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AbstractWe study: combination and permutation graphs. We introduce some
familes to be: combination graphs and permutation graphs.

. Introduction Hegde and Shetty[2,4] define a graph G with n vertices to be a
permutation graph if there exists an injection f from the vertices of G to
{1,2,3,...,n} such that the induced edge function g defined as g¢(uv) =
f(u)!/|f(u) — f(v)|! is injective. They say a graph G with n vertices to be a
combination graph if there exists an injection f from the vertices of G

t0 {1,2,3, ..., n}such that the induced edge function g defined as g¢(uv) =
f(w)!/If(u) — f(v)]! f(v)! is injective. They prove: K, is a permutation graph if
and onlyif n < 5; K, is a combination graphifandonlyif n < 2;C, isa
combination graph for n > 3k, is a combination graph if and only if n <

2; W, is a not a combination graph for n < 6,and a necessary condition for a
(p, 9)-graph to be a combination graph is that 4q < p? if pis even and 4q <
p? — 1if p is odd. They strongly believe that W, is a combination graph for

n > 6 and all trees are combination graphs. Baskar Babujee and Vishnupriya [1]
prove the following graphs are permutation graphs: P, ; C,, ; stars; graphs
obtained adding a pendent edge to each edge of a star; graphs obtained by
Jjoining the centers of two identical stars with an edge or a path of length 2; and
complete binary trees with at least three vertices. Throughout this paper, we use
the basic notations and conventions in graph theory as in {3].

. Some definitions:

Definition (2.1):[2,4]A(p,q) graph G = (V, E) is said to be a combination graph
if there exists a bijection f: V(G) — {1,2, ...,p}, such that the induced edge
function g¢E(G) » N defined as

() if ) >fw)
gr(w) =1/ )
(59) . if F) > flw)
is injective, where 223) is the number of combinations of f(u) things taken
f(v) at a time. Such a labeling f is called a combination labeling of G.
The following example is a combination graph
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Definition(2.2):[2,4] A(p, q) graph G = (V,E) is said to be a permutation
graph if there exists a bijection f:V(G) — {1,2, ..., p}, such that the induced
edge function g E(G) » N  defined as

g (uv) = {‘(") Py » if f() > f(v)

‘ By o if FOV) > ()
is injective, where fW Prv) is the number of permutations of f(u) things taken
f(v) at a time. Such a labeling f is called a permutation labeling of G.

The following example is a permutation graph:

Definition(2.3):[3] Forn = 3, the wheel W, is defined to be the graph C, +
K;, where the vertex of K, is called the center of the wheel.
Definition(2.4): [3] For n = 3, the fan F,, is defined to be the graph P, + K.

. Some Combination families
Theorem (3.1): The maximum minimum degree of all combination graphs of n

vertices is < |n/2).

Proof: Let G(n, q)be combination graph, and suppose to the contrary that

d; = In/2] + 1 for every i = 1,2,..., n, where d; is the degree of the vertex
labeled by i.It follows that X, d; = n(ln/2] + 1), i.e. 2q = n(In/2] + 1).
Therefore we have two cases:

Ifnis even: 2q = n(lz'- + 1) , hence 4q = n? + 2n which is a contradiction to the
assumption that G is a combination graph.

If nis odd:

2q2 n(“T-1 + 1), hence 4q = n? + n which is also a contradiction.

Theorem (3.2): The dragon Dy, ,, is a combination graph for every n, m , where
D,m is the graph obtained from the cycle C, by joining the end point of a path
Py, to one vertex of C,,.

Proof: Consider the following labeling for the dragon (clearly the labels are
different).
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Therefore the dragon is a combination graph for every n, m.

Theorem (3.3): The triangular snake T, ,n = 3 is a combination graph, where

the triangular snake is the graph obtained from the path P, having the vertices

Vy, V2, ..,V by adding new vertices w,, W, ..., Wy, and connecting w; to the
vertices vj, vy, for eachi.

Proof: We will prove the assertion by introducing a labeling for any triangular
snake for every n 2 3 to be a combination graph.

Case(l):n = 3,4
CHEED
ooo
O OO C&O
oooo
Case(2)n =5

We will divide the set of labels into three sets which are:

A, ={2C,,3Cy, -+, "Cpyq, "G} =1{2,3,...,,n+ 1} .

Az —_ {n+1cz' n+2c2‘ "+2C3, ., 2n-3cn_3' 2n-3cn_2} .

A3 - {2"-2Cn, Zn-ZCn_I, Zn-lcn_l’ 2n—1cn_2} .

