A characterization of the graphs
with high degree sum

that are not covered by three cycles
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Abstract

Let G be a graph of order n. In [A. Saito, Degree sums and graphs
that are not covered by two cycles, J. Graph Theory 32 (1999), 51-
61.], Saito characterized the graphs with 03(G) > n — 1 that are
not covered by two cycles. In this paper, we characterize the graphs
with 04(G) > n — 1 that are not covered by three cycles. Moreover,
to prove our main theorem, we show several new results which are

useful in the study of this area.
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1 Introduction

In this paper, all graphs are finite undirected graphs without loops or mul-
tiple edges. For standard graph theoretic terminology not explained in this
paper, we refer the reader to [2]. Let G be a graph. For X C V(G),
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we let G[X] denote the subgraph induced by X in G, and let G — X :=
G[V(G) — X]. We denote by Ng(z) the neighborhood of a vertex z in G,
and let dg(z) := |Ng(z)|- Let H be a subgraph of G. For z € V(G),
let Ny(z) := Ng(z) N V(H) and dy(z) := |Nu(z)|. For X C V(G), let
Nu(X) := Uex Nu(z). If there is no fear of confusion, we often identify a
subgraph of G with its vertex set. For a positive integer k¥ and X C V(G), if
there exists an independent set of order k in G[X], then we let o4 (X; H) :=
min {}_,csdu(z) : S € X is an independent set of G with S| = k}; oth-
erwise, we let ox(X;H) = 4+o0o. If X = V(H), then we abbreviate
ox(V(H); H) by o(H). Let p(G) and ¢(G) be the order of a longest path
and a longest cycle of G, respectively. We define diff(G) := p(G) — ¢(G),
and is called a relative length of G. We write a cycle (or a path) C with a
given orientation by —5, and we denote by Ca cycle (or a path) C with a
reverse orientation. If there is no fear of confusion, we abbreviate 8 by C.
Let C be an oriented cycle or a path. For u,v € V(C), we denote by uCv
a path from u to v along C. The reverse sequence of uCv is denoted by
vCu. Forue V(C) and a positive integer h, we denote the h-th successor
and the h-th predecessor of u on c by u*t® and u~", respectively, and
let 4t® = 4=0 ;= 4. For X C V(C) and a positive integer h, we define
Xth .= {zth : 2 € X} and X% := {z7* : € X}, respectively. We
abbreviate ut!, u~!, X*! and X~ by ut, u~, X+ and X, respectively.
In this paper, we regard K; and K as cycles.

In [9], Ore gave a degree sum condition for the existence of a Hamilto-

nian cycle.

Theorem A (Ore [9]) Let G be a graph of order n. If 02(G) > n, then
G is Hamiltonian.

If there exist cycles Cy, ..., C, in G such that U:_, V(C;) = V(G), then
we say that G is covered by t cycles. Note that if G is Hamiltonian, then
G is covered by one cycle. In [5], Enomoto, Kaneko and Tuza proved the

following theorem.
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Theorem B (Enomoto et al. [5]) Let G be a graph of order n. If
03(G) 2 n, then G is covered by two cycles.

In [6], Kouider and Lonc generalized these results as follows. (Later,
Ainouche and Kouider [1] improved this result.)

Theorem C (Kouider et al. [6]) Let G be a graph of order n. Ifox(G) >
n, then G is covered by k — 1 cycles.

On the other hand, for k¥ = 2,3, a characterization of the graphs with
0x(G) > n — 1 that are not covered by k — 1 cycles has been determined.

Theorem D (Nara [8]) Let G be a 2-connected graph of order n. If
02(G) > n — 1, then one of the following holds.

(i) G is Hamiltonian.

(1) Kpk41 CGC Ki+ (k+1)K; withk=(n-1)/2 > 2.

Theorem E (Saito [10]) Let G be a graph of order n. If 3(G) > n—1,
then one of the following holds.

(i) G is covered by two cycles.

(i) Kxok+1 SGC K+ (2k+1)K; withk=(n—-1)/3 > 2.
(iii) G belongs to one of two exceptional classes whose element has con-

nectivity at most one.

In this paper, we characterize the graphs with 04(G) > n — 1 that are
not covered by three cycles as follows.

Theorem 1 Let G be a graph of order n. If 64(G) > n — 1, then one of
the following holds.

(i) G is covered by three cycles.
(i) Kiks1 C G C Ky + (3k + 1)K, with k = (n—1)/4 > 2.
(iii) G belongs to one of three exceptional classes G; (1 < i < 3).
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Figure 1: The graphs in G,

Exceptional classes in Theorem 1. Let G be a set of graphs with con-
nectivity one. For 1 < i < 3, let G; be the subset of G whose element G;

satisfies the following properties:

(I) G1: There exist s cut vertices ¢j,...,¢s in G for some 1 < s < 3 such
that G; — {c1,...,¢s} has exactly four components, and each component

is complete (see Figure 1).

(II) Go: Go has exactly two blocks H; and H» which satisfy one of the
following (i) and (ii) (see Figure 2).

(i) Kk ok+1 C€ Hy C K + (2k + 1)K, for some k > 2 and H; is complete,
and further the cut vertex of G has degree at least 2k + 1 in H;.

(1) Kxx41 € Hi € Ki + (k+ 1)K, for some k > 2 (¢ = 1,2), and further
the cut vertex of G5 has degree at least K+ 1in H; (i =1,2).

(III) Gs: G3 has exactly three or four blocks, and if G3 has four blocks,
then there exist two distinct blocks of G3 such that each of them is not an
end block of G5 and has order just 2. Moreover, there exist two blocks H;
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Figure 3: The graphs in G3

and Hj in G3 such that Ky ,1 € Hy C Ky + (k+ 1)K, for some k > 2,
Hj is complete and G — (H; U H;) is complete, and further the cut vertex
of G3 which belongs to H; has degree at least k 4 1 in H; (see Figure 3).

In the proof of Theorem 1, we divide the proof into three cases according
to the connectivity of the graph G. In case that G is 2-connected, we use
the arguments based on the relative length. In particular, the following

lemma is a most important in this case.

Lemma 1 Let G be a 2-connected graph of order n. If 04(G) = n — 1,
then G is covered by three cycles or diff(G) < 2.

In case that the connectivity of G is one, we consider a degree sum of
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some vertices which are not cut vertices. Therefore, we need the following
lemmas concerning the degree sum conditions except for specified vertices

for graphs to be covered by some cycles.

Lemma A (Saito [10]) Let G be a 2-connected graph of order n, and let
c € V(G). If 02(V(G) — {c}; G) = n, then G is Hamiltonian.

The case ¢; = ¢ of the following lemma was proved in [10].

Lemma 2 Let G be a 2-connected graph of order n, and let ¢;,¢; € V(G).
Ifo3(V(G) — {c1,¢2};G) = n — 1, then one of the following holds.
(i) G is Hamiltonian.
(ii) G - {c:} is Hamiltonian for some i =1 or 2.
(ii) G — {c1,cz} is Hamiltonian. '
(iv) Kik+1 € G C K+ (k+ 1)K, withk = (n—1)/2 > 2 and dg(c;) 2
k+1 fori=1,2. (Then o2(V(G) — {e1,¢c2};G) =n —1.)

Lemma 3 Let G be a 2-connected graph of order n, and let c € V(G). If
3(V(G) — {c};G) > n, then G is covered by two cycles.

Lemma 4 Let G be a 2-connected graph of order n, and let c € V(G). If
03(V(G) — {c};G) > n — 1, then one of the following holds.
(i) G is covered by two cycles.
(if) G — {c} is covered by two cycles.
(iii) Kiok+1 € G C K+ (2k+1)K, withk=(n-1)/3>2 and dg(c) >
2k + 1.

Since the proofs of Lemmas 1-4 are long, we prove these lemmas after
the section of the proof of Theorem 1 for the convenience of the reader (see

Sections 4-7).
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2 Lemmas to prove Theorem 1 (and Lemmas
1-4)

In this section, we prepare some lemmas to prove Theorem 1 (and Lemmas
1-4). We first prepare the results concerning the existence of cycles covering
specified vertices. In [5], Enomoto, Kaneko and Tuza proved the following.
(In fact, they deal with the case where do(z) > |X|+ 1 for all z € X.
However, the same argument also works for the case where G is 2-connected
and do(z) 2 | X| forall z € X.)

Lemma B (Enomoto et al. [5]) Let G be a 2-connected graph and C
be a cycle of G, and let X C V(G —C). If dc(z) > | X| for all z € X, then
there exists a cycle containing X .

As a generalization of Lemma B for the case G — C = sK, UtK,, we
prove the following lemma.

Lemma 5 Let G be a 2-connected graph and C be a cycle of G. Suppose
that G — C = sKj, U tK, for some integers s and t with s,t > 0. Let
X CV(G-C). Ifor(X;C) > |X|, then there exist k cycles Cy,...,Cy
such that X C U, V(Cy).

Proof. We prove it by an induction on k. Let zg be a vertex in X such
that do(xo) = min{dc(z) : £ € X}, and let a := dg(xp). By Lemma B and
the minimality of d¢(zo) and since G is 2-connected, there exist a cycle C’
and X’ C X such that |[X’| > a and {zo} U (Ng(zo) N X) C X' C V(C').
Then o1 (X — X';C) 2 0x(X;C) —dc(zo) > | X| —a > | X — X'|. Hence
by the hypothesis of induction, we obtain the conclusion. O

Furthermore, we need the following two lemmas. We omit the proof of
Lemma 6 since the proof is easy. A cycle C of a graph G is called a mazimal
cycle of G if there exists no cycle C’ of G such that V(C) ¢ V(C’).

