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Abstract

For a simple digraph D with n vertices, the energy of D is defined
as E(D) =37, |Re(z:)], where z1, 23, ..., zn are the eigenvalues of
D. This paper first gives an improved lower bound on the spectral
radius of D, which is used to obtain some upper bounds for the
energy E (D). These results improve and generalize some known
results on upper bounds of the energy of digraphs.
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1. Introduction

Assume that D is a simple digraph with n vertices and T is the set of
arcs, which consisting of ordered pairs of distinct vertices. Two vertices u
and v of D are adjacent if they are connected by an arc. If the arc is from
u to v, then we write the arc by (u, v).

A walk of length 2 from vertex u to vertex v is a sequence of vertices
7 : u,w,v, Where (u, w) and (w,v) are arcs of D. If u = v, then 7 is called a
closed walk of length 2. We denote the number of all closed walks of length
2 associated with vertex v; € V by c&’). The sequence (c(;), cgz), . c(zn)) is
called closed walk sequence of length 2 of D. Thus ¢ = cg) +cg2) +-- '+cg")
is the number of all closed walks of length 2 of D [12].

A digraph D is symmetric if for any (u,v) € I" also (v,u) € T, where
u,v € V. A one-to-one correspondence between a graph and a symmetric
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digraph is given by G ~ Z", where G and G has the same vertex set,
every edge uv of G is replaced by a pair of symmetric arcs (u,v) and (v, u).
Hence, a graph can be identified with a symmetric digraph, see [5, 12].

A graph G is called regular if every vertex of G has equal degree. A
bipartite graph is called semiregular if each vertex in the same part of a
bipartition has the same degree. A graph G is called pseudo-regular if every
vertex of G has equal average-degree. A bipartite graph is called pseudo-
semiregular if each vertex in the same part of a bipartition has the same
average-degree, see [10].

The adjacency matrix A = (ai;) of D is the n x n matrix, defined by
a;; = 1 for (v;,v;) € I';0 otherwise. The eigenvalues 2y, 23,...,25 of A are
called the eigenvalues of D and form the spectrum of D. The eigenvalues
of D are in general complex numbers because of the adjacency matrix A of
D is not necessarily a symmetric matrix. The spectral radius of D, denoted
by p(D), equals to the largest absolute value of the eigenvalues of D, see
[2, 7). The energy of a digraph (see [7]) is defined by E (D) = Y., |Re (2:)]|
where z; is the eigenvalue of the digraph D and Re(z;) denotes the real
part of z;, i = 1,2,...,n. For more details about the spectral radius and
the energy of digraphs, see (2, 3, 5, 7, 8, 9, 12] and the references therein.

In this paper, we first give an improved lower bound for the spectral
radius of a digraph D. Applying this result, we obtain some sharp up-
per bounds on the energy of D and characterize some extreme digraphs
which attain these upper bounds. We also show that our results improve
and generalize some known results in (5, 9, 12]. For the remaining basic
terminology and notation used throughout the paper we refer the book [1].

2. A lower bound of the spectral radius of
digraphs

Recall that for an n x n matrix A = (a;;), its geometric symmetrization,
denoted by S = (s;;), is a matrix with entries s;; = \/a;;a;; for any 4,7 =

1,2,...,,n. Obviously, cg ) = Y-, 8i; for any vertex v; of V for a digraph
D.
Theorem 1. Let D be a simple digraph with n vertices and at least a closed

walk of length 2. Also let (cgl),cg), vy cg")) be the closed walk sequence of
length 2 of D. Assume thatt; =3 |, cgi)sij for any j =1,2,...,n. Then

1)




with equality in (1) if and only if D = ‘5'+{passibly some arcs that do
not belong to cycles}, where each connected component of G is either an r-
pseudo-regular graph or an (ry,re)-pseudo-semiregular bipartite graph, sat-
n \2
isfying r’ = rirg = E:Z;'El((—t:z—);
i=1\%2

Proof. Let A be the adjacency matrix of the digraph D and S(A) = (si;).
Observe that A > S (A) > 0. From Corollary 2.15 in [1], p(A) > p (S (A)).
By the Rayleigh-Ritz Theorem, it must be that

T 2 T 2
p(4) 2 p(5(4) = /o (5(4)?) = \ﬂg%“’ O \/ IR

T
where ¢ = (c(”,cg”, " g")) . By a simple calculation,

S(A)c = (Z?_l s, 3 sy e >sm)T = (t1,t2, e tn)”-

Hence,

n 2
p(D)=p(A) 2 p(S(A) = fo (sa7) 2 | ZimlL )
PR (Cg))

If the equality in (1) holds, then the above equalities in both (2) and (3)
hold. Thus ¢ is a positive eigenvector of S(A)? corresponding to p (S (A)2) ,

L

which implies that the multiplicity of p (.S' (A)z) is either one or two. Note

that the following proof is similar to these of Theorem 1 in [12] and Theorem
2.1 in [5]. Next we consider three cases.

