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Abstract

Let u and v be two vertices in a graph G. We say vertex u domi-
nates vertex v if N(v) C N(u)U{u}. If u dominates v or v dominates
u, then u and v are comparable. The Dilworth number of a graph
G, denoted Dil(G), is the largest number of pairwise incompara-
ble vertices in the graph G. A graph G is called {H:, Ha, ..., Hi}
- free if G contains no induced subgraph isomorphic to any H;,
1 £i < k. A graph G is called an Ly - graph if, for each triple
of vertices u, v, and w with d(u,v) = 2 and w € N(u) N N(v),
d(u) +d(v) 2 [N(u)UN(v)UN(w)|— 1. Let G be a k (k > 2) - con-
nected Ly — graph. If G is {K1 5, K1,5+¢€} - free and Dil(G) < 2k-1,
then G is Hamiltonian or G € F, where K5 + e is a graph ob-
tained by joining a pair of nonadjacent vertices in K, s and F =
{G: Kp,p+1 € G C KpV(p+1)K1, 2 < p < 3}, where V denotes the
join operation of two graphs.

1. Introduction

We consider only finite undirected graphs without loops and multiple
edges. Notation and terminology not defined here follow that in [7]. If
S C V(G), then N(S) denotes the neighbors of S, that is, the set of all
vertices in G adjacent to at least one vertex in S. For a subgraph H of G
and S C V(G) - V(H), let Ny(S) = N(S)NnV(H) and |Ng(S)| = du(S).
If S = {s}, then Ny(S) and |Ng(S)| are written as Ng(s) and dy(s)
respectively. For disjoint subsets A, B of the vertex set V(G) of a graph
G, let e(A, B) be the number of the edges in G that join a vertex in A
and a vertex in B. The distance between two vertices v and v, d(u,v), in
a connected graph G is the least number of edges in a path connecting u
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and v. K is defined as {G : Kp p41 € G C K,V (p+ 1)Ky, p > 2} and
F is defined as {G : Kp p+1 € G C K,V (p+ 1)Ky, 2 < p < 3}, where
V denotes the join operation of two graphs. Kjs + e is a graph obtained
by joining a pair of nonadjacent vertices in Ky 5. A graph G is 1 - tough
if w(G — 8) < |8 for every subset S of V(G) with w(G — S) > 1, where
w(G — S) denotes the number of components in the graph G — S.

A graph G is called {H;,Hy,...,H} — free if G contains no induced
subgraph isomorphic to any H;, 1 < i < k. If k =1 and H; = K3,
then the G is called claw — free. For an integer ¢, a graph G is called
an L; — graph if d(u) + d(v) > |N(u) U N(v) U N(w)| — i or equivalently
|[N(u) " N(v)| > |N(w) — (N(u) U N(v))| — 4 for each triple of vertices u,
v, and w with d(u,v) = 2 and w € N(u) N N(v). It can easily be verified
that every claw - free graph is an L; — graph (see [3]). Ainouche [1] in-
troduced the concept of quasi — claw — free graphs, extending the concept
of claw — free graphs. A graph G is called quasi — claw — free if it satis-
fies the property: d(z,y) = 2 = there exists u € N(z) N N(y) such that
Nlu] € Nlz]u N[y]. Obhviously, every claw — free graph is quasi - claw -
free. Asratian and Khachatrian began to investigate the Hamiltonicity of
L; - graphs and they in [5] proved that all connected Lo — graphs of order
at least three are Hamiltonian. Saito [13] shown that if a graph G is a 2
- connected Ly — graph of diameter two then either G is Hamiltonian or
G € K. More results related to the Hamiltonian properties of L; — graphs
can be found in (2], (3], {4], [6], [12], and [10].

The definition of the Dilworth number of a graph can be found in [9]
(also see [8]). Let u and v bhe two vertices in a graph G. We say vertex u
domoniates vertex v if N(v) € N(u)U{u}. If u dominates v or v dominates
u, then v and v are comparable. The Dilworth number of a graph G,
denoted Dil(G), is the largest number of pairwise incomparable vertices in
the graph G. Using the Dilworth numbers of graphs, Li in [11] obtained
sufficient conditions for the Hamiltonicity of { quasi —claw, K1 5, K15 +e}
- free graphs. The objective of this paper is to prove a similar theorem for
the Hamiltonicity of L; — graphs which are {K15, K15 + e} — free. The
next theorem is the main result of this paper.