Lemma 6 Let G be a graph and C be a maximal cycle of G, and let H
be a component of G — C. Then the following hold.
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(i) Ne(H)N N¢(H)* =0, specifically, dc(z) < |[N¢(H)| < |C|/2 for all
z € V(H).
(ii) For uj,u; € No(H) with uy # ug, ufuf ,uTu; ¢ E(G).
(iii) For z,y € V(G — C), |[Nc(z)* N Ne(y)| £ 1.

Lemma 7 Let G be a graph and C be a maximal cycle of G, and let
X C V(G — C). Suppose that there exists a vertex x in X such that
dc(z) > 2 and do(z') = |C|/2 for all ' € X — {z}. If |C| = 2|X]|, then

there exists a cycle containing X.

Proof. If |X| =1, then the assertion clearly holds. Thus we may assume
that |X| > 2. Let {z),...,7s} := X, and suppose that dc(z,) > 2 and
de(x:) = |C|/2 for each 1 < i < s — 1. Let {uy,...,w} := Ne(z1). We
may assume that u;,...,u; occur in this order along C. By Lemma 6 (i),
luiﬁui+1| = 3 for each 1 < i < I, where we let u;4; := u1. By Lemma 6 (i)
and (iii), we also have N¢(z;) = N¢(z;) foreach 2 < i < s—1. By Lemma 6
(iii), and by changing the label if necessary, we can take u,u’ € N¢(zs) such
that u = u; and v’ € {u;,u}} for some ¢ with ¢ > 2. Note that | > s > 2
because | = |C|/2 > |X| = s = 2. If s = 2, then we can easily obtain the
desired conclusion. Hence we may assume that s > 3. Let vy,...,v,—2 be
s — 2 distinct vertices in Ng(x1) — {u1,%;}. Since Ng(z1) = Ne(z:) for
each 2 < i < s—1, if v = uy, then v;71V2T5 ... V2T 52U TU;Ts_ 1Y) IS
a cycle containing X; otherwise, vyz v025 .. .vg_gxs_gulxsuf'uix,-wl isa

cycle containing X. 0O

3 Proof of Theorem 1

Let G be a graph of order n, and suppose that 64(G) > n—1 and G is not
covered by three cycles.

Case 1. G is 2-connected. .
Then by Lemma 1, diff(G) < 2. Let Cbea longest cycle of G, and let
X := V(G - C). Since diff(G) < 2, G — C = sK, UtK, for some integers
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s and ¢ with s,t > 0. Since G is 2-connected and G is not covered by
three cycles, s +t > 5. Choose C so that (i) s is as small as possible, (ii)
> zex dc(z) is as small as possible, subject to (i). Let X* := {z € X :
Ng(z) N X # 0}. For each z € X, let {z*} := Ng(z) N X if z € X*;
otherwise, let z* := z. Let z;,z2 € X with z; # z,, 7172 ¢ E(G),
de(z1) < do(zz) and de(zy) +do(z2) = 02(X; C). By Lemma 5, dc(z1)+
do(z2) < |X| - 1. Let Y := {z1,z2, 2}, x5}

There exists no cycle containing X — Y because G is not covered by
three cycles and there exists a cycle containing Y. Hence by Lemma B, the
following fact holds.

Fact 3.1 There exists a vertex z in X —Y such that do(z) < |X -Y| -

By the maximality of |C| and since diff(G) < 2, 04(G) > n —1 and
de(zy) + de(zz) < | X| — 1, the following claim holds.

Claim 3.2 Let z3,z4 € X with 3 # x4. Then the following hold.
(i) Ifz3 € X*, then Nc(z3)* N Ne(z4) = Ne(z3)™ N Ne(zs) =
(ii) If z3,z4 € X — Y and z3z4 ¢ E(G), then do(z3) + de(z4) 2> |C| —
Tiat INe(z) N X|.

Case 1.1. s > 1.

Note that X* # 0 because s > 1. We first consider about the upper
bound of the degree of a vertex in X* and the relations between the degree
of a vertex in X* and the degree of an other vertex in X (see Claims 3.3
and 3.4).

Claim 3.3 Let z3 € X*. Then the following hold.
(i) delzs) < |C1/3.
(ii) dc(za) < |C| — 2dc(x3) for all x4 € X — {z3}.
(i) de(x3) < |C] — 2de(zs) +2—[{3<i<d:z;€ X*}| forallzq4 €
X — {z3,z3}.
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Proof. Suppose that there exists v € Ng(z3)* N No(z3)~. Then C’ :=
v-z3vt Cv~ is a longest cycle of G with V(C') = (V(C) — {v}) U {z3}.
Since zv ¢ E(G) for all z € X — {z3} by Claim 3.2 (i), this contradicts the
choice (i) of C. Thus N¢(z3)* N No(z3)~ = 0. By Lemma 6 (i), we also
have N¢(z3)* N Ne¢(z3) = 0. These imply that (i) holds.

Let z4 € X —{z3}. Then by Claim 3.2 (i), Nc(z4) C V(C)—(Ne(z3)tU
Nc(z3)™). Since No(z3)t N Ne(z3)™ = 0, do(zs) < |C — (Ne(zs)*t U
Ne(z3)7)| = |C| — 2|Ne(z3)| = |C| — 2dc(z3), and hence (ii) holds.

Let z4 € X — {x3,z3}. If 24 € X*, then by Claim 3.3 (ii), clearly
(iii) holds. Thus we may assume that x4 ¢ X*. To prove (iii), we show
|Nc(z4)t2 N Neo(z3)] < 1. Suppose that there exist vy,v2 € No(z4)t2 N
Nc(z3) with v; # va. Then C' := v1z3v2—6vf2x4v{ 2(51)1 is a longest
cycle of G with V(C') = (V(C) — {v;,v3}) U {z3,z4}. Since vJv; ¢
E(G) and vz ¢ E(G) for each i = 1,2 and each z € X — {z3,74} by
Lemma 6 (ii) and Claim 3.2 (i), this contradicts the choice (i) of C. Thus
[Nc(z4)2 N Ng(z3)| < 1. Hence by Claim 3.2 (i), we obtain (iii). O

In fact, we can obtain a slightly stronger statement than Claim 3.3 (i).

Claim 3.4 do(z) < (|C| —1)/3 for all z € X*.

Proof. Let z € X*. Then by Claim 3.3 (i), dc(z) < |C|/3. Suppose that
de(z) = |C|/3. Then by Claim 3.3 (ii), de(z’) < |C| — 2dc(z) = |C|/3
for all «’ € X — {z}. Let 23,4 € X — Y with z3 # z4 and z3z4 ¢
E(G). Then |C] +|X|~1=n-1< ¥ de(z:) < 1X| - 1+2(C|/3+
Y INg(z:)NX|, that is, |C| < 33+, INe(z:)N X|. On the other hand,
ICl+1X|-1=n-1< X% do(z:) < 4Cl/3+ T, INc(z:)N X, that is,
IC| > 3|X| —3-33", |Ne(z:) N X|. Hence 3|X| -3 -33:_, INa(z:)n
X| < 3%+, INg(z:) N X|, that is, |X| < 1+ 25, INa(z:) 0 X], in
particular, |X| < 9. Since s+t > 5, | X| > 5+ 3, |[Ng(z:) N X|. Hence
5+ 3% INe(z)nX| <1425, INa(z:) N X|, that is, Si_; [Ne(z:) N
X| > 4. This implies that z; € X* for each 1 < i < 4. Since z3 and x4
are arbitrary vertices in X — Y with z3 # =4 and z3z4 ¢ E(G), we obtain
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X* = X. Then since s = s+t > 5, | X| > 2s > 10, a contradiction. O

Let 23,74 € X — Y with x3 # z4 and z3z4 ¢ E(G). Let 1 := [{1 <i <
4:z;€ X*}| and I' ;== |{3 <i<4:z; € X*}|. Choose z3 and x4 so that
l' is as large as possible.

Claim 3.5 (i) Ifl’ > 1, then|C| <3l +2-1V.
(if) If’ =0, then |C] < 2|X| - 6.

Proof. Suppose that I’ > 1. We may assume that 3 € X*. Then by Claim
3.3 (ii) and (iii), dc(z3) < |C]—2dc(z4)+2—~1 and dc(z4) < |C|—2dc(z3).
Hence |C|+|X|-1=n-1< E?.—u do(z:) < | X|—1+2|C| - 2(dc(z3) +
de(z4))+1+2-1, that is, do(z3) +dc(z4) < (|C|+14+2~1")/2. Therefore,
by Claim 3.2 (ii), |C| — < d¢(z3) +dc(zs) < (|C| +1+2 ~1')/2, that is,
ICl<38l+2-1.

Suppose that I’ = 0. Then by the choice of z3 and z4, (X -Y)NX* = 0.
We may assume that dc(z4) < de(z) for all z € X — Y. Then by Lemma
6 (i), Fact 3.1 and Claim 3.2 (ii), |X| - (-3 = |X - Y| -1 > dc(z4) >
|C| —dc(zs) -1 >|C|—|C|/2-1=|C|/2—1, that is, [C| < 2|X|-6. O

Claim 3.6 I’ =0.