Case (i): D is strongly connected, in consequence A is an irreducible
matrix. Moreover, if A > S(A), then p(A) > p(S(A)), which is a contra-
diction with p(A) = p(S(A)). Hence A = S(A), which implies that D = ‘G
and G is a connected simple graph. From the proof of Theorem 4 in {10}, we
have G is either an r-pseudo-regular graph or an (r;, 2)-pseudo-semiregular
bipartite graph, satisfying 72 = riry = 'Z'El(i%)jy

i=1
Case (ii): D is the direct sum of its t disjoint strongly connected com-
ponents Dy, Dy, ..., D,. Let Ay be the ny, x ny adjacency matrix of Dy such
that Zk (e =n. Inthiscase A=A A ® - - ® A;. Since the equality
in (2) holds. Then we have

p(d) = p(5 (4) = | TSAe ‘/ RS, e

T e ck cn, cTe
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< \/EZ - _(i'%z__c_kﬂ < ‘/maxp (S(Ak)z)

= maxp(S(Ax)) = p(S(4)) = p(4),

which implies that, for every £ = 1,2,..., ¢,

T S(A
p(4) = p(Ax) = S(Ak)—\/zklf——T—k)—c"—"-

Cny Cns

It follows, from Case (i), that each Dy = Gk, where each connected
component Gi is either an r-pseudo-regular graph or an (ry,r2)-pseudo-
2

z:‘:l c(2')
Case (iii): In the general case, let D be the digraph obtained from

D by deleting those arcs of D that do not belong to any cycle. Then
S(A) = S(A(D)). Noting that D and D have the same cycle structure.

From Theorem 1.2 in [4], D and D have equal characteristic polynomial
and the same eigenvalues. Since D is direct sum of its some disjoint strongly
connected components. Then above Case (ii) implies that D = G andeach
connected component of G is either an r-pseudo-regular graph or an (ry, 7'2)-
pseudo-semiregular bipartite graph, satisfying 72 = rirs = ——LI(L:—))?

i=1

semiregular bipartite graph, satisfying 72 = ryrp = L‘EA(-(L)TI

Hence, D = G + {possibly some arcs that do not belong to cycles}.

Conversely, suppose that D = G +{possibly some arcs that do not be-
long to cycles}, where each connected component of G is either an r-pseudo-
regular graph or an (r,,rz) pseudo-semiregular bipartite graph, satisfying

2 =iy = Z—l=l((t+)y From the proof of Theorem 4 in [10], the equality

in (1) holds. The proof is completed. O

The following Corollary 1 indicates that Theorem 1 is an improvement
on Theorem 2.1 in [12].
Corollary 1{12]. Let D be a simple digraph with n vertices, at least a

closed walk of length 2 and (cgl),c?), ,cé")) the closed walk sequence of
length 2 of D. Then

(3)
o(D) 2 g—@

with equality if and only if D = ‘E+{possibly some arcs that do not belong
to cycles}, where G is an r-regular graph or an (71, 72)-semiregular bipartite



()2
graph, satisfying r = \/rirs = V ;liﬂ

Proof. By Theorem 1 and the Cauchy-Schwarz inequality, we obtain

e (8) (Zr )’
> i=1 > < =
p(D) 2 Sra (62) T nzn. (49)F
t l c(‘) :
n r

with the equality holds if and only if G is either a pseudo-regular graph
or a pseudo-semiregular bipartite graph with ) = t, = ... = t,,. From
the proof of Corollary 6 in [10], it must be that G is a regular graph or a

n ()2
semiregular bipartite graph, satisfying r = \/rirg = M’ni O

3. Some upper bounds of the energy of di-
graphs

In this section, applying the lower bound (1), we obtain some upper
bounds on the energy of a digraph D and characterize some graphs which
attain these upper bounds. Now we state the following lemma about the
eigenvalues of digraphs.

