Hamiltonicity of L_1 – Graphs with Bounded Dilworth Numbers

Rao Li

Dept. of mathematical sciences
University of South Carolina at Aiken
Aiken, SC 29801
Email: raol@usca.edu

Abstract

Let u and v be two vertices in a graph G. We say vertex u domi-

nates vertex v if $N(v) \subseteq N(u) \cup \{u\}$. If u dominates v or v dominates u, then u and v are comparable. The Dilworth number of a graph G, denoted Dil(G), is the largest number of pairwise incomparable vertices in the graph G. A graph G is called $\{H_1, H_2, ..., H_k\}$ – free if G contains no induced subgraph isomorphic to any H_i , $1 \le i \le k$. A graph G is called an L_1 – graph if, for each triple of vertices u, v, and w with d(u,v) = 2 and $v \in N(v) \cap N(v)$

 $1 \leq i \leq k$. A graph G is called an L_1 – graph if, for each triple of vertices u, v, and w with d(u,v)=2 and $w \in N(u) \cap N(v)$, $d(u)+d(v) \geq |N(u) \cup N(v) \cup N(w)|-1$. Let G be a k $(k \geq 2)$ – connected L_1 – graph. If G is $\{K_{1,5},K_{1,5}+e\}$ – free and $Dil(G) \leq 2k-1$, then G is Hamiltonian or $G \in \mathcal{F}$, where $K_{1,5}+e$ is a graph obtained by joining a pair of nonadjacent vertices in $K_{1,5}$ and $\mathcal{F}=\{G:K_{p,p+1}\subseteq G\subseteq K_p\vee (p+1)K_1,\, 2\leq p\leq 3\}$, where \vee denotes the join operation of two graphs.

1. Introduction

We consider only finite undirected graphs without loops and multiple edges. Notation and terminology not defined here follow that in [7]. If $S \subseteq V(G)$, then N(S) denotes the neighbors of S, that is, the set of all vertices in G adjacent to at least one vertex in S. For a subgraph H of G and $S \subseteq V(G) - V(H)$, let $N_H(S) = N(S) \cap V(H)$ and $|N_H(S)| = d_H(S)$. If $S = \{s\}$, then $N_H(S)$ and $|N_H(S)|$ are written as $N_H(s)$ and $d_H(s)$ respectively. For disjoint subsets A, B of the vertex set V(G) of a graph G, let e(A,B) be the number of the edges in G that join a vertex in G and a vertex in G. The distance between two vertices G and G, G, in a connected graph G is the least number of edges in a path connecting G

and v. K is defined as $\{G: K_{p,\,p+1} \subseteq G \subseteq K_p \lor (p+1)K_1, \, p \geq 2\}$ and \mathcal{F} is defined as $\{G: K_{p,\,p+1} \subseteq G \subseteq K_p \lor (p+1)K_1, \, 2 \leq p \leq 3\}$, where \lor denotes the join operation of two graphs. $K_{1,5} + e$ is a graph obtained by joining a pair of nonadjacent vertices in $K_{1,5}$. A graph G is 1 – tough if $\omega(G-S) \leq |S|$ for every subset S of V(G) with $\omega(G-S) > 1$, where $\omega(G-S)$ denotes the number of components in the graph G-S.

A graph G is called $\{H_1, H_2, ..., H_k\}$ - free if G contains no induced subgraph isomorphic to any H_i , $1 \le i \le k$. If k = 1 and $H_1 = K_{1,3}$, then the G is called claw - free. For an integer i, a graph G is called an L_i - graph if $d(u) + d(v) \ge |N(u) \cup N(v) \cup N(w)| - i$ or equivalently $|N(u) \cap N(v)| \ge |N(w) - (N(u) \cup N(v))| - i$ for each triple of vertices u, v, and w with d(u,v)=2 and $w\in N(u)\cap N(v)$. It can easily be verified that every claw - free graph is an L_1 - graph (see [3]). Ainouche [1] introduced the concept of quasi - claw - free graphs, extending the concept of claw – free graphs. A graph G is called quasi – claw – free if it satisfies the property: $d(x,y)=2 \Rightarrow$ there exists $u \in N(x) \cap N(y)$ such that $N[u] \subseteq N[x] \cup N[y]$. Obviously, every claw – free graph is quasi – claw – free. Asratian and Khachatrian began to investigate the Hamiltonicity of L_i - graphs and they in [5] proved that all connected L_0 - graphs of order at least three are Hamiltonian. Saito [13] shown that if a graph G is a 2 - connected L_1 - graph of diameter two then either G is Hamiltonian or $G \in \mathcal{K}$. More results related to the Hamiltonian properties of L_i - graphs can be found in [2], [3], [4], [6], [12], and [10].