Proof. Suppose that I’ > 1. We may assume that z3 € X*. Then by
Lemma 6 (i) and Claim 34, |[C|+|X|—-1=n—-1 < Zle de(z;) <
(ICl-1)/3+ (4 -D|C|/2+, that is, |X| < (1 —-1/6)|C| +2l/3 + 1. By
Claim 3.5 (i) and since s+t > 5,5+ < |X| < (1 -1/6)|C|+2l/3+1 <
(1-1/6)3l+2—-U)+2/3+1. If ' =2, then 3I%2 — 161 + 24 < 0. Since
2 £ 1 £ 4, this is a contradiction. Thus !’ = 1, that is, x4 ¢ X*. Then
I/3+4 < (1-1/6)3l+1). Sincel <! < 3, eitherl =2o0rl =3
holds, and the equalities hold in the above inequalities. This implies that
|C| = 8l +1, de(zs) = (|C| — 1)/3 and de(z4) = |C|/2. Then by Claim
3.3 (ii), Bl +1)/2=|C|/2=dc(z4) <|C| — 2dc(z3) = |C| -2l =1+1, a
contradiction. 0O

By the choice of z3 and z4 and Claim 3.6, (X —Y) N X* = 0. Choose
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vy € X —Y so that dg(v;) > dg(v) for all v € X — Y. Let vp,u3 €
X — (Y U {v,}) with vy # v3. Since s > 1, there exists 1 < h < 2 such
that z, € X*. Note that |X — Y| < |X| — 3 since z, € X*. Then by
Claim 3.3 (iii), n — 1 < dg(z) + 30, de(wi) < da(za) + 3da(v1) = (1 +
de(zh)) +3de(v1) € (1+(|C| —2dc(v1) +1)) +3dc(v1) = |Cl+de(v1) +2,
that is, dc(v1) > |X| — 3. Therefore by Lemma 6 (i) and Claim 3.5 (ii),
(ICl +6)/2 -3 < |X| -3 < dc(n1) < |C|/2, that is, dc(v1) = [C]/2, and
the equalities hold in the above inequalities. Hence d¢(v;) = |X| — 3 for
each 1 < i < 3. Since v, and v3 are arbitrary vertices in X — (Y U {v1}),
dc(v) =|X|-32>|X -Y] for all v € X — Y, which contradicts Fact 3.1.

Case 1.2. s =0.

Since t = s+t > 5, we can take z3,z4 € X — {z1,Z2} with z3 #
z4. Then by Lemma 6 (i) and Claim 3.2 (ii), dg(z3) = dg(z4) = |C|/2,
and hence we obtain dg(z1) + de(z2) = |X| — 1. Since z3 and z4 are
arbitrary vertices in X — {z;,z,} with z3 # z4, dg(x) = |C|/2 for all
z € X — {z1,z2}. Note that |C| is even. Then by Lemma 7 and since
there exist no cycles C; and Cs such that X C V(C;) U V(C,), we obtain
|C| < |X|—1. Hence dg(x) = |C|/2 < (|X|—-1)/2 for all x € X — {x1,22}.
Since dg(z1) +dg(z2) = | X| -1, and by the choice of z; and z2, we obtain
dg(z) = (|X| - 1)/2 for all z € X. Let {uy,...,ux} := Ng(z:). We may
assume that u1,...,ux occur in this order along C. Then by Lemma 6
(i) and (iii), |ui3ui+11 = 3 for each 1 < i < k, where let ug4; 1= ug,
and Ng(z,) = Ng(z) for all z € X. Then |C| = 2k and |X| = 2k + 1.
Let D; = uimlui+18u,~ for each 1 < i < k. Since u} ¢ Ng(z) for each
1<i< kandeachz € X, D; is a longest cycle of G such that V(G — D;)
is an independent set of G and V(D;) = (V(C) — {u}}) U {z1}. Hence by
the choice (ii) of C, dg(u}) > dg(z;) = k for each 1 <i < k. By Lemma 6
(i) and (ii), dg(uf) = k and Ng(u}) = Ng(z,) for each 1 < i < k. Hence
Ki k41 € G C Ki + 3k + 1)K

Case 2. G is connected, but not 2-connected.
Let C be a set of cut vertices of G, and let B := {B : B is a block of
G with V(B) — C # 0}. Let B; and B; be dintinct end blocks of G, and
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let ¢; € V(B;) N C for i =1,2. Note that By, B, € B. For convenience, let
i:=V(B;) —{ci} fori=1,2and I := [ U I,.

Since G is not covered by three cycles and 04(G) > n—1, if V(G) - (JU

{c1,¢2}) # 0, then By, B; and G — (U {c1,c2}) become denser as follows.

Claim 3.7 Let B3 := G — I, and suppose that V(B3) — {c;,c2} # 0.
Let i be an integer with 1 < ¢ < 3. Then dg(z) + dg(y) = |Bi| — 1
for all z,y € V(B;) — {c1,¢2} with z # y and zy ¢ E(G), ie., o2(B; —
{c1,¢2}; B;) > | By| — 1. Furthermore, if dg(z) + dg(y) = |Bi| — 1 for some
z,y € V(B;) — {c1,¢2} withz # y and zy ¢ E(G), then the following hold.

(i) Ng(z) = V(B;)—{z} foreachz € V(B;)—{c1,c2} andeach1 < j < 3
with j # 1, specifically, if j # 3, then B; is complete.

(i) If i = 3 and there exist By, By € B such that z € V(B,;) - C, y €
V(By) — C and B, # B,, then there exists c € C such that V(B3) =
V(Bz) UV(By), V(B:) NV(By) = {c} and Ng(z) = V(B:) - {z},
Ne(y) = V(By) — {v}-

Proof. Suppose that dg(z) + dg(y) < |Bs| — 1 for some z,y € V(Bj3) —
{c1,c2} with = # y and zy ¢ E(G). Let z; € I; for i = 1,2. Then
{z1,z2,z,y} is an independent set of G. Hence n — 1<dg(z;) + dg(z2) +
de(z) +de(y) < X0, (|Bil — 1) <n — 1. Thus the equalities hold in the
above inequalities. Since z; is an arbitrary vertex in I; for ¢ = 1,2, and
Ng(z) U Ng(y) € V(B3) — {z,y}, we obtain the desired conclusions for
it = 3. For i = 1,2, we can also obtain the desired conclusions by the
similar argument. 0O

Let s := |B|, and let {Bjs,...,B,} := B — {B;,B;} if s > 3. Let
X =V(G) —Uges V(B).

Claim 3.8 We may assume that 2 < s < 3. Furthermore, if s = 3, then

we may assume that X = 0.

Proof. Suppose s > 4, and let z; € V(B;) —C for i = 3,4. Then dg(z3) +
dg(z4) < |Bs|+|By|-2 < |G—-I|-1. Hence by Claim 3.7, dg(z3)+dc(z4) =
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|G — I| — 1. Then by Claim 3.7 (i), B; is complete for ¢ = 1,2. Since z; is
an arbitrary vertex in B; — C for i = 3,4, this together with Claim 3.7 (ii)
implies that B; — C is complete for i = 3,4, V(G — I) = V(B3) UV(B,)
and 1 £ |C| £ 3, and hence G € G;. In case s = 3 and X # 0, by taking
z € X instead of T4, we can obtain G € G; by the similar argument (note
that, in this case, V(G — (ByU B2 U B3)) = {z4}). O

Case 2.1. s=3.

By Claim 3.8, X = 0. Thus V(G) = U3, V(B;). Note that |[V(B3) N
C| <2 and |B3| 2 3.

Suppose first that V(Bs) N C = {c1,¢c2}, i.e., Bs = G — I. Then by
Lemmas A and 2 and since G is not covered by three cycles, there exists
1 < i < 3 such that dg(z)+dc(y) < |Bi|—1 for some z,y € V(B;)—{c1,¢2}
with x # y and zy ¢ E(G). Then by Claim 3.7, dg(z) + de(y) = |Bi| — 1,
and hence by Claim 3.7 (i), B; —{c1, c2} is complete for each 1 < j < 3 with
J #1i, in particular, B; is complete if B; is an end block of G. Hence G —
(Bi—{c1,c2}) is covered by two cycles. By Claim 3.7, 02(B;—{c1,¢2}; Bi) >
|B;| — 1. Therefore, by Lemma 2, we obtain Kk x+1 C B; C K +(k+1)K,
for some k > 2 and dp,(c;) > k+ 1 for j = 1,2, and hence G € G3. Thus
we may assume that V(B3) N C # {c1,c2}, ie,, Bs #G —I.

Then there exists j with 1 < j < 2 such that ¢;z ¢ E(G) for all
z € V(B3)—C = V(G -1I) - (CU {c1,c2}). Hence by Claim 3.7 (i),
o2(B; — {c:i}; Bi) = 02(B; — {c1,¢2}; Bi) = |Bj| for each i = 1,2. This
together with Lemma A implies that B; is covered by one cycle for each
i = 1,2. Since V(G) = Ule V(B;) and G is not covered by three cycle,
Bj is not covered by one cycle. Let z; € I; for each i = 1,2. Note that
n > |By| + |Bz| + | B3| — 1 because B; # G — I. Since 04(G) =2 n — 1,
we have that for each z;, 2 € V(B3) — C with z1 # z2 and 2120 ¢ E(G),
dp,(21) + dp,y(22) = de(21) + dg(22) 2 04(G) — (dg(z1) + do(x2)) 2
(|Bi1] + |B2| + |Bs| — 2) — (|B1| + |B2| — 2) = |Bs|. This implies that

02(Bs — C; B3) > | Bs|. (3.1)

Let ¢3 be a vertex in (V(B3)NC)—{c1,¢2}. Thendg(cz)—2 < dp,(c3) <
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dg(c3) — 1, in particular, if [V(Bs) N C| = 2, then dp,(c3) = dg(es) — 1.
Let £ be an integer with dp,(c3) = dg(c3) — 1 — €. Note that n > |B;| +
[Ba| 4+ |Ba] — 1+ €. Then for each z € V(B;) — C with c3z ¢ E(G),
dp,(c3) +dB,(2) = (dg(es) — 1 —€) +da(2) 2> 04(G) — (da(z1) + da(z2)) —
1—e2>(|B1] +|B2| +|Bs| =2 +¢€) = (|B1| +|Bz| = 2) -1 —€ > |B3| — 1.
This and (3.1) imply that

o2(Bs — {c3}; Bs) 2 |Bs| — 1, (3.2)

where let c3 be a vertex in V(B;3) N C with ¢§ # c3 if [V(B3)NC| = 2;
otherwise, let c3 be a vertex in G — Bs. Note that if |V(B3)NC| =1, i.e.,
c3 € V(G — Ba), then (3.2) implies that 02(B3) > |B;3| — 1. Suppose that
|[V(B3) N C| =1 or 02(Bs — {c§}; Bs) = |B3|. Then by Theorem D and
Lemma A, G3 is covered by one cycle, or |V(B3)NC| =1 and Ky k41 €
B; C Ki+ (k+ 1)K, for some k > 2. Since G3 is not covered by one cycle,
the latter case holds, but this contradicts (3.1). Thus |V(B3)NC| = 2 and
the equality holds in (3.2). Since |V(B3)NC| =2, dp,(c3) = dg(cs) — 1.
Hence the equality in (3.2) implies that n = |B,|+|B;|+|Bs|—1, and hence
c3 € {c1,¢2}. Since G is not covered by one cycle, B; — {c}} is not covered
" by one cycle. Hence by Lemma 2 and (3.2), K x4+1 € B3 C Ki+(k+ 1)K,
and dp,(c3) = k + 1 for some k > 2. But this contradicts (3.1) again.

