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Abstract. In this paper we interpret a generalized basic series as the gener-
ating function of two different combinatorial objects,viz., a restricted n-colour
partition function which we call a two-colour partition function and a weighted
lattice path function. This leads to infinitely many combinatorial identities. Qur
main result has the potential of yielding many Rogers-Ramanujan-MacMahon
type combinatorial identities. This is illustrated by an example.

1 Introduction, Definitions and the Main Re-
sults

A series involving factors like rising g-factorial (a, g),, defined by
_(1-ag)
(a’ q)" - ;l:.[ (1 - aqn+t

is called a basic series (or g-series, or Eulerian series). The following two ”sum-
product” basic series identities are known as the Rogers-Ramanujan identities
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They were first discovered by Rogers [17] and rediscovered by Ramanujan
in 1913. MacMahon [15] gave the following partition theoretic interpretations
of (1.1) and (1.2), respectively:

Theorem 1.1. The number of partitions of n into parts with the minimal
difference 2 equals the number of partitions of n into parts = +1(mod5).

Theorem 1.2. The number of partitions of n with minimal part 2 and minimal
difference 2 equals the number of partitions of n into parts = £2(mod5).

Partition theoretic interpretations of many more g-series identities like (1.1) and
(1.2) have been given by several mathematicians. See, For instance, Gollnitz
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[11,12], Gordon [13], Connor [10], Hirschhorn [14], Agarwal and Andrews [5],
Subbarao [19], Subbarao and Agarwal {20)].

In all these results ordinary partitions were used. In [6] n-colour partitions
were defined. Using these partitions several more basic series identities were
interpreted combinatorially (see, for instance,[1,2,3,4,16}). In this paper we in-
terpret the basic series
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n=0

where k is a positive integer, as generating function of two different combi-
natorial objects, viz., a restricted n-colour partition function which we call a
two-colour partition function and a weighted lattice path function. This leads to
an infinite family of combinatorial identities. These identities have the potential
of yielding many Rogers-Ramanujan-MacMahon type combinatorial identities
like Theorems 1.1-1.2. First we recall the following definitions from [6]:

Definition 1.1. An n-colour partition (also called a partition with "n copies
of n”) is a partition in which a part of size n can come in n different colours
denoted by subscripts: ny,ng,--+ ,np.

Thus, for example, the n-colour partitions of 3 are

31, 32, 33, 2111, 21;, Lilils.

Definition 1.2. The weighted difference of two parts m;, n; (m > n) is defined
by m — n — i — j and is denoted by ((m; — n;)).

We remark that in this paper we do not use the whole class of n-colour parti-
tions but only a sub-class containing two-colour partitions which we define as
follows:

Definition 1.8. A two-colour partition of a positive integer v is a partition
in which a part of size m > 1 can come in two different colours denoted by
subscripts : m;, m; and 1 appears only in one colour denoted by 1.

Next, we recall the following description of lattice paths from [7] which we
shall be considering in this paper:

All paths will be of finite length lying in the first quadrant. They will be-
gin on the y-axis and terminate on the z-axis. Only three moves are allowed at
each step:

northeast:  from (4,j) to (i +1,7+1)

southeast:  from (3,j) to (i + 1,7 — 1), only allowed if j > 0,

horizontal:  from (4,0) to (i + 1,0), only allowed along x-axis.
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The following terminology will be used in describing lattice paths:

PEAK: Either a vertex on the y-axis which is followed by a southeast step
or a vertex preceded by a northeast step and followed by a southeast step.

VALLEY: A vertex preceded by a southeast step and followed by a north-
east step. Note that a southeast step followed by a horizontal step followed by
a northeast step does not constitute a valley.

MOUNTAIN: A section of the path which starts on either the z- or y-axis,
which ends on the z-axis, and which does not touch the z-axis anywhere in
between the end points. Every mountain has at least one peak and may have
more than one.

PLAIN: A section of the path consisting of only horizontal steps which starts
either on the y-axis or at a vertex preceded by a southeast step and ends at a
vertex followed by a northeast step.

The HEIGHT of a vertex is its y-coordinate. The WEIGHT of a vertex
is its z-coordinate. The WEIGHT OF A PATH is the sum of the weights of
its peaks.