Theorem 1 Let G be a k (k > 2) - connected Ly - graph. If G is {K, s,
Ky 5+ e} - free and Dil(G) < 2k — 1, then G is Hamiltonian or G € F.

Since every claw - free graph is an L; — graph and {K,5,K5 + e} -
free and every graph in F is not claw - free, Theorem 1 has the following
corollary.

Corollary 1 Let G be a k (k > 2) - connected clow - free graph. If
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Dil(G) < 2k — 1, then G is Hamiltonian.

We need the following additional notations in the reminder of this pa-
per. If C is a cycle of G, let T denote the cycle C with a given orientation.
For u, v € C, let 6[u, v] denote the consecutive vertices on C from u to
v in the direction specified by C. The same vertices, in reverse order, are
given hy (E[v,u]. Both _C)[u, v] and Clv,u] are considered as paths and
vertex sets. If u is on C, then the predecessor, successor, next predecessor
and next successor of u along the orientation of C are denoted by u—, u¥,
u~~, and ut™t, respectively. If A C V(C), then A~ and At are defined
as {v™ :v € A} and {vt : v € A}, respectively. If H is a connected com-
ponent of a graph G and u and v are two vertices in H, let uHv denote a
path between u and v in H.

2. Lemmas

The following Lemma 1 is a result obtained in [3].

Lemma 1 If G is a 2 - connected Ly - graph, then either G is 1 - tough
orGeK.

The following Lemma 2 is a result extracted from the proof of Theorem
3 in [10]. For the sake of completeness, we include the proof of Lemma 2
here.

Lemma 2 Let G be a 2 - connected nonhamiltonian Ly - graph. Suppose C
is a longest cycle with a given orientation in G, H is a connected component
of GIV(G) - V(C)], N(V(H))nV(C) = {a1,az,...,a;} such that h;a; € E,
where h; € V(H) for each i, 1 < i <, and a;, a3, ..., a; are labeled in
the order of the orientation of C. Then G € K or a]a} € E for each i,
1<i<l.

Proof of Lemma 2. If G € K, then the proof is finished. Now we assume
that G ¢ K. Then Lemma 1 implies that G is 1 - tough. Since G is 2 -
connected, [ > 2. Set A := {a1,az,...,a1} and for each i, 1 < i < [, let
b; and d; be the predecessor and successor respectively of a; along C. Set

B = {b17b21 ...,b[} and D := {dl’d2;--'v dl}

Next we will prove that for each i, 1 < i <[, b;d; € E. Suppose not,
then there exists a k, 1 < k <, such that bydyx & E. Clearly, d(hy,di) =2
and ax € N(hr) N N(dy). Since G is an L, - graph,

IN(hie) O N(d)| 2 IN(ax) = (N(he) UN(de))| — 1 > |{bk, di, he}| — 1 =2.
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By the choice of C, we have N(hg) N N(di) N (V(G) — V(C)) = 8. Then
there exists a vertex a; € N(V(H)) N V(C) such that a; € N(hi) N N(dk).

Let X be the set N(hg)NV(C) := {z1, 22, ..., 21, } With the z;’s ordered
with increasing index in the direction of orientation of C. Then X C A and
I, > 2. Foreach i, 1 <1<, lets; and ¢; be the predecessor and successor
respectively of z; along C. Set S := {s1, 82, ..., 51, } and T := {¢t1,t2,...,t1, }.
Clearly, S U {hi} is an independent set in G and for each i, 1 < i < [,
N(hg) N N(s;) N (V(G) — V(C)) = 0. Moreover for each 7, 1 < i < [,
d(hk,s;) = 2 and z; € N(hg) N N(s;). Since G is an L, — graph, we have

IN(he) N N(s:)| > |N(2:) — (N(he) UN(si))| — 1.
Obviously, Ng(z;) C N(z;) — (N(hi) UN(s;) U {ht}). Thus,