Case 2.2. s =2.

Then there exists a path P in G such that G = B, U By U P and
V(B;)NV(P) = {¢;} for i = 1,2. Let P :=z2,...x,, where z; = ¢; and
Zp =co.

Suppose first that p > 5. Then dg(z2)+dg(z4) =4 < p-1 = |G-I|-1.
Thus by Claim 3.7, p = 5 and B; is complete for ¢ = 1,2, and hence G € ;.

Suppose next that 3 < p < 4. Since G is not covered by three cycles,
we may assume that B; has no Hamiltonian cycle. Then by Lemma A,
dg(z) +dg(y) < [B1| — 1 for some z,y € I; with z # y and zy ¢ E(G).
Hence by Claim 3.7, dg(z) + de(y) = |B1| — 1. Then by Claim 3.7 (i), B,
is complete and p = 3. Therefore, by Lemma 2 and since dg(z) + dg(y) =
|B1| — 1, we obtain Ki 41 € By € Ki + (k+ 1)K for some k > 2 and
dp,(c1) > k+1, and hence G € G3.
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Now suppose that p < 2. Since G is not covered by three cycles, we may
assume that B; has no Hamiltonian cycle of B;. Hence dg(z) + dg(y) <
|B1} =1 for some z,y € I; with z # y and zy ¢ E(G). Since 04(G) > n—1
and by Lemmas A and 2, one of the following holds:

(I) p = 2 and B, is Hamiltonian, or

(II) p=1, and B; or B, — {c;} is Hamiltonian, or

() p=1, Kx k41 € B2 C K+ (k+ 1)K, and dp,(c1) > k + 1 for some
k > 2. (Then o2(I2; B2) = |Ba| — 1.)

If (I) or (II) holds, then B; is not covered by two cycles, and hence
by Lemma 3, 03(I;; By) < |B1| — 1. Then n —1 < 04(G) < o3(l1; B1) +
o1(I2; B3) < |B1]| + |Bz] — 2. This implies that p = 1 and the equalities
hold. The equality o,(l2;B;) = |Bz] — 1 implies that B is complete.
Therefore, by Lemma 4 and since G is not covered by three cycles, we
obtain Kj ox+1 € Br C Ki+(2k+1)K, for some k > 2 and dp, (c1) > k+1.
Hence G € G».

If (III) holds, then o2(ly; B,) = |By| — 1. By Lemma 2 and since G is
not covered by three cycles, we obtain K;i1+1 € B € K; + (1 + 1)K, and
dp,(c1) > 1+ 1 for some [ > 2. Since 04(G) > n—1, k = [, and hence
G e G.

Case 3. G is disconnected.

Let H,,...,H, be components of G. If s > 4, then we can easily see
that 04(G) < n—4, a contradiction. Thus s < 3. Then we may assume that
H; has no Hamiltonian cycle. Hence by Theorem A, o2(H;) < |Hy| — 1.
Since 04(G) > n—1, this implies that 02(G— H,) > |G —H,|. Hence s = 2,
and by Theorem A, H> has a Hamiltonian cycle. Then H; is not covered by
two cycles, and hence by Theorem C, o3(Hy) < |Hy| — 1. Let x € V(H,).
Then n — 1 < 04(G) < o3(H)) + du,(z) < |Hy| + |H2| -2 =n—-2, a
contradiction.

This completes the proof of Theorem 1. ([
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4 Lemmas to prove Lemmas 1-4

In this section, we prepare some lemmas to prove Lemmas 1-4. As is
mentioned in Section 1, we use the arguments based on the relative length
in the proof of Theorem 1. Similarly, to prove Lemmas 3 and 4, we will
use this arguments. So the following two lemmas analogous to Lemma 1
are important. We prove Lemmas 1, 8 and 9 in Section 6.

Lemma 8 Let G be a 2-connected graph of order n, and let ¢ € V(G). If
03(V(G) — {c}; G) > n, then G is covered by two cycles or diff(G) < 1.

Lemma 9 Let G be a 2-connected graph of order n, and let ¢ € V(G). If
03(V(G) — {c};G) 2 n—1, then G or G — {c} is covered by two cycles, or
diff(G) < 1.

We use the following lemma in the proofs of Lemmas 1, 8 and 9.

Lemma 10 Let G be a graph. Let ;3;, }3; and 1_5;; be three internally
disjoint (z,y)-paths of G with z £y, and let Q := P,UP, U Ps. Let B be
an (a,b)-path of G — Q. Ifdg(a) > 1, dg(b) > 1 and |Ng(a) U Ng(b)| > 2,
then G[V(Q) U V(R)] is covered by two cycles.

Proof. By the assumption, there exist two distinct vertices ¢,d in Q such
that ac,bd € E(G). By the symmetry of P;, P, and P;, we may assume
that either c¢,d € V(P;) (arranged in this order along }3; ), orc€ V(P;) and
- = — i
d € V(P,) hold. If ¢,d € V(P;), then zP,ca Rbd P,y Pz and z P,y Pz are
cycles which cover G[V(Q)UV(R)]. Hence we may assume that ¢ € V(P,),
d € V(P,) and {¢,d} N {z,y} = 0. Then zPjca RbdPoyPsz and =P,y Bz
are cycles which cover G[V(C)UV(R)]. O

Furthermore, to prove Lemmas 1 and 2, we use the following two lem-

mas.

Lemma C (Dirac [3]) Let G be a 2-connected graph of order n. If
02(G) 2 d, then there exists a cycle of order at least min{d,n}.

143



Lemma D (Fraisse and Jung [4]) Let G be a graph with connectivity
one, and let z,y be two distinct vertices in G such that z and y are not
cut vertices and z and y belong to distinct end blocks of G. Then there
exist 21,22 € V(G) with 2z # 2z, and an (z,y)-path P such that z) and z;
are not cut vertices of G, z; and z; belong to distinct end blocks of G, and
|P| 2 dg(21) + de(22).

5 Useful tools for the proofs of Lemmas 1, 8
and 9

In this section, we give some claims to prove Lemmas 1, 8 and 9. These
techniques are useful for the investigation of properties of graphs with high
relative length.

Let k > 2 be an integer and G be a 2-connected graph. Let Q be a
longest path of G, and let H := G — Q and Hj,...,H; be components
of H. Let C be a cycle and Py be a path with end vertex x such that
V(C)UV(PR) = V(Q), V(C)NV(R) = 0 and Nc(z) # 0. (Note that
there exist such a cycle C and a path P,, because the end vertex of Q has a
neighbor in V(Q).) Choose @, C and P, so that |C| is as large as possible.
A vertex y € V(BP,) is called endable for z if there exists an (z,y)-path P
such that V(P) = V(). Let L := {y € V(P) : y is endable for =} and
L':=Lu{z}. Let T := {(y,P) : y € L and P is an (z,y)-path such that
V(P) = V(BR)}. For each (y, P) € T, we give an orientation P from r to
y along the edges of P.

By the maximality of |Q| and |C], the following two claims hold. Since
the proof of Claim 5.1 is easy, we omit the proof.

Claim 5.1 (i) Ny(L)=0.
(ii) Foru € Ng(L'), Ne—c(u*) = Ng-c(u~) = 0, furthermore, Ny, (u*?)
= Ny, (u=2) =0 for each 1 < i <l with |Hy| > 2.
(iii) For1<i<!and (y,P)€ T, (Np(H;)* UNp(y)*)N Np(H;) = 0.
(iv) For 1 <i <!, (Ne(H;)* UNg(H;)™) N Ne(H;) = 0.
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(v) For1<i<!andu,v € Nc(H;) withu # v, utvt,u=v™ ¢ E(G).

Claim 5. 2 Let u; € Nc(L') and uz € No(G — C) with u; # us. Let
C =y +C up and Cy := u] +C uy. Then the following hold.
(i) Ne,(uf)~NNg,(ud_;) =0 fori=1,2.

(i) If |H;| > 2 for some i with 1 < i <1, then No(uf)~ NN (H;)* = 0.

(iii) Ifu}? € Nc(H;) for some i with 1 < i < I, then Np,(H;) = 0.

(iv) Ifu) € Nc(z) and uy € Ne(L), then N, (uf_,)* N Ng,(H;) = 0 for
i=1,2 and 1 < j <, furthermore, if |H;| > 2, then N¢,(ui_)*t?n
Ne,(H;) =0 fori=1,2.

