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Abstract
This note deals with the computation of the factorization number F>(G)
of a finite group G. By using the Mobius inversion formula, explicit ex-
pressions of F3(G) are obtained for two classes of finite abelian groups, im-

proving the resuits of Factorization numbers of some finite groups, Glasgow
Math. J. (2012).
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1 Introduction

Let G be a group, L(G) be the subgroup lattice of G and H, K be two subgroups
of G. If G = HK, then G is said to be factorized by H and K and the expression
G = HK is said to be a factorization of G. Denote by F>(G) the factorization
number of G, that is the number of all factorizations of G.

The starting point for our discussion is given by the paper [3], where F>(G)
has been computed for certain classes of finite groups. The connection between
F>(G) and the subgroup commutativity degree sd(G) of G (see [5, 7]) has been
also established, namely

sd(G) = I_L(lGTIf,gapz(H)'
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Obviously, by applying the well-known Mgbius inversion formula to the above
equality, one obtains

(1 R(G) = szSd(H) | L(H) |* u(H,G).

In particular, if G is abelian, then we have sd(H) =1 for all H € L(G), and
consequently

(2) R(G) = :20 |L(H) |* n(H,G) = PEG | L(G/H) |* n(H).

This formula will be used in the following to calculate the factorization numbers
of an elementary abelian p-group and of a rank 2 abelian p-group, improving The-
orem 1.2 and Corollary 2.5 of [3]. An interesting conjecture about the maximum
value of F>(G) on the class of p-groups of the same order will be also presented.

First of all, we recall a theorem due to P. Hall [1] (see also [2]), that permits
us to compute explicitly the Mobius function of a finite p-group.

Theorem 1. Let G be a finite p-group of order p*. Then u(G) = 0 unless G is
elementary abelian, in which case we have u(G) = (—1)"p G).

In contrast with Theorem 1.2 of [3] that gives only a recurrence relation sa-
tisfied by F>(Z7), n € N, we are able to determine precise expressions of these
numbers.

Theorem 2. We have

(3) R(Zp) = S (—VYanp(i)ai i, p(3),

where ay, p(i) is the number of subgroups of order p' of Zj,, ap p is the total number
of subgroups of %, and, by convention, (}) =0 for i =0, 1.

Since the numbers ay, (i), i =0, 1,...,n, are well-known, namely

N (Pr=1)(p=1)
)= G- = D (1)’

the equality (3) easily leads to the following values of F>(Z}) forn=1,2,3,4.




Examples.
a) B(Zp) =3.
b) F(Z2)=p®+3p+5.
) R(Z})=3p*+4p® +8p*+5p+7.

d) B(Z3) =p®+3p" +9p°+11p° + 14p* + 150> + 12p2 + 23p+9.

Next we compute the factorization number of a rank 2 abelian p-group.

Theorem 3. The factorization number of the finite abelian p-group Zpoy X Lpey,
ay < 0y, is given by the following equality:

1
FZ(Z’,H. X Zp“Z) = F_—l)_&- [(2a2 —20 + l)p20]+4 - (6a2 —6a; + l)p201+3+

+(602 —6ay — 1)p?™1*2 — (205 — 20y — 1) PP+ — (2a; + 200 +3) PP+
+(601 + 602 +7)p? — (6a1 + 602 +5)p+ (204 +202 4 1)] .

We remark that Theorem 3 gives a generalization of Corollary 2.5 of [3]. In-
deed, by taking a; = 1 and & = n in the above formula, one obtains:

Corollary 4. F5(Zp X Zpr) = (2n—1)p* + (2n+ 1) p+ (2n+3).

Finally, we will focus on the minimum/maximum of F>(G) when G belongs
to the class of p-groups of order p”. It is easy to see that

2n+1= Fz(an) < BK(G).

For n < 3 the greatest value of F>(G) is obtained for G 22 Z", as shows the fol-
lowing result.

Theorem 5. Let G be a finite p-group of order p". If n < 3, then
R(G) < R(Zp).

Inspired by Theorem 5, we came up with the following conjecture, which we
also have verified for several n > 4 and particular values of p.



Conjecture 6. For every finite p-group G of order p", we have

F(G) < B(Zy).

We end our note by indicating a natural problem concerning the factorization

number of abelian p-groups.