Example: The following path has five peaks, three valleys, three mountains
and one plain.

g ge————

Graph 1

In this example, there are two peaks of height three and three of height two,
two valleys of height one and one of height zero.
The weight of this pathis 0+3+9+ 12+ 17 = 41.

Now we state our main result.

Theorem 1.1. For a positive integer k, let Ax(v) dencte the number of
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two-colour partitions of v with parts > k such that (i) the parts m; satisfy
m =1+ k — 1(mod2), with m > 1 if k is even, (ii) if m; is the smallest or the
only part in the partition, then m = ¢ + k — 1(mod4) and (iii) the weighted
difference between any two consecutive parts is nonnegative and is = 0(mod4).
Let By(v) denote the number of lattice paths of weight v which start at (0, 0),
such that (iv) they have no valley above height 0, (v) there is a plain of length
= k — 1(mod4) in the beginning of the path, other plains, if any, are of lengths
which are multiples of 4 and (vi) the height of each peak of odd (resp., even)
weight is 1 (resp., 2) if k is odd and 2 (resp., 1) if &k is even. Then

Ag(v) = Bi(v), forallv, (1.3)
and (n+k- 1)( 2)
;A"(" ¢ = ;OBAu)q = 2_1‘) e

In the next section we prove Theorem 1.1. Our method consists in proving
that both the functions Ax(v) and Bi(v) are generated by the extreme right
hand side of (1.4). We shall also prove (1.3) bijectively. In our Section 3
we illustrate by an example that our Theorem has the potential of yielding
Rogers-Ramanujan-MacMahon type combinatorial identities.

2 Proof of Theorem 1.1
Step I. We shall prove that

n(n+k— 1)

2
PIVHCTES priimcstoy (21)

v=0 n=0

Let Ag(m,v) denote the number of partitions enumerated by Ax(v) into m
parts. We shall first prove the identity,

Ap(m,v) = Ag(m—1,v—k—-2m+2)+ Ar(m—1,v—k—4m+3)+ Ax(m, v—4m).
(2.2)

We give the proof of (2.2) for odd k as the proof for even k is similar and hence
is omitted.

To prove (2.2) for odd k, we split the partitions enumerated by Ax(m,v) into
three classes:

(i) those that have least part equal to ki,

(ii) those that have least part equal to (k + 1)2, and

(iii) those that have least part greater than or equal to (k + 2);.

We note that in class (iii) the parts are > 5; because if k == 1 then 3; can
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not be a part in view of the condition (ii) of the theorem.

We now transform the partitions in class (i) by deleting the least part k; and
then subtracting 2 from all the remaining parts ignoring the subscripts. This
produces a partition of » — k — 2(m — 1) into exactly (m — 1) parts each of which
is > ky (since originally the second smallest part was > (k + 2);). Obviously,
this transformation does not disturb the weighted difference condition (iii) be-
tween the parts and so the transformed partition is of the type enumerated by
Ag(m -1, v—-k—-2m+2).

Next, we transform the partitions in class (ii) by deleting the least part (k+1)2
and then subtracting 4 from all the remaining parts.This produces a partition
of v—(k+1)—4(m—1) =v -k — 4m + 3 into m — 1 parts, each of which
is > ky (since originally the second smallest part was > (k + 4);). Note that
originally (k4 2); and (k + 3)2 could not be the second smallest part because of
the weighted difference condition (iii). Furthermore, since the weighted differ-
ence condition between the parts is not disturbed, we see that the transformed
partition is of the type enumerated by Ag(m — 1,v — k — 4m + 3).

Finally, we transform the partitions in class (iii) by subtracting 4 from each
part ignoring the subscripts. This produces a partition of v — 4m into m parts,
each > k;. Since the weighted difference condition (iii) between the parts is
again not disturbed, we see that the transformed partition is of the type enu-
merated by Ag(m,v —4m).

The above transformations establish a bijection between the partitions enu-
merated by Aix(m,v) and those enumerated by Ax(m — 1,v — k —2m + 2) +
Ar(m — 1,v — k — 4m + 3) + Ax(m,v — 4m).

This proves the Identity (2.2).