Proof. By the maximality of |Q|, we can easily obtain (ii) and (iv). Let
z € V(G—C) with zuy € E(G). Suppose that there exists v € Ng, (uf)~ N
Ne,(uf). If vy € Ne(y) for some y € L with (y,P) € T and z ¢ V(P),
then Q' := zug‘av*'ui"a’vu'z"z"uly?’-:r is a path of G such that [Q'| > |Q|, a
contradiction. If u; € N¢(y) for some y € L with (y,P)€ T andz € V(P)
then C' := zu26v+uf0vu2 Culsz is a cycle of G and P§ := 2~ Pz
is a path of G such that V(C') U V(F;) = V(Q), V(C')n V(F§) = 9,
Nci(2~) # 0 and |C’| > |C], which contradicts the choice of Q, C and
FPy. Similarly, in case u; € N¢(z), we can also get a contradiction. Thus
Ne,(uf)™ N Ng, (uf) = 0. Similarly, we obtain N, (u]) N N, (uF)~ =0,
and hence (i) holds. By the similar argument, if u}2 € N¢(H;) for some i
with 1 <4 <! and Np,(H;) # 0, then we can see that this contradicts the
choice @, C and Py, and hence we can obtain (iii). O

Claim 5.3 Let j be an integer with 1 < j < k, u; € N¢(z) and ug €
No(L) with uy # uy, and let 21,20 € V(H) with z, # 2,. Let Cy := ut Cuy
and Cy := uj 10 uy. If diff(G) > k, then the following hold.
(i) N, (uf)~ N Ne, (uf_)*0-Y =0 fori=1,2.
(ii) Ne,(uf)" NN, (y)*0-V =@ forallye L.
(iii) Ifu}? € No(z) for i = 1,2, then N¢,(2z:)~ N N, (z3_;)*=D =0 for
i=1,2.
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(V) If uf? € No(n), then No,(21)™ N Ney (uf) 0D = Noy(z1)*
Nc, (u;)‘(j"l) =0.

Proof. Let (y,P) € T. If yus € E(G) and there exists v € Ng,(uf)™ N
Ne, (ud)+9=D, then C' := u} Cv~U-Du} CuyzPyus Cotuf is a cycle
of G such that |C’| = |Q| — (j — 1), and hence diff(G) = |Q| — ¢(G) <
Q] — |C'] = § —1 < k, a contradiction. Similarly, if yu, € E(G) and
Ne,(uF)*U=Y N Ng, (ud)~ # 0, then we can get a contradiction. Thus (i)
holds. By the similar argument, we can obtain (ii), (iii) and (iv). O

By Claim 5.1 (iii), we can obtain the following claim.

Claim 5.4 Let (y,P) € T and z € V(H). Then dp(y) + dp(z) < |P|.
Furthermore, if z ¢ Np(z), then dp(y) +dp(z) < |P| - 1.

Proof. By Claim 5.1 (iii), Np(y)* N Np(z) = 0. Since Np(y)* UNp(z) C
V(P) and = ¢ Np(y)*, we can get the desired conclusion. O

6 Proofs of Lemmas 1, 8 and 9

Let G be a 2-connected graph of order n, and suppose that @, C, H,
H,,...,H, Py, z, L, L' and T are the same as those in Section 5. Let F;, 7>
and F3 be the sets of graphs which satisfy the assumptions of Lemmas 1,
8 and 9, respectively.

Proof of Lemma 1. Let G € F;, and suppose that G is not covered by
three cycles and diff(G) > 3. Then |P| = 3. Since G is not covered by
three cycles, the following fact holds.

Fact 6.1 If No(y) N (V(C) U {z}) # 0 for some y € L, then |H| > 3.

Case 1. There exists (y, P) € T such that there are two independent edges
joining z and C, and y and C.

Since G is not covered by three cycles, there exists no cycle containing
V(H). Note that by Fact 6.1 and the assumption of Case 1, |H| > 3.
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Claim 6.2 For all z;,z, € V(H), there exist no v; € Ng(z)* N Ne(z1)~
and v € Ne(y)t N No(22)™ such that vy # v,

Proof. Suppose not, and there exist v; € Ng(z)* N Ng(z1)™ and v; €
Nc(y)* N Ne(z2)~ such that v; # vp for some 2,2, € V(H). Since
diff(G) > 3, we can easily see z; # 2z3. Let C; := vlav; and Cp :=
v2Cvi. By Claim 5.1 (v), Ng,(v:) N Ng(z:)~ = 0 for i = 1,2. By
Claim 5.3 (i), Ng,(vi) N Ng,(va—)t = @ for < = 1,2. By Claim 5.2 (i),
N, (va—i)* N Ng;(23—;)*? = 0 for < = 1,2. By Claim 5.3 (iii), N¢,(z:)~ N
Nc,(2z3-i)*% = @ for i = 1,2. By Claim 5.3 (iv) and the symmetry of =
and y, Ng;(2:)~ N Ng,(vs—i)t = Ng,(vi) N Ng,(z3-:)*2 = @ for i = 1,2.
Hence N¢, (z:)~, N¢, (v:), Ne, (v3—i)* and Ng,(23-;)*? are pairwise disjoint
for i = 1,2. Since Ng,(z:)~ U Ng,(v:) U N, (v3—:)* U Ng,(z3-:)1? C
V(Ci) U {vz—i,vi_;} for i = 1,2, we obtain dg,(2:) + dc, (23—s) + de, (vi) +
de,(v3—i) < |Ci| + 2 for i = 1,2. By Claim 5.1 (ii), Ng—c(v;) = @ for
i =1,2. By Claims 5.1 (ii) and 5.2 (iii), Ng-c(z;) = 0 for i = 1,2. Hence
dg(zi)+de(za—i)+de(vi)+de(va—i) = do(21)+de(22) +de(v1) +do(v2) <
|C)+4=n—(|P|+|H|)+4 <n-2, acontradiction. O

By changing the label of z and y if necessary, we take u € N¢(z) so that
(i) u*? € No(H) if possible, (i) Nc(y) — {u} # @, subject to (i). Then by
Claim 6.2, Nc(H) N Nc(y)*? C {u*?}. Choose w € Nc(y) — {u} so that
|w+6u| is as small as possible. Let z € V(H). By Claims 5.1 (i), (ii) and
5.2 (i), {u*,w™*,y, 2} is an independent set of G. Let C; := u*Cw and
C; := w* Cu. We show that de,(ut)+de, (wh)+de, (y) +de,(2) < |Ci|+2
fori=1,2.

We first consider the case of i = 1. By Claim 5.2 (i), Ng, (ut)~ n
N¢,(z) = 0. By Claim 5.3 (i), N¢, (uvt)™ N Ng, (wt)* = @. By Claim 5.3
(ii), N¢,(u™)~ N Ng, (y)*2 = 0. By Claim 5.2 (iv), Ng, () N Ng, (w*)* =
0. By the choice of z and y, N¢,(2) N Ng,(y)t? = §. By Claim 5.2
(i), Ne,(w*)* 0 N¢, (y)*2 = 0. Hence N¢,(u+)~, N¢,(2), Nc, (w*)* and
Nc,(y)*? are pairwise disjoint. Since Ng,(u*)~ U Ng,(z) U N¢, (w*)* U
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NC1 (y)+2 c V(Cl) U {w+’w+2}1
de, (u*) + de, (w*) + dc, (y) + de, (2) < [C1] + 2. (6.1)

We next consider the case of i = 2. By the choice of z, y and w,
Ne,(y) € {u}, and hence d¢,(y) < 1. By Claims 5.2 (i), (iv) and 5.3 (i),
N¢,(w*)~, Ng,(z) and Ng,(ut)* are pairwise disjoint. Since N¢,(wt)~U
Ng,(2) U Ng, (ut)* C V(Co) U {ut},

de, (ut) + do, (w*) + dc, () + de,y (2) < |Ca| + 2. (6.2)
By Claims 5.1 (i), (ii), 5.4 and the symmetry of z and y,
dp(ut) +dp(w*) +dp(y) +dp(z) = dp(y) +dp(z) < |P|-1. (6.3)
Hence by Claim 5.1 (i), (ii) and (6.1)-(6.3),
de(ut) + do(w®) +da(y) +de(z) <n— (|H|—du(2)) +3.  (64)

Since 04(G) = n — 1 and z is an arbitrary vertex in H, this together with
(6.4) implies that

|H| — du(2) < 4 for all z € V(H). (6.5)

By (6.5), we have | < 4. We divide the proof of Case 1 into three cases.

Case 1.1. | = 4.

Then by (6.5), H = 4K and the equality holds in (6.4), and hence the
equalities hold in (6.1)-(6.3) for all z € V(H). Write V(H) = {21, 22, 23, 24}
Then N, (ut)~ U N, (2:) U N¢, (wt)t U Ng, (y)¥2 = V(C1) U {wt, w2},
Ne,(w*)~UNg,(z:)UNg, (ut)t = V(Cy)U{u*} and Np(y)* UNp(z:) =
V(P) — {z} hold for each 1 < i < 4. Since these are disjoint unions, we
have Ng(z1) = Ng(22) = Ng(z3) = Ne(24).

Suppose that dg(z1) > 4. Let zi,25, 23,25 be four distinct vertices
in Ng(z1). Then D := z{z1z}z323232,242] is a cycle containing V(H), a
contradiction. Thus dg(2;) < 3 for each 1 < i < 4, and hence n — 1 <
Z:=1dG(Zi) < 12, that is, n < 13. On the other hand, since |P| > 3
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and [C| > 8 by the maximality of |C| and the assumption of Case 1,
n =|P| +|C| + |H| > 15, a contradiction.

Case 1.2. 2<1<3.