The definition of the Dilworth number of a graph can be found in [9] (also see [8]). Let u and v be two vertices in a graph G. We say vertex u domoniates vertex v if $N(v) \subseteq N(u) \cup \{u\}$. If u dominates v or v dominates u, then u and v are comparable. The Dilworth number of a graph G, denoted Dil(G), is the largest number of pairwise incomparable vertices in the graph G. Using the Dilworth numbers of graphs, Li in [11] obtained sufficient conditions for the Hamiltonicity of $\{quasi-claw, K_{1,5}, K_{1,5}+e\}$ – free graphs. The objective of this paper is to prove a similar theorem for the Hamiltonicity of L_1 – graphs which are $\{K_{1,5}, K_{1,5}+e\}$ – free. The next theorem is the main result of this paper.

Theorem 1 Let G be a k $(k \ge 2)$ – connected L_1 – graph. If G is $\{K_{1,5}, K_{1,5} + e\}$ – free and $Dil(G) \le 2k - 1$, then G is Hamiltonian or $G \in \mathcal{F}$.

Since every claw – free graph is an L_1 – graph and $\{K_{1,5}, K_{1,5} + e\}$ – free and every graph in \mathcal{F} is not claw – free, Theorem 1 has the following corollary.

Corollary 1 Let G be a k ($k \ge 2$) - connected claw - free graph. If

 $Dil(G) \leq 2k-1$, then G is Hamiltonian.

We need the following additional notations in the reminder of this paper. If C is a cycle of G, let \overrightarrow{C} denote the cycle C with a given orientation. For $u, v \in C$, let $\overrightarrow{C}[u,v]$ denote the consecutive vertices on C from u to v in the direction specified by \overrightarrow{C} . The same vertices, in reverse order, are given by $\overleftarrow{C}[v,u]$. Both $\overrightarrow{C}[u,v]$ and $\overleftarrow{C}[v,u]$ are considered as paths and vertex sets. If u is on C, then the predecessor, successor, next predecessor and next successor of u along the orientation of C are denoted by u^-, u^+, u^{--} , and u^{++} , respectively. If $A \subseteq V(C)$, then A^- and A^+ are defined as $\{v^-: v \in A\}$ and $\{v^+: v \in A\}$, respectively. If H is a connected component of a graph G and u and v are two vertices in H, let uHv denote a path between u and v in H.

2. Lemmas

The following Lemma 1 is a result obtained in [3].

Lemma 1 If G is a 2 – connected L_1 – graph, then either G is 1 – tough or $G \in \mathcal{K}$.

The following Lemma 2 is a result extracted from the proof of Theorem 3 in [10]. For the sake of completeness, we include the proof of Lemma 2 here.

Lemma 2 Let G be a 2 - connected nonhamiltonian L_1 - graph. Suppose C is a longest cycle with a given orientation in G, H is a connected component of G[V(G)-V(C)], $N(V(H))\cap V(C)=\{a_1,a_2,...,a_l\}$ such that $h_ia_i\in E$, where $h_i\in V(H)$ for each $i,\ 1\leq i\leq l$, and $a_1,\ a_2,\ ...,\ a_l$ are labeled in the order of the orientation of C. Then $G\in \mathcal{K}$ or $a_i^-a_i^+\in E$ for each $i,\ 1\leq i\leq l$.

Proof of Lemma 2. If $G \in \mathcal{K}$, then the proof is finished. Now we assume that $G \notin \mathcal{K}$. Then Lemma 1 implies that G is 1 – tough. Since G is 2 – connected, $l \geq 2$. Set $A := \{a_1, a_2, ..., a_l\}$ and for each $i, 1 \leq i \leq l$, let b_i and d_i be the predecessor and successor respectively of a_i along C. Set $B := \{b_1, b_2, ..., b_l\}$ and $D := \{d_1, d_2, ..., d_l\}$.