Lemma 1[9]. Let D be a simple digraph with n vertices, a arcs, and cs
closed walks of length 2. If 2y, z,,..., 2, are the eigenvalues of D, then

n n n n
(1) D (Re(z:)*~>_ (Im(2))* = c5; (i) Y (Re(z:))’+)_ (Im(z:))* < a
=1 =1 i=1 t=1
Theorem 2. Let D be a simple digraph with n vertzces, a arcs and at
least a closed walk of length 2. Also let (cu),c?), 1 Cy )) be closed walk
sequence of length 2 of D and t; =Y ., cg 8ij forj=1,2,...,n. Then

Yo () Yo (t)?
_zz;ll(cg")” (n—1) T () @) ) @)

The equality holds in (4) if and only if D = ?, where G is either 3K, K,
or a non-bipartite connected p-pseudo-regular graph with three distinct eigen-

values (p,,/‘:_ , ,/‘:"_2),wherep— %

E(D) <

i=1
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Proof. Let p = 2, 23, ..., 2, be the eigenvalues of D such that Re(z;) >
Re(z3) > ... > Re(zn). From the (ii) of Lemma 1, it must be that

3 (Re())’ <a— . ®)

=2

Thus, by the Cauchy-Schwarz inequality,

> IRe (2)] < \F" ~1)Y (Re(2)) < V- D)@ .
i=2 i=2
Hence, E(D) < p + v/(n—1)(a — p?). Take the function f(z) = = +
V(n —1) (a — z2?), for z € [0,/a). First assume that EEH(GT)))" >/Z

i=1
Then by Theorem 1 and (5),

It is easy to verify that the function f(z) decreases strictly on the inter-

val [ \/" \/‘] Thus f(p) < f ( —_';1'4((‘7.2)—7), which implies that the

inequality (4) holds.
Now assume that the equality in (4) holds. Then f (p) = f ( —Z-na(‘ﬁ—,’)q,) ,

i=1

which implies p = -;E-t-(z—)); because of f(z) decreases strictly in
i=1
[/%,va]. Again by Theorem 1, D = el +{possibly some arcs that do
not belong to cycles}, where each connected component of G is either an
r-pseudo-regular graph or an (r;,rs)-pseudo-semiregular bipartite graph,
2

satisfying 12 = ryry = —=i=t ) (i‘)) .
i ()

Since ¢; < a, Theorem 2.1 in [11] implies

0125005 [T+ o0 (- i)
/‘Tf('%’! +\I(n—1) (a——&a(‘—(,’?) = E(D),
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which implies that a = ¢; and

Ty (t)° -
T (Cgi))

Hence, from the equality conditions of Theorem 2.1 in [11], we obtain the
required results.

If Z_E";‘E%! < /%, then by the proof of Corollary 1,
i=1\ %2

(n—-l) Ca —

n (i)
i=1 | 2

n (i) 2 n A
which implies that f ( Z‘=;n°z ) <f ( L‘El(ltL)f) because of

f(z) increases strictly in the interval [0,./Z]. Therefore, by Theorem
2 in [12], the inequality (4) holds. If the equality in (4) holds, then

n )2 n N

ED)=f ( @L = f( E—Zi-‘ﬁ’((t—)));) Hence, from the equal-
i=1\

ity conditions of Theorem 2 in [12], we obtain the required results. O

Remark 1. If na < c3, then

A
IA

C
2<
n

Since the function f (z) = z + \/(n — 1) (a — 22) decreases strictly in the

interval [\/Z,/a], we get
> 1 (Cg))2
=

n

r, @) _
pIHIN (Cf'zi))

Hence the bound (4) improves that of Theorem 2 in [12], for some cases.
Theorem 3. Let D be a simple digraph with n vertices, a arcs and at

least a closed walk of length 2. Also let (cgl),cgm, ...,cg")) be closed walk

EMD)<f(p<f
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sequence of length 2of Dandt; =3 1, cg)s,-j for each 7 =1,2,...,n. If

VEa (VR ten

a+ C2 E?=l (ti)z
- 5 | (6)
2 z:—*l (cgt)) ’

The equality holds in (6) if and only if D = ‘5), where G is either 3 K3, K,
or a non-bipartite connected p-pseudo-regular graph with three distinct eigen-
a+tc a4-c: n .
values (p,\/_’_z ¢ \/jIz— ), where p = Z_Z':‘E%z
i=1{%2
Proof. Let p = 23, 29, ..., zn be the eigenvalues of D such that Re(2;) >
Re(zp) 2 ... =2 Re(2,). It follows from Lemma 1 that

E(D) <

> (Re(z)? < 22 2. Q

=2

From the inequality (7) and the Cauchy-Schwarz inequality, it must be that

> IRe ()| < \](n— 1)) (Re(z:))? < \ﬂn— 1) (Eiﬂ pz).