We may assume that |H;| < --- < |H;|. Then by (6.5), if | = 3,
then |H)| = |Hz| = 1 and |H;3| < 2; if | = 2, then |H;| < 3 for each
t = 1,2, in particular, if | = 2 and |H;| = 3 for each i = 1,2, then H; is
complete for each i = 1,2. Therefore since G is 2-connected, there exist
Z1,Y1,%2,y2 € V(H) and an (a, b)-Hamiltonian path of H — {z1,y1, %2, y2}
such that z; = y; or z;y; € E(G) foreachi =1,2,and dg(a) > 1, dg(b) > 1
and |Ng(a) U Ng(b)| > 2 (note that (a, b)-Hamiltonian path may consist of
one vertex). Then by Lemma 10, G[V(Q)U(V(H) — {z1,¥1, 2, ¥2})] is cov-
ered by two cycles. Since G is 2-connected, there exists a cycle containing
{z1,¥1,%2,¥y2}, and hence G is covered by three cycles, a contradiction.

Case 1.3. [ =1.

Note that for two nonadjacent vertices 2y, 23 of H, {ut,w™,z;,2;} isan
independent set of G by Claims 5.1 (ii) and 5.2 (i). In this case, we will use
such an independent set when we calculate the degree sum of independent
four vertices. Since Ng_c(ut) =0 and Ng_c(w?*) = 0, we have only to
calculate the degree sum of 2; and z; when we calculate the degree sum of
ut, wt, z; and z; on G — C. We first consider about the degree sum of z;
and z3 on P and H (see Claims 6.3 and 6.4).

Claim 6.3 dp(z;) + dp(22) < max{|P| — 5,0} for all z;,2, € V(H) with
21 # 23 and 2123 ¢ E(G).

Proof. Since z129 ¢ E(G), there exists a path of order at least three
from z; to 22 in H. Hence by the maximality of |Q| and Claim 5.1 (iii),
(Np(21)UNp(22))n{z,z%,2%2,y,y7,472} = B and Np(2;)NNp(22)~ = 0.
Therefore the desired conclusion holds. 0O

Claim 6.4 There exist z1,2z2 € V(H) with 21 # 23 such that 212, € E(G)
and dy(21) + dg(z2) < min{|P|,|H]| - 1}.
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Proof. Suppose that o2(H) > min{|P|+1, |H|}. By the maximality of |Q|
and since there exists no cycle containing V(H), it follows from Theorem
A and Lemma C that |P| +1 < |H| — 1 and the connectivity of H is one.
Let v; and vy be two distinct vertices in H such that v; and vy are not cut
vertices of H, and v; and v, belong to distinct end blocks of H. Since G is
2-connected, we can take v; so that Ng(v;) # 0. Then by Lemma D, there
exist z;,z3 € V(H) with z; # 22 and 212, ¢ E(G) and a (v;,v2)-path of
order at least dg(z1)+dg(22) > | P|+1. Since Ng(v,) # 9, this contradicts
the maximality of |Q|. O

Let z;,2; € V(H) be as in Claim 6.4. By Claim 5.3 (i), N¢, (u*)~ N
Ne¢,(wt)+2 = §. By Claim 5.2 (i), (ii) and (iv), Ne, (u*)~ N Ne, (z1)t =
J\TC'1 (u"')' rlj\/'cl (22) = NC, ('w"')'*'2 N NC; (21)+ = ]\/’cI (w'*‘)"’2 ﬂNcl(ZQ) =
§. By Claim 5.1 (iv), N¢,(z1)* N N¢,(2z2) = 9. Therefore we have that
Ne¢, (u*)~, N¢,(22), N¢,(21)* and Ng, (w)*? are pairwise disjoint. Since
Ne,(u*)~ U Neg,(22) U Ng,(21)t U Ne, (wt)+? € V(Cy) U {wt,wt?},
d(';l (u"') + d(;-l (w"') + dcl (zl) + dc‘ (Zg) < ICII + 2. Similarly, dc2 (u+) +
ng('w+) +dc,(21) + dc,(22) < |C2| + 2. Hence by Claim 5.1 (ii)), n — 1 <
dG(u+)+dG(w+)+dG(zl)+dc(z2) = (dc(u+)+dc(’w+)+dc(zl)+dc(22))+
do_c(21) +deg-c(z2) < |C|+ 4+ de-c(z1) + de—_c(z2). Hence by Claim
6.4, dp(21) + dp(2z3) > max{|P| — 4,|H| — 5}. By Claim 6.3, |P| < 4 and
|H| < 5.

Since G is 2-connected, there exists a path R in H connecting a and b
with a,b € V(H) such that dg(a) > 1, dg(b) > 1 and |Ng(a) U Ng(b)| > 2.
Then by Lemma 10, G[V (Q)UV(R)] is covered by two cycles. Choose such
a path R so that |R| is as large as possible. Since G is 2-connected and G is
not covered by three cycles, it follows that |R| =2, |H — R| =3 and 3K, C
H—-R C K UK>. Since H is connected, we may assume that Ny_g(a) # 0.
Let 2,2’ € V(H — R) with z # 2/, 22’ ¢ E(G) and z € Ny_g(a). Then by
the maximality of |R|, dy(z)+du(z') < 3 and dg(2) < 1. By Claim 6.3 and
since |P| < 4, dp(2’) = 0. By Claim 5.3 (i), N¢,(uv*)~ N Ne, (w*)* = 0.
By Claim 5.2 (i) and (iv), Ng¢, (x*)™ N N¢, (2') = N¢,(2') N Ne, (wt)* =
. Since Ng,(ut)~ U Ng¢,(2') U Ng, (wt)* C V(C1) U {w*}, de, (ut) +
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do, (w) + de, (') < |C1] + L. Similarly, dg, (u*) + dg, (w*) + de, () <
|C2| + 1. Therefore, since |P| > 3 and |H| = 5 and by Claim 5.1 (ii),
de(ut)+dg(wt)+dg(2)+de(2’) = (de(ut) +do(wt) +de(2')) +do(2) +
(da(z) +du(Z)) < (IC|+2) +1+3=|C|+6 < n - 2, a contradiction.

Case 2. For any (y, P) € T, there exist no two independent edges joining
z and C, and y and C.

Let v € N¢(z). By the assumption of Case 2 and Claim 5.1 (i),
Ng(L) € V(P)U {u}. Since G is 2-connected, there exist z € V(G — C)
and w € V(C) — {u} such that zw € E(G). Choose z and w so that
|lw* 6u| is as small as possible. By the choice of z and w and Claim 5.1
(ii), dg—c(u*) +dg-c(w?) = 0. By Claim 5.2 (i), de(u*) +dc(wt) < [C|.
Hence the following fact holds since 04(G) > n — 1, which plays an impor-
tant role in the proof of this case. Note that for each y € L, {ut,w™*,y} is
an independent set by Claims 5.1 (ii) and 5.2 (i).

Fact 6.5 There exist noy € L and 2’ € V(G) — {ut,wt,y} such that
de(y) + dg(2') < |Po| + |H| — 2 and {u*,wt,y, 2z} is an independent set
of G.

In case of V(H) = 0, to obtain a contradiction, we have only to show
that there exist two cycles whose union contains V(FP).

Claim 6.6 V(H) # 0.

Proof. Suppose that V(H) = 0. Then N¢(yo) = 0. Since G — {u} is
connected, there exists v € V(x"’?oyo) such that Nc_(4)(v™) # 0. Choose
such a vertex v so that |v}3(;y0| is as small as possible. By the choice of v,
Ne-(u)(vPoyo) = 0.

Subclaim 6.6.1 Ng(v') N{u,z} =0 for allv' € V(vf’;yo).

Proof. Suppose that there exists v’ € V(vﬁ(:yo) such that Ng(v')n{u, z} #
@. Take such a vertex v’ so that |v'17(;yo| is as small as possible. Note
that v’ € V(vl_-";yg %) since G is not covered by three cycles. Let P, :=
ZL’}_’.:'U' and Py = v'ﬂj(;y. Since V(H) = @ and G is not covered by
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three cycles, Np,(y0) = @ and Np,(v't) N Np,(yo)* = O, in particu-
lar, v'*yo ¢ E(G). By the choice of v/, Np,(v'*) C V(P,) — {z} and
u ¢ Ng(v't). Moreover, Np,(v't) U Np,(yo)t C V(P,) — {v'*}. Hence
dp,(v'*) + dp,(y) < |P;] -1 for i = 1,2 and N¢g(v't) = 0. Hence
de(yo) +de(v't) = dp,(v0) + dp, (v'*) < | Po| — 2, which contradicts Fact
6.5. 0O

Let P, := :1:}3.-:1)‘ and P := vﬁ;yg. Since V(H) = @ and G is not cov-
ered by three cycles, Np, (yo) = @ and Np, ()" N Np,(v) = 0, specifically,
vyo ¢ E(G). By Subclaim 6.6.1, Np,(v) C V(P1) — {z} and u ¢ N¢(v).
Moreover, Np,(yo)* U Np,(v) € V(P2) — {v}. Hence dp,(v) + dp,(v0) <
|P;] =1 for i = 1,2 and Ng(v) = 0. Hence dg(yo) + dg(v) = dp,(%0) +
dp,(v) < |Po| — 2, which contradicts Fact 6.5. This completes the proof of
Claim 6.6. O

Our proof needs crossing argument on P by using nonadjacent two
vertices of L, and also needs the fact = € N¢g(y) for any y € L. Therefore,

the following claim is useful.

Claim 6.7 There exists no cycle D such that V(D) = V(F).

Proof. Suppose not. We may assume that there exists (y, P) € 7 such
that £ € Ng(y). By Fact 6.1, |[H| > 3.