Next we will prove that for each $i, 1 \leq i \leq l$, $b_i d_i \in E$. Suppose not, then there exists a $k, 1 \leq k \leq l$, such that $b_k d_k \notin E$. Clearly, $d(h_k, d_k) = 2$ and $a_k \in N(h_k) \cap N(d_k)$. Since G is an L_1 – graph,

$$|N(h_k) \cap N(d_k)| \ge |N(a_k) - (N(h_k) \cup N(d_k))| - 1 \ge |\{b_k, d_k, h_k\}| - 1 = 2.$$

By the choice of C, we have $N(h_k) \cap N(d_k) \cap (V(G) - V(C)) = \emptyset$. Then there exists a vertex $a_i \in N(V(H)) \cap V(C)$ such that $a_i \in N(h_k) \cap N(d_k)$.

Let X be the set $N(h_k) \cap V(C) := \{x_1, x_2, ..., x_{l_1}\}$ with the x_i 's ordered with increasing index in the direction of orientation of C. Then $X \subseteq A$ and $l_1 \geq 2$. For each $i, 1 \leq i \leq l_1$, let s_i and t_i be the predecessor and successor respectively of x_i along C. Set $S := \{s_1, s_2, ..., s_{l_1}\}$ and $T := \{t_1, t_2, ..., t_{l_1}\}$. Clearly, $S \cup \{h_k\}$ is an independent set in G and for each $i, 1 \leq i \leq l_1$, $N(h_k) \cap N(s_i) \cap (V(G) - V(C)) = \emptyset$. Moreover for each $i, 1 \leq i \leq l_1$, $d(h_k, s_i) = 2$ and $x_i \in N(h_k) \cap N(s_i)$. Since G is an L_1 – graph, we have

$$|N(h_k) \cap N(s_i)| \ge |N(x_i) - (N(h_k) \cup N(s_i))| - 1.$$

Obviously, $N_S(x_i) \subseteq N(x_i) - (N(h_k) \cup N(s_i) \cup \{h_k\})$. Thus,

$$|N_S(x_i)| \leq |N(x_i) - (N(h_k) \cup N(s_i))| - 1$$
. Therefore,

$$|N_S(x_i)| \leq |N(h_k) \cap N(s_i)| = |N_X(s_i)|$$
. Hence,

$$e(X,S) = \sum_{i=1}^{l_1} |N_S(x_i)| \le \sum_{i=1}^{l_1} |N_X(s_i)| = e(X,S).$$

It follows, for each $i, 1 \leq i \leq l_1$, that

$$N(x_i) - (N(h_k) \cup N(s_i) \cup \{h_k\}) = N_S(x_i) \subseteq S.$$

$$\tag{1}$$

Similarly, for each $i, 1 \leq i \leq l_1$,

$$N(x_i) - (N(h_k) \cup N(t_i) \cup \{h_k\}) = N_T(x_i) \subseteq T.$$
(2)

We claim that there exists an i such that $s_{i+1} \neq t_i$, where $1 \leq i \leq l_1$ and the index (l_1+1) is regarded as 1. Suppose not, then for each $i, 1 \leq i \leq l_1$, $s_{i+1} = t_i$. Clearly, for each $i, 1 \leq i \leq l_1$, $N(t_i) \cap V(H) = \emptyset$, otherwise C is not of maximum length, also for any pair of $i, j, 1 \leq i, j \leq l_1$ and $i \neq j, t_i, t_j$ do not have neighbors in the same component of the graph G[V(G) - V(C) - V(H)], otherwise C is again not of maximum length. Therefore, $G - \{x_1, x_2, ..., x_{l_1}\}$ has at least $l_1 + 1$ components, contradicting the fact that G is 1 – tough.