[Ns(z;)| < |N(z:) — (N(h&) U N(s;))| — 1. Therefore,

[Ng(z:)| < |[N(he) N N(s;)| = [Nx(si)|. Hence,

e(X,S) = LiL;INs(z)| ik, INx(s:)] = e(X, 5).
It follows, for each 7, 1 <1 < [, that

N(z:) — (N(hg)UN(s;) U {hk}) = Ns(z:) C S. 1)
Similarly, for each i, 1 < <[,

N(z;) — (N(hg) U N(t;) U {he}) = Np(z:) € T (2)

We claim that there exists an ¢ such that s;,; # t;, where 1 <7 <[; and
the index (; +1) is regarded as 1. Suppose not, then for each ¢, 1 <i <y,
Si+1 = t;. Clearly, for each i, 1 < i < ), N(t;) N V(H) = 0, otherwise
C is not of maximum length, also for any pair of ¢, j, 1 < 4,5 < I; and
i # j, t;, t; do not have neighbors in the same component of the graph
G[V(G) — V(C) — V(H)], otherwise C is again not of maximum length.
Therefore, G - {x,, 2, ..., 1, } has at least /; + 1 components, contradict-
ing the fact that G is 1 - tough.
Without loss of generality, assume that s; # t;,. Observe that s; €

N(t1), otherwise from (2), we have s; € T, which is impossible. Since
sit; € E, sy # t;. Observe again that s, € N(t2), otherwise from (2),

we have s, € T, which is also impossible. Repeating this process, we have
s;jt; € E, for each j, 1 < j < l;. This implies that bxdx € E, a contradic-
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tion. Hence b;d; € E for each i, 1 < i < 1. Namely, a]a} € E for each i,
1<i<, QED

3. The Proof of the Main Theorem

Proof of Theorem 1. Let G be a graph satisfying the conditions in The-
orem 1. Suppose that G is nonhamiltonian and G ¢ F. Choose a longest
cycle C in G and specify an orientation of C. Assume that H is a connected
component of the graph G[V(G)-V(C)], N(V(H))nV(C) = {a1, a2, ...,a}
with h;a; € E, where h; € V(H) for each ¢, 1 < ¢ < I, and a4, a2, ..., a
are labeled in the order of the orientation of C. Since G is k (k > 2) -
connected, ! > k. Moreover since G is K; 5 — free, G ¢ K — F. Thus
G ¢ K. Hence Lemma 2 implies that a; a;]” € E for each 4, 1 <i < L.

Notice first that a;a;,, € E for each i, 1 < i <[, where the index (I +1)
is regarded as 1. Otherwise G has a cycle

hiai‘ﬁ[a;l, a,*]ﬁ[a;‘, a;‘+1]hi+th,'

which is longer than C. Moreover a;a;; ¢ E foreach i, 1 < i <L
Otherwise G has a cycle

hia;Clai,6f 1807 a1z ass1hipr Hh,

which is longer than C. Let b; be the most far neighbor of a; along

[af ,a;,,] for each 4,1 <i <l Then |C[b},a;,,]| > 2foreachi, 1<i<
I. Next will prove that any two distinct vertices in {a1,b1,a2, b2, ...,ar, b}
are incomparable.

For each i and j, 1 <i < j <1, we have a}' & N(a;). Otherwise G has

a cycle
hia;Cla},a7)Claf , aslh; Hhs

which is longer than C. Similarly, a} & N(a;). Thus a; and a; are incom-
parable for each i and j, 1 <i<j <L

Obviously, b} & N(a;) for each i, 1 < i < I. Since N(h;) N V(C) C
NV(H)NV(C), h; € N(b;), for each i, 1 < i < l. Thus a; and b; are
incomparable for each i, 1 <i <.

For each i and j, 1 < i < j <!, we have b;." & N(a;). Otherwise G has

a cycle
hia;C b}, 07 1C [a} a5 1C o}, bylash; Hh:
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which is longer than C. Since N(h;)NV(C) € N(V(H))NV(C), h; &€ N(b;)
for each i and j, 1 <4 < j <I. Thus a; and b; are incomparable for each ¢
and j, 1 < i< j <! Similarly, a; and b; are incomparable for each i and
5 1<i<il.