Subclaim 6.7.1 We may assume that N(c_{u})uy(x”?’y) # 0.

Proof. Suppose that Ng_p(z+2Py) C {u}. Since G — {z} and G — {u}
are connected and z* € L and by the assumption of Case 2, there exists
a € V(x"'zﬁy) such that Ng_p(a) = {u}, and No_(ujur(z) # 0. By
the maximality of |@] or the assumption of Case 2, a # y. Hence we can
replace (y, P) € T by (v, P') € T, where P' := aﬁyz?a' and ¥y :=a".
0

Letv e V(a:*‘z-l_"y) with Nc_(upusr (v) # 0. Choose such a vertex v so
that |z Bu| is as small as possible. Then Nic—(upyur(v™) = 0. Let Py :=
zPv= and Py = v?y. By the assumption of Case 2 or the maximality
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of |Ql, u & No(v™), Np,(v~)* N Np,(y) =0 and Np,(v=) N Np,(y)* =0,
specifically, v~y ¢ E(G). Moreover, Np (v~)* U Np,(y) € V(P;) and
Np,(v")UNp,(y)* C V(P,). These imply that dp,(v™) +dp,(y) < | P, for
i=1,2 and Ng(v™) = 0. Hence dg(y) + dg(v™) = (dp(y) + dp(v™)) +
de(y) < |P|+1 < |P|+]|H|—2, which contradicts Fact 6.5. This completes
the proof of Claim 6.7. O

Claim 6.8 For any (y,P) € T and any v € L — {y}, vt € L.

Proof. Suppose that there exist (y,P) € 7 and v € L — {y} such that
vt ¢ L. Since vt ¢ L, yv ¢ E(G). Since y,v € L, it follows from Claim
5.1 (i) that dy(y) +du(v) =0.

By the assumption of Case 2, Nc(y) U Ne(v) C {u}. Hence by Fact 6.1
and Claim 6.6, dc(y) + dc(v) < |H| - 1.

Let P, := zPv and P; := v* Py. Since v* ¢ L, Np,(y)NNp, (v)* =0
and Np,(y)*NNp,(v) = 0. By Claim 6.7, Np, (y)UNp, (v)* C V(P;)-{z}.
Moreover, Np,(y)* UNp,(v) C V(P;). These imply that dp, (y) +dp, (v) <
|P| -1 and dp,(y) + dp,(v) < | Py

Hence by the above four inequalities, dg(y) + dg(v) < |P| + |H| - 2,
which contradicts Fact 6.5. O

Claim 6.9 For any (y,P) € T, Nc(y) = 0.

Proof. Suppose that there exists (y, P) € T such that Ng(y) # 0. Then
by the assumption of Case 2 and Fact 6.1, No(z) = Ng(y) = {u} and
|H| > 3. By Claim 6.7, Np(z)~ N Np(y) = 0, specifically, zy ¢ E(G).
Since Np(z)~ UNp(y) C V(P) — {y}, dp(z) + dp(y) < |P| —1. Since z is
endable for y, it follows from Claim 5.1 (i) that dy(z) + dg(y) = 0. Hence
de(z) +da(y) = (dp(z) + dp(¥)) + (do(z) + do(®)) < (1P| - 1) +2 <
|P| + |H| — 2, which contradicts Fact 6.5. O

By Claims 6.8, 6.9 and the assumption of Case 2, we can easily obtain

the following claim.
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Claim 6.10 For any (y,P) € T and any v € L, V(vﬁy) C L and
Ng-p(vPy) =0.

We choose (y,P) € 7 and @ € Np(y) so that lx_ﬁa| is as small as
possible. By Claims 6.7, 6.9 and 6.10, Ng(a* Py)—V (a* Py) C V(z+ Pa).
Since G — {a} is connected, there exists an edge be such that b € V(a* ﬁy)
and ¢ € V(z+Ba~). Suppose that yb~ € E(G). Then P .= zPbyPb
is a path such that (b, P’) € T, ¢ € Nps(b) and |zBa| > |zP'c|, which
.contradicts the choice of y and a. Thus yb~ ¢ E(G) and b~ € V(a"‘?y).
By Claim 6.10, b~ € L. By Claim 5.1 (i), {u*,w*,y,b™} is an independent
set. By Claim 6.10, dg_p(y) + dg-p(b~) =0.

Let P, := :L’T’)a‘, P, = aPb~ and Py = bT"y. Then the choice of y
and a implies Np, (y) = 0, and hence dp, (y) +dp, (b™) = dp,(b™) < |P| -1
because b~ ¢ E(G) by Claim 6.7.

If there exists d € Np,(y) N Np,(b~)*, then P’ := zPd-b~ PdyPb
is a path such that (b, P') € T, ¢ € Np:(b) and [zPa| > |zP'c|, which
contradicts the choice of y and a. Thus Np,(y) N Np,(b~)* = 0. Since
Nea(y) U Npy(b)* C V(P), dpy(y) +dp, (b7) < |Pal.

If there exists d € Np, (y)*NNp,(b~), then we can find P’ := zPb- dﬁy
d-Pb. This contradicts the choice of y and a, again. Thus Np,(y)* N
Np,(b™) = 0. Since Np,(y)* UNp,(b™) € V(Fs), dp; (y) + dp,(b7) < | P3|

Hence by the above four inequalities and Claim 6.6, we obtain dg(y) +
dg(b™) =dp(y)+dp(b~) < |P| -1 < |P|+|H| -2, which contradicts Fact
6.5.

This completes the proof of Lemma 1. O

Proofs of Lemmas 8 and 9. Let G € F; U F3, and suppose that G is
not covered by two cycles and diff(G) > 2. Suppose furthermore that if
G ¢ F,, then G — {c} is not covered by two cycles.

Case 1. There exists (y, P) € T such that there are two independent edges
joining z and C, and y and C.

Since G is 2-connected and G is not covered by two cycles, it follows
from Lemma 10 that H is not complete, in particular, V(H) — {c} # 0.
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Let z € V(H) — {c}. By the assumption of Case 1, there exist two distinct
vertices u € N¢(z) and w € N¢(y). Since diff(G) > 2, Ne(z)t NNe(y)~ =
§. Therefore, by changing the orientation of Cif necessary, we may assume
that ¢ ¢ {u*,w+}. Let C) := u+Cw and C, := w+ Cu. Then by Claim
5.1 (ii) and 5.2 (i), {u*,w™, z} is an independent set of G. By Claim 5.1 (i)
and the symmetry of  and y, Np(z)N{z,y} = @, and hence dp(z) < |P|-2.

By Claims 5.2 (i), (iv) and 5.3 (i), N¢, (u*)~, N¢,(z) and Ng, (wt)* are
pairwise disjoint. Since Ng¢, (ut)™ U N¢, (2)U N¢, (w*)* C V(Cy) U{wt},
de,(ut) + de, (wt) + de, (z) < |C1| + 1. Similarly, we obtain dc,(ut) +
d, (W) + doy(2) < |Gl +1

Hence by the above three inequalities and Claims 5.1 (ii), dg(u't) +
de(w*)+da(2) = (de(ut)+dc(wt) +dc(2))+dp(2)+du(2) < (IC|+2)+
(IP|-2)+(JH|—1) = n—1. This implies that G ¢ F, and dg(2) = |H|-1.
Since 2 is an arbitrary vertex in V(H)—{c}, H is complete, a contradiction.

Case 2. For any (y, P) € T, there exist no two independent edges joining
z and C, and y and C.

Let u € Ng(z). We may assume that ut # c. Note that by the
assumption of Case 2 and Claim 5.1 (i), Ng(y) € V(P,) U {u} for all
y € L. For each (v, P) € T, let D(y, P) := uz Py. Choose (y, P) € T and
v € Ng(y) so that [vD(y, P)y| is as large as possible. If v = u, then we can
use the symmetry of z and y, and hence we may assume that y # ¢. If v #u
and y = ¢, then let P’ := zﬁvy(ﬁv‘* and y’' := v*. Then (', P’) € T,
lvD(y, P)y| = lvD(y’, P')y’| and y' # c. Hence we may assume that y # c.
For convenience, we abbreviate D(y, P) to D if there is no fear of confusion.

Claim 6.11 There exist a € V(C) — {u,u"} and b€ V(v"‘ﬁy) such that
a ¢ Ne(ut)™ and b ¢ Np(y)*.

Proof. By Claim 5.1 (ii) and since G — {u} is connected, there exist w €
V(G - C) and a € V(C) — {u,u"} such that wa € E(G). Then by Claim
5.2 (i), a ¢ Nc(ut)~. Since G — {v} is connected, there exist w € V(G —
V(vDy)) and b € V(v* Dy) such that wb € E(G). Then by Claim 5.1
(i), the assumption of Case 2 or the choice of (y, P) and v, we obtain
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b¢ Np(y)*. DO

Claim 6.12 V(H) — {c} = 0.