Without loss of generality, assume that $s_1 \neq t_{l_1}$. Observe that $s_1 \in N(t_1)$, otherwise from (2), we have $s_1 \in T$, which is impossible. Since $s_1t_1 \in E$, $s_2 \neq t_1$. Observe again that $s_2 \in N(t_2)$, otherwise from (2), we have $s_2 \in T$, which is also impossible. Repeating this process, we have $s_jt_j \in E$, for each $j, 1 \leq j \leq l_1$. This implies that $b_kd_k \in E$, a contradic-

tion. Hence $b_i d_i \in E$ for each $i, 1 \le i \le l$. Namely, $a_i^- a_i^+ \in E$ for each $i, 1 \le i \le l$. QED

3. The Proof of the Main Theorem

Proof of Theorem 1. Let G be a graph satisfying the conditions in Theorem 1. Suppose that G is nonhamiltonian and $G \notin \mathcal{F}$. Choose a longest cycle C in G and specify an orientation of C. Assume that H is a connected component of the graph G[V(G)-V(C)], $N(V(H))\cap V(C)=\{a_1,a_2,...,a_l\}$ with $h_ia_i\in E$, where $h_i\in V(H)$ for each $i,1\leq i\leq l$, and $a_1,a_2,...,a_l$ are labeled in the order of the orientation of C. Since G is k ($k\geq 2$) – connected, $l\geq k$. Moreover since G is $K_{1,5}$ – free, $G\notin \mathcal{K}-\mathcal{F}$. Thus $G\notin \mathcal{K}$. Hence Lemma 2 implies that $a_i^-a_i^+\in E$ for each $i,1\leq i\leq l$.

Notice first that $a_i a_{i+1}^- \notin E$ for each $i, 1 \le i \le l$, where the index (l+1) is regarded as 1. Otherwise G has a cycle

$$h_i a_i \overleftarrow{C}[a_{i+1}^-, a_i^+] \overleftarrow{C}[a_i^-, a_{i+1}] h_{i+1} H h_i$$

which is longer than C. Moreover $a_i a_{i+1}^{--} \notin E$ for each $i, 1 \leq i \leq l$. Otherwise G has a cycle

$$h_i a_i \overleftarrow{C}[a_{i+1}^{--}, a_i^+] \overleftarrow{C}[a_i^-, a_{i+1}^+] a_{i+1}^- a_{i+1} h_{i+1} H h_i$$

which is longer than C. Let b_i be the most far neighbor of a_i along $\overrightarrow{C}[a_i^+, a_{i+1}^-]$ for each $i, 1 \leq i \leq l$. Then $|\overrightarrow{C}[b_i^+, a_{i+1}^-]| \geq 2$ for each $i, 1 \leq i \leq l$. Next will prove that any two distinct vertices in $\{a_1, b_1, a_2, b_2, ..., a_l, b_l\}$ are incomparable.

For each i and j, $1 \le i < j \le l$, we have $a_j^+ \notin N(a_i)$. Otherwise G has a cycle

 $h_i a_i \overrightarrow{C}[a_i^+, a_i^-] \overrightarrow{C}[a_i^+, a_j] h_j H h_i$

which is longer than C. Similarly, $a_i^+ \notin N(a_j)$. Thus a_i and a_j are incomparable for each i and j, $1 \le i < j \le l$.

Obviously, $b_i^+ \notin N(a_i)$ for each $i, 1 \leq i \leq l$. Since $N(h_i) \cap V(C) \subseteq N(V(H)) \cap V(C)$, $h_i \notin N(b_i)$, for each $i, 1 \leq i \leq l$. Thus a_i and b_i are incomparable for each $i, 1 \leq i \leq l$.

For each i and j, $1 \le i < j \le l$, we have $b_j^+ \not\in N(a_i)$. Otherwise G has a cycle

 $h_i a_i \overrightarrow{C}[b_j^+, a_i^-] \overrightarrow{C}[a_i^+, a_j^-] \overrightarrow{C}[a_j^+, b_j] a_j h_j H h_i$

which is longer than C. Since $N(h_i) \cap V(C) \subseteq N(V(H)) \cap V(C)$, $h_i \notin N(b_j)$ for each i and j, $1 \le i < j \le l$. Thus a_i and b_j are incomparable for each i and j, $1 \le i < j \le l$. Similarly, a_i and b_j are incomparable for each i and j, $1 \le j < i \le l$.