Now we will prove that b, and b, are incomparable for each s and t,
1 < s #t <!l Suppose, to the contrary, that there exist b; and b; such that
they are comparable. Then N(b;) C N(b;) U {b;} or N(b;) € N(b;) U {b:}.
We first consider the case that N(b;) C N(b;) U {b;}. Without loss of gen-
erality, we assume that i < j. Since N(b;) C N(b;) U {b;}, a; € N(b;) and
b} € N(b;). Since a; € N(b;), bj # af and b; # af*. Otherwise G has

cycles which are longer C. Thus It‘[a;-""',bj_]l >2.

Now we will prove that G[b;, a;, b 1 gy J-',b;-"] is isomorphic to K, 5 or
K5 +e. Clearly, a;b} ¢ E. If a;b; € E, then G has a cycle

hia: O (b7 ,a}1Ca; ,a}1C a7, bjlajh; Hh
which is longer than C, a contradiction. Thus a;b; & E.
If a,~b;F € E, then G has a cycle
hia; C[bF,a7|C o], a5 1C la} , bjlash; Hhs

which is longer than C, a contradiction. Thus agb;-' ¢ E.
If bfa; € E, then G has a cycle
hithajB[b;*,a;]ﬁ[a}',a{]ﬁ[af’,bi]aihi
which is longer than C, a contradiction. Thus bfa; € E.
If b} b} € E, then G has a cycle
hia; T (b, a}|Cla;, 61T b}, a5 1C la} , bjlashs Hhs
which is longer than C, a contradiction. Thus b} b;-* ¢ E.
If a;b; € E, then G has a cycle
hiaialbj, a{]@[af‘, aj']z?[a;, b;]ajthhi

which is longer than C, a contradiction. Thus a;b; & E.
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If ajb;-" € E, then G has a cycle
hiHhja;C[b},07]C (o}, a5 10 [a}, bjlaihs
which is longer than C, a contradiction. Thus a.,-b;-" ¢E.
If b bJ'." € E, then G has a cycle

hiHhja;b;C b}, a51C e}, b7]C[6F, a7 ]C [a}, bilash

R

which is longer than C, a contradiction. Thus bj‘b}' € E.
If bfb; € E, then a}b; ¢ E. Otherwise G has a cycle

hia;C [bi,af 107, b;)Clay , b}]C b7, as)h; Hhs

which is longer than C. Since N(h;) NV(C) C N(V(H))NnV(C), b; ¢
N(h;). Thus b; € N(a;) — (N(h;) U N(a;)). Since C is a longest cycle in
G, d(hj,a7) = 2 and a; € N(h;) N N(aj). Since G is an L) - graph, we
have

IN(h;) N N(a7)| 2 |N(az) — (N(h;)UN(aj))| -1 2 |{hj,a5,b;}| -1 =2.

Clearly, N(h;)NN(a; )N(V(G)-V(C)) = 0. Otherwise G has a cycle which
is longer than C. Therefore N(h;) N N(a;) N (V(C) — {a;}) # 0. Again
since N(h;) NV(C) C N(V(H)) N V(C), there exists a vertex ap(# a;),
1 < p <, such that apa; € E and therefore G has a cycle which is longer
than C, a contradiction. Thus b}b; ¢ E.

In view of what we have proved above, we have that G[bj, a;, b}, aj, by, b;-"
is isomorphic to K, 5 or K; 5 + e, which is a contradiction. Similarly, we
can arrive at a contradiction when N(b;) € N(b;) U {b;}.

Since any two distinct vertices in {ai,b1,a2, b, ..., a1, b} are incompa-
rable, 2k < Dil(G), contradicting to the assumption that Dil(G) < 2k —1.
Therefore the proof of Theorem 1 is complete. QED.

Remark. Let K7, denote the graph obtained by subdividing one edge in
K 4. It is observed that Gi{b;, b;" ,a5, b7, b;', h;] is isomorphic to K 1,4 in the
above proof of Theorem 1. Therefore we have also the following theorem.

Theorem 2 Let G be a k (k > 2) - connected Ly - graph. If G is Kf 4 -
free and Dil(G) < 2k — 1, then G is Hamiltonian or G € K.
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