We will prove that the labels in each set of the previous sets are distinct as
follows:

Since we have ¥C, < **1C_, kC < k*1C,,,and"*kC, < "k (., ifk<n-—
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1, t.herefol'ezCI < 3C2 L e L “Cn_I < n+1C1 < n+IC2 < n+ZC2 < n+2C3 <
we & 203 Cn-3 < 2n-3 Cn-z < 2n-2cn — 2n-2 cn_z < 2n—2cn__1 <

2 n-lcn_z < 2n-1Cn_1_

Therefore the triangular snake is a combination graph for every n = 3.
Theorem (3.4): The k-crown kC,, n 2= 3, the graph obtained by adding k pendant
edges to every vertex in the cycle C,, is a combination graph such that k <

"C, —n.

Proof: We will prove by introducing a labeling for any kC,, such thatk < "C, —
n to be combination graph.

We will divide the set of labels into n + 1 subsets as follows:

Ay ={2C,, 3Cy, e, "2Cy_3, "Cz, ™1Cy, PCoy} = 23,1, °C,) .

Ai ={ n+(i-1)k-i-1ci , l’n+(l-1)lt-i-2ci s s n-HkCi} ,i=1,2,..,n

Clearly the labels in each set of the previous sets are distinct.
AnNAj=0,i#j, i,j=12,..,n,since™kC; < mMHkHC  i=12 .. ,n
Since k < "C, — n, it follows that A, N A, = ¢.

AjNAy=¢@,i=2,..,n, since every number in A, is less than every number
in A for everyi =2, ...,n.

. Some Permutation families:
Theorem (4.1): W, is a permutation graph for everyn = 3
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Proof: We will give a labeling for W, for everyn 2 3.

We have four cases:

Case (1): n + 1 is odd and is not a prime number. Let p be the greatest prime
number less than n + 1 . We label W,, as in the following figure.

We will divide the set of edge labels into five sets which are:

Ay ={?P, %P, .., PR, } =1{2!,3], .., (p— 11}

Az = {ppl ’ ppz PRI pPp_l} .

Aa = {p+1p 1 p+1pp , p+2pp , p+3pp e n+1Pp} .

Ay ={P2B,y , PPy, ., "R = {(P+ D, (p+3), .. (n+ DI}

As ={"1P}={n+1}.

Clearly the labels in each set of the previous sets are distinct.

A, NA; = @, since each label in A, is divisible by p while each label in A, is
not divisible by p.

A NA;=¢, since 2P, < 3P, < < P7Ip,_, < PHIP_, < P¥Ip <
p+21:p < p+3pp Lo & n+1pp'

A;NA,=@,since?P, < 3P, << PTIB_, < P¥2P,, < PBP,, <
< n+lpn .

A;NA; = @,sincePP, < PP, < < PR_, < P*Ip_, < P¥Ip, <
PH2p, < PP, < ... < P,

A;NA,=q,sincePP, < PP, <+ < PR, < P¥2p,, < P¥3p ., <

e & n+1pn .

A3z NA, = ¢, as explained in the following :

Since P*'P,_; < P*'p, < P*?p, < PHPp, <... < WP

VPP, < lf*SPW <o P e (P+2) < P+3)! < .. <(n+1)!
and since P*'B, < (p+1i)! Vi> 1, it follows that if there exists a label in the
intersection of A; and A, it will be of the following form P*'B, = (p +i—t)!
for somei = 3,4,... ,n—p+ 1andforsomet=1,2,..,i— 2. Now we will
prove that PP, = (p+i—t),ie(p+Dp+i—-1)..(p+i—-t+1) =i,
forevery i =34,.. ,n—p+ landforeveryt=1,2,..,i—2 byusing
induction on t. Firstly we will get a relation between p and i.We have two cases:
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p>iandp<i.letp<iSincei<n-—p+1,itfollowsthatp<n—p+1,
p< "THJ — (1). From Bertrand’s postulate there exists a prime number p such

that “T“J <p<n+1 - (2).From (1)and (2) p > p which is a contradiction

since p is the greatest prime number less thann + 1.Sop > i.

Itis clear thatatt = 1: (p +1i) # i!, since if (p +1i) =1i!, thenp = i((i — 1)! —
1) which is contradiction. Att=k:let (p+i)(p+i—1).(p+i-k+1) =
il - (*) and we will prove thatatt=k+1: (p+i)(p+i—-1)..(p+i—
k+ 1)(p +i— k) # i! .Suppose to the contrary that (p + )(p+i—1)..(p +
i—k+ 1)(p+i—k) =i - (*+) From (*) we have two cases:

Case(I): (p+i)(p+i—1)..(p+i—k+1) > il.Therefore from(*+) we get

. _ i . . .
(p+i—-k)= TG GroRTD < 1 which is a contradiction.

Case(Il): (p+i)(p+i—1)..(p+i-k+ 1) <il.By using division algorithm
il=q+d)pp+i-1).p+i-k+D+r,0<sr<(p+idp+i-
1)..(p +i—k+ 1) ,and it follows by substitution in (*+)that p+i~k—q =
- which is clearly greater than 0 and less than 1,therefore

(p+i)(p+i—1)...(p+i-k+1)
p +i—k~ qis not integer which is a contradiction.