For |z| < |g|~tand |q] < 1, let
fi(z;9) Z E Ar(m,v)2™q (2.3)
v=0m=0

Substituting for Ax(m,v) from (2.2) in (2.3) and then simplifying, we get the
following g- functional equation

fu(z9) = 26" fi(24%; @) + 26" fi(29%; q) + fi(za%; q). (2.4)
Since fi(0;¢) = 1, we may easily check by coefficient comparison in (2.4) that
n(n+k— 1)( q2)nzn

ful(z;q) = Z z : q4)n . (2.5)

n=0
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Now

S - (S emn) e

v=0 v=0 \m=0
= fr(1;9)
_ o (g g%
n=0 (q4;q4)n

This completes the proof of (2.1).

Step IL. We shall prove that

m(m+k-1)
q ( 4:4%)m
By(v)g” = . (26)
Z 2
In 00 00e)m e factor g™ (m+k-1) generates a lattice path from (0,0) to

(k+ 2m - 1 0) having m peaks each of height 1 and a plain of length £ —1 in
the beginning of the path.

For k = 3 and m = 5, the path begins as

LNINLNNN

Graph 2

In the above graph we consider two successive peaks say, ith and (¢ + 1)th
and denote them by p; and ps, respectively.

P=(k+2(i-1),1)
p=(k+2i,1)

YAVAN

Graph 3

The factor i generates m nonnegative multiples of 4, say a1 > az 2>

-am 2> 0, which are encoded by inserting a,, horizontal steps in front of the
first mountain, and a; — a;;1 horizontal steps in front of the (m — i+ 1)st moun-
tain, 1 < ¢ € m — 1. Thus the z-coordinate of the ith peak is increased by
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am +(@m-1 —am) + (@m-2 = am-1) +* " (@m—it1 — Gm-i+2) = Gm_i+1 and the
z-coordinate of the (i + 1)th peak is increased by a,—;.

Graph 3 now becomes Graph 4.

Graph 4

pr=(k+26—-1)+am_i41,1),
p2=(k+2i+am_i,1).

The factor (—g;¢?)m generates nonnegative multiples of (2i — 1), 1 < i < m,
say, by x 1, by x3,--- by, x (2m —1), whereeach b; (1 <i<m)isOorl.
This is encoded by having the ith peak grow to height bn,_;41+1. Each increase
by one in the height of a given peak increases its weight by one and the weight
of each subsequent peak by two.

Graph 4 now changes to Graph 5 or Graph 6 depending on whether b,,.; >

bm—i+1 OF < bm_it1. In the case when bm—; = by—iy1, the new graph looks like
Graph 4.

AL N\

Graph 5

or

l/\/"\

Graph 6

Every lattice path enumerated by Bi(v) is uniquely generated in this man-
ner. This proves (2.6).
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Step III. We now establish a 1 — 1 correspondence between the lattice paths
enumerated by Bi(v) and the two-colour partitions enumerated by Ax(v).

We do this by encoding each path as the sequence of the weights of the peaks
with each weight subscripted by the height of the respective peak.

Thus, if we denote the two peaks in Graph 5 (or Graph 6) by A; and B,,
(B 2 A), respectively, then

A=k+2(i—1)+am-it1 +2(by + b1 + -+ + bmiz2) + bm—iz1

= bm—i+l +1
B=k+2+am—i+2(bm+bn1+ - +bm_ir1)+bm_i
Yy=bp-s+1

Clearly, when k is odd and A (or B) is odd (resp. even), = (or y) is 1 (resp. 2).
Similarly, when & is even and A (or B) is odd (resp. even), = (or y) is 2 (resp.

1).
The weighted difference of these two parts is ((By — A4z)) = B-A-z—-y=
Gm—i — Gm-i+1 Which is nonnegative and is a multiple of 4.

To see the reverse implication, we consider two n-colour parts of a partition
enumerated by Ax(v), say, C, and D, with D>C >k ;1< u,v <2

Let Q; = (C,u) and Q2 = (D, v) be the corresponding peaks in the associ-
ated lattice path.