Now we will prove that b_s and b_t are incomparable for each s and t, $1 \leq s \neq t \leq l$. Suppose, to the contrary, that there exist b_i and b_j such that they are comparable. Then $N(b_i) \subseteq N(b_j) \cup \{b_j\}$ or $N(b_j) \subseteq N(b_i) \cup \{b_i\}$. We first consider the case that $N(b_i) \subseteq N(b_j) \cup \{b_j\}$. Without loss of generality, we assume that i < j. Since $N(b_i) \subseteq N(b_j) \cup \{b_j\}$, $a_i \in N(b_j)$ and $b_i^+ \in N(b_j)$. Since $a_i \in N(b_j)$, $b_j \neq a_j^+$ and $b_j \neq a_j^{++}$. Otherwise G has cycles which are longer C. Thus $|\overrightarrow{C}[a_i^{++}, b_j^{-}]| \geq 2$.

Now we will prove that $G[b_j, a_i, b_i^+, a_j, b_j^-, b_j^+]$ is isomorphic to $K_{1,5}$ or $K_{1,5} + e$. Clearly, $a_i b_i^+ \notin E$. If $a_i b_i^- \in E$, then G has a cycle

$$h_i a_i \overleftarrow{C}[b_j^-, a_j^+] \overleftarrow{C}[a_j^-, a_i^+] \overleftarrow{C}[a_i^-, b_j] a_j h_j H h_i$$

which is longer than C, a contradiction. Thus $a_i b_i^- \notin E$.

If $a_i b_i^+ \in E$, then G has a cycle

$$h_i a_i \overrightarrow{C}[b_i^+, a_i^-] \overrightarrow{C}[a_i^+, a_i^-] \overrightarrow{C}[a_i^+, b_j] a_j h_j H h_i$$

which is longer than C, a contradiction. Thus $a_i b_j^+ \notin E$.

If $b_i^+a_j \in E$, then G has a cycle

$$h_i H h_j a_j \overrightarrow{C}[b_i^+, a_j^-] \overrightarrow{C}[a_j^+, a_i^-] \overrightarrow{C}[a_i^+, b_i] a_i h_i$$

which is longer than C, a contradiction. Thus $b_i^+a_j \notin E$.

If $b_i^+ b_j^+ \in E$, then G has a cycle

$$h_i a_i \overleftarrow{C}[b_i, a_i^+] \overleftarrow{C}[a_i^-, b_i^+] \overrightarrow{C}[b_i^+, a_i^-] \overrightarrow{C}[a_i^+, b_j] a_j h_j H h_i$$

which is longer than C, a contradiction. Thus $b_i^+b_i^+ \not\in E$.

If $a_j b_i^- \in E$, then G has a cycle

$$h_i a_i \overrightarrow{C}[b_i, a_i^-] \overrightarrow{C}[a_i^+, a_i^-] \overrightarrow{C}[a_i^+, b_i^-] a_j h_j H h_i$$

which is longer than C, a contradiction. Thus $a_j b_j^- \notin E$.

If $a_i b_i^+ \in E$, then G has a cycle

$$h_i H h_j a_j \overrightarrow{C}[b_j^+, a_i^-] \overrightarrow{C}[a_i^+, a_j^-] \overrightarrow{C}[a_j^+, b_j] a_i h_i$$

which is longer than C, a contradiction. Thus $a_j b_i^+ \notin E$.

If $b_i^- b_i^+ \in E$, then G has a cycle

$$h_i H h_j a_j b_j \overrightarrow{C}[b_i^+, a_j^-] \overrightarrow{C}[a_j^+, b_j^-] \overrightarrow{C}[b_j^+, a_i^-] \overrightarrow{C}[a_i^+, b_i] a_i h_i$$

which is longer than C, a contradiction. Thus $b_i^-b_i^+ \notin E$.

If $b_i^+b_j^- \in E$, then $a_j^-b_j \notin E$. Otherwise G has a cycle

$$h_i a_i \overleftarrow{C}[b_i, a_i^+] \overleftarrow{C}[a_i^-, b_j] \overleftarrow{C}[a_j^-, b_i^+] \overrightarrow{C}[b_j^-, a_j] h_j H h_i$$

which is longer than C. Since $N(h_j) \cap V(C) \subseteq N(V(H)) \cap V(C)$, $b_j \notin N(h_j)$. Thus $b_j \in N(a_j) - (N(h_j) \cup N(a_j^-))$. Since C is a longest cycle in C, $d(h_j, a_j^-) = 2$ and $a_j \in N(h_j) \cap N(a_j^-)$. Since C is an L_1 – graph, we have

$$|N(h_j)\cap N(a_j^-)|\geq |N(a_j)-(N(h_j)\cup N(a_j^-))|-1\geq |\{h_j,a_j^-,b_j\}|-1=2.$$

