to each other. Let d of these spheres have
radius 1/0 and the remaining one, Sp, have radius 1. The centers of the
spheres in D delimit a d-simplex ! Ay with edge lengths 2/0 and 1/0 + 1.
Let the center of Sy be v. Consider a new d-sphere S with center v and
radius 1/o + 1 (See Figure 4). Observe that all the centers of the spheres
in D, except Sy, are on S and, obviously, Ag C S. Consider the d faces of
Ay that intersect at the center v of S. Let us extend these faces away from
v until they intersect S. The region C delimited by these extended faces
and the section of S above them is called a spherical sector. An example
of Az and the corresponding spherical sector in 3 dimensions is shown in
Figure 4.

Let the volume of S be V(S) and the volume of C be V(C). Let n, =

[V
Lemma 2.2 Any d-disk graph of diameter ratio o is K, _-free, ford > 3.

Proof. Consider a d-disk graph G of diameter ratio o and m vertices.
Let D = {C},...,Cn} be a disk representation for G. Let C; € D be
a d-sphere for which spheres C;,, ..., C,-,q are packed around and touching
C;, but spheres C;; do not touch each other. Proceeding as in the proof
of Theorem 3.1 we can convert D into a new disk representation for G in
which C; has radius 1 and each sphere C;;,j = 1,2,..., k;, has radius 1/0.
Then, by the way in which the spherical sector C and sphere S have been
defined, we note that k; < [;%] = n, as it is not possible to pack n,
spheres around C; as described above, so G must be K, ,_-free. [ ]

We now compute the exact values of n, for d = 3 and then give an

estimation of n, for d > 3.

Lemma 2.3 n, = [(47)/(3arccos((0?+20 —1)/(20% + 40)) —7)] ifd = 3.

1A d-simplez is a polytope of dimension d with d + 1 vertices (cf. [36]).

428



Figure 4: Spherical sector in 3 dimensions.

Proof. First let us recall the definition of a spherical triangle [1]: a spherical
triangle consists of three vertices on the surface of a sphere S and three sides
which are the arcs of the short segments of great circles that join pairs of
these vertices. Note that, for a spherical sector C in 3 dimensions, as
defined above (see Figure 4), its non-planar face is delimited by a spherical
triangle.

Consider 3 spheres 5}, Sz, S3 of radius 1/0 and a sphere Sy of radius 1
with center v, tangent to each other as shown in Figure 5. Let S be a sphere
of radius 14+ 1/0 and center v and let T be the spherical triangle delimiting
the spherical sector C defined by these 4 spheres. Let the three angles of
T, the area of S and the area of T be «, 8,7, A(S) and A(T), respectively.
By Girards formula, A(T) = R%(a+ 8 ++v ~) [1], where R=1+1/0 is
the radius of S. Since cos(a) = cos(B) = cos(y) = (02 +20 —1)/(20% +40),
then A(T) = R2%(3arccos((0? + 20 — 1)/(202% + 40)) — w). Thus, n, =
[ ] = [5R] = [(4nR?)/(R*(3arccos((0?+20 ~1)/(20%+40)) —7))] =
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Figure 5: d-Simplexes A4 and AJ.

f(4r)/(3 arccos((0? + 20 — 1)/(202 + 40)) — m)]. [ ]

Lemma 2.4 n, < [d!{(1/o+1)4"17%/2/(T'(d/2+1)d"/%(2/0)@=D/2] (where
I'(z) is the gamma function) if d > 4.

Proof. Consider a set D of d-spheres tangent to each other in which
|D| = d + 1 and where d of the spheres have radius 1/0 and a central
d-sphere So has radius 1. Let the center of So be v. The centers of
the spheres are the vertices of a d-simplex Ag4. Consider also a sphere
S of center v and radius 1/ + 1. Let us draw a straight line ! from
v perpendicular?® to the regular (d — 1)-simplex Ag—; formed by all the
vertices of A4 except v, and let the intersection point of I and S be p.