Open problem. Compute explicitly F2(G) for an arbitrary finite abelian p-group
G. Given a positive integer n, two partitions 7, 7’ of n and denoting by G, (4
the abelian p-groups of order p" induced by T and 7/, respectively, is it true that
F3(G) > F>(G') if and only if T < 7/ (where < denotes the lexicographic order)?

2 Proofs of the main results

Proof of Theorem 2. By using Theorem 1 in (2), it follows that

R(Zh) = ZZ | L(Z%/H) [* u(H) = ; }; | L(Z3/H) ? w(H) =
|H|—p‘

= 5 ans) 1@ P (1) = S np )i p®),

1=t

as desired. ]

Proof of Theorem 3. It is well-known that G = Z a1 X Z e, has a unique elemen-
tary abelian subgroup of order p?, say M, and that

G/M = Zpa|_1X Zp“:“‘ .

Moreover, all elementary abelian subgroups of G are contained in M. Denote by
M, i=1,2,...,p+1, the minimal subgroups of G. Then every quotient G/M; is
isomorphic to a maximal subgroup of G and therefore we may assume that

G/M; 2 Loy -1x Zpop for i =1,2,...,p

and
G/MP-H = Zpa,x Zp“l"' .



Clearly, the equality (2) becomes
p+1
F(G) = | L(G/M) > u(M) + Z | L(G/M;) | n(Mi)+ | L(G) |? p(1),

in view of Theorem 1. Since by Theorem 2 we have u(M) = u(Z},) =p,uM;) =
#(Zp) = —1,foralli=T1,p+T, and u(1) = 1, one obtains
@) FG) =p |LZpu-rxTyrm1) = | LZy-1x Zym) [ -

~ | LZpaix Zya-1) P + | L(ZporX Zyen) |* .

The total number of subgroups of Z,« x Z«, has been computed in Theorem 3.3
of [6], namely

1
-1 [(a2—0+1)p®1*2—(ap—a; — 1) p™+ —(0) + a2 +3) p+(04y +012 + 1].

Then the desired formula follows immediately by a direct calculation in the right
side of (4). [

Proof of Theorem 5. For n = 2 we obviously have
B(Z,) =5 < F2(22) = p*+3p+5.

For n =3 it is well-known (see e.g. (4.13), [4], II) that G can be one of the
following groups:

- Z%)ZZ X Z41 ZS, DS and Q8 ifp=2;

= L. Ty X L, Ty, M(P) = (5,3 | ¥ =P = 1,y xy = x*!) and
E(p3) = (x,y | X =yP = [x’)']p =1, [x’y] € Z(E(ps))) if p>3.

By using the results in Section 2 of [3], one obtains
forp=2:

F(Z3) = 129 > F(Zy x Zs) = 29,F>(Zg) =7, F>(Dg) = 41, F»(Qs) = 17

and
forp>3:



F(Z}) =3p* +4p> +8p*+5p+7> Fa(Zy x L2) = B(M(p*)) = 3p* 4+ 5p+7,
Fy(Z,3)=1.

We also observe that E(p®) has p + 1 elementary abelian subgroups of order
P, say M, M,,...,Mp,, and that every M; contains p+ 1 subgroups of order
p, namely ®(E(p?)) and Mjj, j = 1,2, ..., p. Then | L(E(p®)) |= p*+2p+4and
SO

R(E(pY)) < | LIE(P®)) P=p*+4p° + 120 +16p+ 16.

On the other hand, we can easily see that this quantity is less than FZ(Z?,) for all
primes p > 3, completing the proof. ]

Remark. It is clear that an explicit formula for F>(E(p®)) cannot be obtained
by applying (2), but we are able to determine it by a direct computation. The
factorization pairs of E(p°) are:

- (LEP@) (E(P), 1)
— (Mij,Mp) Vi #i, (Mi;,E(P)), (E(P*), M), i=T,p+1, j=T1,p;
- (R(E(P*)),E(P?)), (E(P*),®(E(P)));

- (Mo M)V i #i,j=1,2,...,p, (M;,My) ¥ i #i, (M;, E(p’)) and
(M, E(P?)),i=T,p+T;

- (E(P).E(P)).

Hence
R(E(p?)) =2+p(p+1)(p+2) +2+ (p+ 1)(PP + p+2)+1=

=2p° +5p% +5p+17.
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