Clearly, $N(h_j) \cap N(a_j^-) \cap (V(G) - V(C)) = \emptyset$. Otherwise G has a cycle which is longer than C. Therefore $N(h_j) \cap N(a_j^-) \cap (V(C) - \{a_j\}) \neq \emptyset$. Again since $N(h_j) \cap V(C) \subseteq N(V(H)) \cap V(C)$, there exists a vertex $a_p (\neq a_j)$, $1 \leq p \leq l$, such that $a_p a_j^- \in E$ and therefore G has a cycle which is longer than C, a contradiction. Thus $b_i^+ b_j^- \notin E$.

In view of what we have proved above, we have that $G[b_j, a_i, b_i^+, a_j, b_j^-, b_j^+]$ is isomorphic to $K_{1,5}$ or $K_{1,5} + e$, which is a contradiction. Similarly, we can arrive at a contradiction when $N(b_j) \subseteq N(b_i) \cup \{b_i\}$.

Since any two distinct vertices in $\{a_1, b_1, a_2, b_2, ..., a_l, b_l\}$ are incomparable, $2k \leq Dil(G)$, contradicting to the assumption that $Dil(G) \leq 2k-1$. Therefore the proof of Theorem 1 is complete. QED.

Remark. Let $K_{1,4}^e$ denote the graph obtained by subdividing one edge in $K_{1,4}$. It is observed that $G[b_j, b_i^+, a_j, b_j^-, b_j^+, h_j]$ is isomorphic to $K_{1,4}^e$ in the above proof of Theorem 1. Therefore we have also the following theorem.

Theorem 2 Let G be a k $(k \ge 2)$ - connected L_1 - graph. If G is $K_{1,4}^e$ - free and $Dil(G) \le 2k-1$, then G is Hamiltonian or $G \in \mathcal{K}$.

References

- [1] A. Ainouche, Quasi-claw-free graphs, Discrete Math. 179(1998) 13-26.
- [2] A. S. Asratian, Some properties of graphs with local Ore condition, Ars Combinatoria 41 (1995), 97 106.
- [3] A. S. Asratian, H. J. Broersma, J. van den Heuvel, and H. J. Veldman, On graphs satisfying a local Ore - type condition, J. Graph Theory 21 (1996), 1 - 10.
- [4] A. S. Asratian, R. Häggkvist, and G. V. Sarkisian, A characterization of panconnected graphs satisfying a local Ore – type condition, J. Graph Theory 22 (1996), 95 – 103.
- [5] A. S. Asratian, N. H. Khachatrian, Some localization theorems on hamiltonian circuits, J. Combin. Theory Ser. B 49 (1990), 287 - 294.
- [6] A. S. Asratian and G. V. Sarkisian, Some panconnected and pancyclic properties of graphs with a local Ore – type condition, Graphs and Combinatorics 12 (1996), 209 – 219.
- [7] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).
- [8] A. Brandstädt, V. B. Le, and J. Spinrad, Graph Class: A Survey, SIAM Monographs on Discrete Mathematics and Applications (1999), 5-6.
- [9] S. Földes and P. L. Hammer, Split graphs having Dilworth number two, Canadian J. Math. 3 (1977), 666 672.
- [10] R. Li, Degree sum conditions for the Hamiltonicity and traceability of L_1 graphs, J. Comb. Math. Comb. Comput. 45 (2003), 33 41.
- [11] R. Li, Finding Hamiltonian cycles in $\{quasi claw, K_{1,5}, K_{1,5} + e\}$ free graphs with bounded Dilworth numbers, *Discrete Mathematics* **309** (2009), 2555-2558.
- [12] R. Li and R. H. Schelp, Some Hamiltonian properties of L_1 graphs, Discrete Mathematics 223 (2000), 207 216.
- [13] A. Saito, A local Ore type conditions for graphs of diameter two to be Hamiltonian, J. Comb. Math. Comb. Comput. 2 (1996), 155 159.