2A line is perpendicular to the simplex if it is orthogonal to each face of the simplex.
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By connecting p with all the vertices of Ay except v, we get another d-
simplex A/, which shares a common (d — 1)-simplex Ag—; with Ag (See
Figure 5). Because Ay and A/ share a common (d — 1)-simplex Ag-; and
both v and p are on a line perpendicular to the regular (d — 1)-simplex
Ag_1, the combined volume of Ay and A, is RV(Ay-1)/d, where R is
the radius of the d-sphere S and V(A4-,) is the volume of the regu-
lar (d — 1)-simplex A4_;. Since the volume of a d-sphere of radius R is
V(R) = #%/2R4/T'(d/2 + 1) [20] and the volume of a regular d-simplex A’
with edge length ¢ is V(A’) = (d + 1)!/2¢%/((d)!2%?) [7], then, the volume
of sphere S is V(S) = 7¥/2(1/c + 1)4/T(d/2 + 1) and V(Aq) + V(A]) =
(1/d)(1 /o + 1)dY2(2/0)41/((d — 1)12(¢~1)/2) (as the volume of the regu-
lar (d — 1)-simplex Ag_; is d/2(2/0)4"1/((d - 1)12(¢=1)/2) ). Thus, n, =
W < Torishay] = [@42(1/0 + 14/T@/2 + D)/@/d)1/o +
1)dY2(2/a)4-1 /((d — 1)120¢-1D/2))] = [d!(1/o + 1)¢~174/2 /(T(d/2 + 1)d!/?
(2/0)d-1/2],

We note that we can also upper bound n, by V'(%?.LJ’ where A(S)
is the area of S. Since the area of a d-sphere of radius R is dV(R)/R =
dn?/2R4/(T'(d/2+1)R) [20], then, A(S) = dn¥/2(1/0+1)¢=1/T(d/2+1). So,
ng < [yiasey| = [(@r%2(1/0 +1)*/(T(d/2 + 1))/(d/*(2/0)*~*/((d ~
1)126=-1/2))] = [d}(1 /o +1)4"12%/? /(T(d/2+1)dY/2(2/c) 4~ 1/2]. Surpris-

ingly, the two approaches yield the same upper bound for n,. ]
Note that @) ifd
2)!  if d is even,
T(@/2+1) = { (mM)2((d + 1)1/((d + 1)/2))2-E+D)  if dis odd.
Thus,
ne(d) <

{ [d!/(d/2)!(m/d)'/2((o + 1)%7/(20))1/2)@-1)/2]  if d is even,
[((d+1)/2)1(4/(d + 1))d~Y2(2(c + 1)®7/0)'/2)@d=1)/2]  if d is odd.

3 L(2,1)-Labelings of d-Disk Graphs

Shao et al. [30] proved that A(G) < #A? + 2A for any unit 2-disk graph
G and X(G) < ;A% 4+ 2A for any unit 3-disk graph G. In this section,

we give upper bounds for the L(2, 1)-labeling number for the more general
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class of d-disk graphs for d > 2.
We cite the following theorem by Shao et al. [30).

Theorem 3.1 If G is K} ,-free then AM(G) < %%Az + 2A, where A is the

mazimum degree of G.

By Theorem 3.1, Lemma 3.2 and Theorem 4.1, we have the following

Theorem.

Theorem 3.2 Let G be a d-disk graph of diameter ratio ¢ and mazimum
degree A, for d > 2. Then

in(1/(g+1))]-2 oy
o s | FEEdEa s pas
- n

Ba=2AZ 4 9A ifd > 3.

no—1
We do not know whether the above bounds are attainable or not. In
the table of Figure 6 we compare the bounds provided by Theoremn 3.2 with
known labeling numbers for some disk graphs. The triangular lattice graph
I’ shown in Figure 1 has been shown to have labeling number A(I') = 8
(see [35]). Let G:,t = 3,4, denote the hexagonal grid and squared grid,
respectively. It has been shown that A(G3) = 5 and A(G4) = 6 (see [4]).
All above graphs are unit 2-disk graphs, so for all of them ¢ = 1 and d = 2.
The bounds of Theorem 3.2 for these graphs are listed in the following
table. By Theorem 3.2, we can obtain the table in Figure 6.

Graph | A [ d | ¢ | A | Bounds of Theorem 3.2
r 6 [2)1(8]40
Gs 3 (2|15} 13
Gy 4 12116120

Figure 6: Bounds of Theorem 3.2 for some graphs.
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