Q=(D,v)
@=(C,u)

Plain__

Graph 7
The length of the plain between the two peaks is D — C — u — v which is the
weighted difference between the two parts C, and D, and is therefore a non-
negative multiple of 4. (by condition (iii) of the Theorem)
If C,, were the smallest part of the partition, the corresponding peak in the as-
sociated path would be the first peak preceded by a plain of length (k — 1) + a,
where a is a non-negative multiple of 4 since

C = (k-1)+a+1+b, (by(ii))
u=1+b,

where b is 0 or 1.
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The following two cases are also clear:

Case 1. when & is odd.

The parts are of the form (2! — 1), or (2{)2 and the corresponding peaks are
of odd weight with height 1 or even weight with height 2.
Case 2. when k is even.

In this case the parts are of the form (2I), or (2! — 1), and the corresponding
peaks are of even weight and height 1 or odd weight and height 2.

Finally, we show that there can not be a valley above height 0.
Suppose, there is a valley V of height k£ (0 < h < 1) between the peaks @, and

Q2.

Q.=(0v)
Q;=(Cu)

Graph 8
In this case there is a descent of u — h from @ to V and an ascent of v — k from
V to Q5. This implies that
D=C+(u—-h)+(v—-nh)
=>D-C—-u—v=-2h

But since the weighted difference is nonnegative, therefore, h=0.

This completes the bijection between the lattice paths enumerated by Bi(v)
and the two-colour partitions enumerated by Ax(v).

3 A particular case of Theorem 1.1

By a little series manipulation, the following identity of Slater [16,p.154,Eq.25))

o (q 7*)n (9% 9% oo '
can be written in the following form:
= 7" (-:¢%)n N 1
1 -9 q" - (Z (4% 9%)n ) Il (1-gq7) |’

n=0 ==

n= n=1
n=%1,32(mod6) n=+2,43,6(mod12)

Z (=000 _ (~48%)o0 (8% 7%)oo (7% ®)oo 3.1)

(3.2)
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Now an appeal to Theorem 1.1 gives the following 3-way combinatorial in-
terpretation of Identity (3.2)

Theorem 3.1. Let C;(v) denote the number of partitions of v into parts
= +2,43,6(mod12). And let D;(v) denote the number of partitions of v into
parts not divisible by 3. Then

D) =Y WG - R = S BWCE-8, 63
k=0

k=0

where A;(k) and B; (k) are as defined in Theorem 1.1.

Example.
Dy(7)=9
Also

7
S 4 (K)CL(T— k) =9
. k=0

Table I shows the relevant partitions enumerated by A,(v), Ci(v) and D;(v)
for0<v<T.

Partitions  enumer- Partitions enumer- Partitions enumer-
Y | A1) | ated by 4,(0) C1() | ated by Cy(v) D1(¥) | ated by D,(v)
0 1 empty partition 1 empty partition 1 empty partition
1 1 1, 0 - 1 1
2 1 2, 1 2 2 2, 1+1
3 0 - 1 3 2 2+1, 1+1+1
T 2F7, 2FIT,
4 1 Wi+ 1 242 4 Llelel
5, 4+1, 2+2+1,
5 2 51,40+ 1y 1 3+2 5 2+1+1+41,
. 1+1+14+1+1
5+1, 442, 4+1+1,
24242, 24+2+1+1,
6 1 62 3 6, 3+3, 2+2+2 7 241414141,
14141414141
7, 5+2, 5+1+1,
4+2+1, 4+1+1+1,
24-2+2+1,
7] 1 51+2; 1 3+2+2 9 | 242414141,
2+4+14+1+14+1+1,
+14+1-+14+14+1+1
Table I
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Remark. For the brevity of the paper we have not given the table of the
lattice paths enumerated by B;(v). However, we know from Theorem 1.1 that

A1(v) = By(v).

4 Conclusion.

The work done in this paper shows a nice interaction between the theory of
basic series and combinatorics. Theorem 1.1 gives a combinatorial identity for
each value of k. Thus we get infinitely many combinatorial identities from this
theorem. In one particular case, viz., kK = 1 we get 3-way combinatorial inter-
pretation of a well known basic series identity of L.J. Slater. In the case k = 3,
the basic series identity analogous to (3.1) was found by Andrews [9] and its
combinatorial interpretation different from what we get from our Theorem 1.1
was given by Alladi and Berkovich [8]. It would be of interest if more applica-
tions of Theorem 1.1 can be found.

Acknowledgement. The authors would like to thank the referee for his some
helpful comments.
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