Hence P*'P, # (p+i—t)! foreveryi=3,4,..,n—p+ 1and forevery
t=1.2,..,i — 2. Therefore A; NA, = @.

Also Ag N (UL, A;) = @, since all 1abels in (Ui, A;) are even numbers except
PP, and n + 1 is odd.

Case (2): n + 1 is an odd prime number. Let n + 1 = p. We label W, as in the
following figure.

We will divide the set of edge labels into three sets which are:
81 = { zpl ’ 3P2 gose y p-3pp_4' p—lpp_g, p_lpp_z}
={2!,3!,..,(p=3), PP ,(p—-DY}.
B, ={PP,,PP,,.., PP, }.
By = {P2P,}.
Clearly the labels in each set of the previous sets are distinct.
B, N B, = @, since each label in B, is divisible by p while each label in B, is
not divisible by p.



Also B3 N (B, U B,) = ¢, since all labels in (B, U B,) are even numbers except
PP; which is greater thanp — 2.

Case (3): n + 1 is an even number, and p, the greatest prime number less

than n + 1 is such that p # n. We label W;, as in the following figure.

We will divide the set of labels into five sets which are:

C, ={?P,,3P,.., PP, , } ={2,3,..,(0 - 1)1}.

C,={"P,,PP,,.., PP, }.

C3 = { p+1pp_1 , p"'le , ]:o-G-ZPp , p+3pp e n+1pp} .

C4 = { p+i!l>p+1 , p+3pp+2 ) n-lpn_2 , n+1pn_1’ n+1pn}

={(p+2),(@+3),..,n=-2), "™P_, ,(n+1)}.

Cs ={"R}

Clearly the labels in each set of the previous sets are distinct.

As in case(1) the labels in C, ,C,,C; are distinct.

Also Cs N (Ut C,) = ¢, since all labels in (Uf., C;) are even numbers except
PP, andn # p.

C,NC,=¢,since ?P, < 3P, <+ < P7IP,_, < P¥ZP,,, < PHIP,, <
e P3P . < PP, < PPy,

C,NCy=¢,since PP, < PP, <+ < PR, < P¥2p,,, < PHP,, <
& n—1pn_2 < n+1pn__1 < n+1pn .

C3NC, = ,sinceC3 =Az; andC, — {"*'P,_, } € A, andsince A; N A, = ¢,
C3 N (Cy — {™1P,_, }) = . Also this label "*1P,_, is greater than all labels
in Cj.

Case(4): n + 1 is an even number, and p , the greatest prime number less than
n + 1 is such that p = n.First we will label the two cases where p = 3,5 as
follows:
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We will divide the set of labels into three sets which are:

D, ={2P, ®Py, .., P3Ppy, PR3} = (20,3, ., (p—3)! , P71, 5}
D, ={PP,, PP,,.., PRy, P*'P,_,, P*1P,_,, P*1B,}.

D; = {P2R}.

Clearly the labels in each set of the previous sets are distinct.

Also D; n (D, U D) = ¢, since all labels in D, U D, are even numbers except
PP, and which is greater than p — 2.

D, ND, = ¢, since each label in D, is divisible by p and each label in D, is not
divisible by p.

In all cases W, is a permutation graph.

Corollary (4.2): F, is a permutation graph.

Proof: Since F,, is a subgraph of W, with the same number of vertices and Wj, is
a permutation graph, F, is a permutation graph.

Theorem (4.3): T, is a Permutation graph for every n.

Proof: we will introduce a labeling for T, by using the Breadth-First algorithm.
Choose a vertex and labeled it by 1 and label the adjacent vertices to this vertex
by 2,3, ... ,n, and then label the vertices that are adjacent to the vertex labeled 2
bym=n,+1,m+1,..,m, and then label the vertices that adjacent to the
vertex labeled 3 by m; +1,m, + 2, ... ,m, and so on. By this way all the labels
are distinct, since the permutation function is increasing.
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Example:

Corollary (4.4): The triangular snakeT, ,n = 3, is a permutation graph.
Proof: We introduce a labeling for the triangular snake for every n as follows:

Therefore the triangular snake is a Permutation graph for every n.

References

(1] J. Baskar Babujee and V. Vishnupriya, Permutation labelings for some trees,
Internat.J. Math. Comput. Sci., 3 (2008) 31-38.

[2]Gallian, J. A., A Dynamic Survey of Graph Labeling, The Electronic Journal
of Combinatorics, 16 (2009), #DS6.

(3] Harary, F., Graph Theory, Addison-Wesely, Reading, Massachusetts,1969.
(4] Hegde, S. M., and Shetty, S., Combinatorial labelings of graphs, Applied
Math. ENotes, 6 (2006) 251-258.

443