=2 i=2
Hence,
E(D)Sp+\/(n—1) (a—;ﬁ—ﬁﬂ)» (8)

Consider the function g(z) = z + \/(n -1 (2-ﬁ’z — xz),x € [0, ﬂé—"z]
Since \/ —J:J—(f(')—g \/ 4522, Then by Theorem 1,
t-l

Since f(x) decreases strictly in the interval [,/ efa jede2(. Then g (p) <

g ( L:l(t—)-y) , which implies that the inequality (6) holds.

NED)
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If the equality in (6) holds, then g(p) = g ( —E-'—(L(%‘)l)—,) Hence,
i=1

/_;;1((%_)_, because of the function g(z) decreases strictly. At this
i=1

point we continue using the same techniques used in the proof of Theorem
2, we obtain the required results. O

Remark 2. Observe that co < a, the upper bound (6) in Theorem
3 is an improvement on the upper bound (4) in Theorem 2 whenever

\/ —2‘—*% > \/ 2+  On the other hand, from the proof of Theorem 3,

=9 ( a;'nc2) V2 —n(a+c2)

Hence, the bound (6) in Theorem 3 is also an improvement on the gener-
alized McClelland bound given in ([9], see Theorem 2.3) for some cases.
Corollary 2. Let D be o digraph with n vertices, a arcs and cy closed

walks of length 2. If ¢32 < 9121-2-, then

E(D)s%+\/(n—1> (35=-(®)). ©)

n

E(D)<g(p)<g

Equality in (9) holds if and only if D = ‘5), where G is either 3 K3, K, or
a non-bipartite connected strongly regular graph with two non-trivial eigen-

values both with absolute value \/(5‘129-1 - (%)2) /(n —1), or nkK;.
Proof. If ﬂ;—cz < Enﬁ By Corollary 1 and the Cauchy-Schwarz inequality,

a+c3 < Co

From the proof of Theorem 3, we obtain

\z:zﬂ?ﬂ((té'z;‘z <g ———Z?Sl,gcg))z <9(2),
i=1 |\ C2

which implies that the inequality (9) holds. The rest of proof is similar to
Theorem 2 in [12], omitted. O

E(D)<g(p)<g
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Remark that if ¢; < a, the upper bound (9) of Corollary 2 improves

that of Theorem 3.1 in (5] whenever 242 < o

Let D be a digraph with n vertices, a arcs and ¢z closed walks of length
2. The symmetry indez of D, denoted by s, is defined as s = a — ¢o. In [5],
Gudiiio and Rada proved that

n 4s
E(D)S-Q- (1+Vn+;).

The following Theorem 4 is a slight improvement on above result.
Theorem 4. Let D be a digraph with n vertices, ca closed walks of length

2
2 and symmetry indez s. If s <2 (% - cz), then

E(D)gg(1+,/n+2s> (10)

The equality holds in (10) if and only if D = ‘G where G is a strongly
n+yn n+2ym n+2yn
2 4 4 )

regular graph with parameters (n,

Proof. The following proof is similar to that of Theorem 3.3 in (5]. Con-
sider the function

h(z)=§+\/(n—-l) (:c+%—(%)2) z€ [0’%2"'% n2+2s].

It is easy to see that h(x) attains its maximum in xp = "72 + Zvn? +2s.
Observe that ¢c; <n(n—-1) < '—‘2-2— + gx/nE + 2s. By Corollary 2, we obtain

E(D)<h(cz)<h(az:o)—--(14-\/n+2 ) (11)

which proves (10).
Now assume that the equality in (10) holds. Then by (11), we have

E(D)=h(cz)=fnz+\/(n—l) (#— (%2)2)

Corollary 2 implies that D = ﬁ, that is, s = 0. Therefore, by (11)
E(G)=E(D)=%(1+\/ﬁ).

The result follows from the equality conditions of Theorem 3 in [6}. O
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