Proof. Suppose that V(H) — {c} # 0, and let z € V(H) — {c}. By Claim
5.2 (i), NC—{u}(u+)_ NNe_(u)(2) = @. By Claim 5.1 (ii), Nc_{,,}(u"‘) U
Nc—{u)(2) € V(C)—{u,u"}. Therefore dc - (u)(ut)+dc_(u}(2) < |C|-
By Claim 5.1 (i), (iii) and the symmetry of z and y, Np(y)* N Np(z) =
Since Np(y)* U Np(z) C V(D), dp(y)+dp(z) < |D| =|P|+ 1. Hence by
Claim 5.1 (i) and (ii), dg(u*)+dc(y)+de(2) = (do~{u} (u+)+dc_{u} (2))+
dp(u*) + (dp(y) +dp(z)) +du(z) < (IC| -2)+ 1+ (IP|+1) + (|H] -
1) = n — 1. This implies that G ¢ F, and the equalities hold. The
equality de—(uj(ut) + do-(u}(2) = |C| — 2 implies that No_ 4y (ut)~ U
Nc_{u}(2) = V(C) — {u,u™}. The equality dp(y) + dp(z) = |D| implies
that Np(y)*UNp(z) = V(D). Let a and b be as in Claim 6.11. Then since
a ¢ No_(u)(u*)” and b ¢ Np(y)*, @ € Nc_(u}(2) and b € Np(z). Since z
is an arbitrary vertex in V(H)—{c}, we have V(H)~{c} C Ng(a)NNg(b).
Moreover, the equality dy(z) = |H| — 1 implies that H is complete. If
|H — {c}| > 2, then we can choose z,22 € V(H) — {c} so that z; # 2z;. If
|H — {c}| = 1, then we let z; = 2, be the unique vertex in V(H) — {c}.
Let R be a path from 2 to z in H such that V(H) — {c} € V(R). Then
C:= uaazl _I:I'zzbﬁyv(]._')u and C" := a@uﬁbzl .ﬁzga are cycles such that
V(G) — {c} C V(C")U V(C"), a contradiction. []

Claim 6.13 c€ V(C).

Proof. Suppose that ¢ ¢ V(C). Since G is 2-connected, there exist z €
V(G - C) and w € V(C) — {u} such that zw € E(G). Choose such z and
w so that |w8ul is as small as possible. Since ¢ ¢ V(C), w* # c. Let
C, := u*Cw and C, := w+ Cu. By Claim 5.2 (i), Ng, (u*)~ N N, (w) =
Ne¢,(u*) N Ng,(w*)~ = 0. Since Ng,(u*)™ U Ng,(wt) € V(C;) and
Noy (u+) U Ney ()™ € V(Cy), de, (u*) +do, (w*) < |G for i = 1,2. By
Claim 6.11, Ng(y) € V(D) — {b~,y}. Hence da(ut) + de(wt) +de(y) <
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ICl+|D| —2 = |C|+|P|—1=mn-|H|-1. This implies that G ¢ 5,
V(H) = 0 and the equalities hold. The equality dg(y) = |D| — 2 implies
that Ng(y) = V(D) — {b~,y}, and hence u € Ng(y). Hence G is covered
by two cycles, a contradiction. 0O

By Claims 6.12 and 6.13, V(H) = 0. Hence u,z ¢ Ng(y). Let P, :=
zDv~ and P o= vﬁy, and let 2 € V(P)). Suppose that there exists
g € Np,(2) N Np,(y)*. Let P’ := x?zgﬁyg“ﬁz*' and y’ := 2*. Then
(¥',P)eT and |szy' | > lvD(y, P)y|, which contradicts the choice
of (y, P) and v. Thus Np,(z) N Np,(y)* = 0. Since Np,(z) U Np,(y)* C
V(P), dp,(2) + dp,(y) < |P2|. By the choice of (y, P) and v, Np, (y) = 0,
and hence dp, (z)+dp, (y) < |P1]—1. By Claim 5.2 (i), Nc(u*)~"NN¢(2) =
0. Hence by Claim 5.1 (ii), dg(u*) + dc(2) < |C|. Therefore dg(u*) +
dco(y)+de(z) < |C|+|P1|+|P2]—1 = n—1. This implies that G ¢ F; and
the equalities hold. Since z is an arbitrary vertex in V(P;), the equalities
de(u*) +dc(z) = |C|, dp,(2) = |Pi| — 1 and dp,(2) + dp,(y) = |P2| imply
that Ne¢(ut)™ U Ng(z2) = V(C), Np,(z) = V(P,) — {2z} and Np,(z) U
Np,(y)* = V(B,) for all z € V(P,). Note that vz,uz,az,bz € E(G) for all
z € V(P,), where let a and b be as in Claim 6.11.

If |P,| > 2, then uzb_}_’)yv(ﬁz“‘a(au and uzbPz*aCu are cycles which
cover G, a contradiction. Thus V(P,) = {z}. Since G — {z} is connected,
there exists an edge hg with h € V(C) and g € V(P2). If {h,g}n{u,v} =0,
then ughgﬁyvﬁzu and ux?gh?ju are cycles which cover G, a contradic-
tion. If h = u and g # v, then ug?yv(_pma(au and ug‘fma-é'u are cycles
which cover G, a contradiction. If A # v and g = v, then uxb?yvh(au
and umb‘l_"vhau are cycles which cover G, a contradiction. Thus h = u
and g = v. Then wPbzaCu and uvy‘_ﬁbxaau are cycles which cover G,
a contradiction.

This completes the proofs of Lemmas 8 and 9. O
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7 Proofs of Lemmas 2, 3 and 4

Let 4, F5 and Fg be the sets of graphs which satisfy the assumptions of
Lemmas 2, 3 and 4, respectively.

Proof of Lemma 2. Let G € F4, and suppose that G does not satisfy
(i)-(iii) of Lemma 2. Since the case of ¢; = ¢ is proved in [10], we may
assume that ¢; # cp. Let I := {¢1, ¢}, and let Cbea cycle containing I.
Let H := G — C. Note that V(H) # 0 since G has no Hamiltonian cycle.
Let {uy,...,ux} := Nc(H). We may assume that u;,...,u, occur in this
order along C. Note that k > 2 since G is 2-connected. Choose C so that
(i) IC| is as large as possible, (ii) -,y (n) de(z) is as small as possible,
subject to (i). Note that by the choice (i), C is a maximal cycle of G.

Let Ay := {i:u} ¢ I} and Ap := {i: u} € I and u}? g I}. We choose
the orientation of C so that A; # @ if possible.

Case 1. A; =0.

Then by the choice of the orientation of C, we obtain k = 2, |C| = 4,
uf =u; =c; and uf = u] = cp. Let G' := G — {c2} if uiuz2 € E(G);
otherwise, let G’ := (G — {c2}) U {ujuz}. Then dg(u;) > de(ui) — 1
for i = 1,2. Since Nco(H) = {u1,uz2}, do'(2) = dg(z) for all z € V(H).
Hence a2(V(G') — {a1};G’) 2 n — 2 = |G'| — 1 since wyus € E(G'). By
applying Lemma 2 to G’ as ¢; = ¢z and since dg/(¢;) = 2, there exists
a cycle C; of G’ containing V(G') — {a1}. If uyuy € E(C,), then C; :=
(C1 — {v1u2}) U {ujcz, couz} is a cycle of G containing V(G) — {c1}, a
contradiction. If ujus ¢ E(C)), then C) is a cycle of G containing V(G) —

{e1,¢2}, a contradiction.

Case 2. A; #0.

Claim 7.1 (i) Ne(uf) = V(C) — Ne(H)?* for all i € A;.
(ii) H is complete.
(ili) Nc(z) = Nc(H) for all z € V(H).
(iv) Ng(u}?) = (V(C) - (Ne(H)* U {uF?*})) U {uf} for all i € A,.
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Proof. Let z € V(H) and ¢ € A;. By Lemma 6 (i), Ny(u}) = 0. By
Lemma 6 (ii), Nc(u}) C V(C)-Nc(H)*. Hencen—1 < de(uf)+de(z) =
de(ut) + de(z) + dy(z) < |V(C) — No(H)*| + [Ne(H)| + |H| -1 =
n — 1. Thus the equalities hold. The equality dg(u;) = |V(C) — Nc(H)™|
implies that (i) holds. The equality dx(z) = |H| — 1 implies that Ny (z) =
V(H) — {z}. Since z is an arbitrary vertex in H, (ii) holds. The equality
dc(z) = |Nc(H)| implies that (iii) holds.

To prove (iv), let < € A;. By Claim 7.1 (ii) and (iii) and since (ii) of
Lemma 2 does not hold, we obtain Ny (u}?) =@ and Ne(uf?) C (V(C) -
(Ne(H)* U {uf?})) U {u}}. Hence we can obtain (iv) as in the proof of
Claim 7.1 (i). O

Claim 7.2 (i) V(u;"z"u;'“) ¢ I for each 1 < i < k, where ug4 = u;.
(ii) de(uf) +da(uf) < |C| for eachi,j € Ay withi # j.
(iii) de(uf) + dG(u_?,-"z) < |C| for each i € A; and j € A,.

Proof. By Claim 7.1 (ii) and (iii) and since (ii) and (iii) of Lemma 2
do not hold, we can easily obtain (i). Let i € A; and j € Ay, and
let C; := u;-"auj and Cp := ujau, If Ne¢,(u:)~ N Ng, (u}'2) # @ or
Ne, () N N, (u}?)~ # 0, then by Claim 7.1 (ii) and (iii), it is easy to
see that G — {u]} is Hamiltonian, a contradiction. Thus Ng,(uf)™ N
Ne,(uf?) = Ne,(u}) 0 Ne,(uf?)~ = 0. Note that by Claim 7.1 (i),
uf ¢ Nc,(uf). Since N, (uf)™ U Ne,(u}?) € V(C1) and Ne,(uf) U
Ne, (u}?)~ € (V(C2) - {uf}) U{u;} and by Claim 7.1 (i) and (iv), we ob-
tain dg(u) +de(u}?) = do(uf) +de(uf?) < |G+ ((|C2) - 1) +1) =|C.
Thus (iii) holds. By the similar argument, we can obtain (ii). O

Claim 7.3 dc(z) = |C|/2 for all z € V(H).

Proof. By Claim 7.2 (i) and the assumption of Case 2, and by changing
the orientation of C if necessary, we may assume that A, # @ and |A; U
Az| > 2. Letie€ Ay and j € (AU Ap) — {i}. Let u* := u;" if 7 € Ay,
otherwise, let u* := u}"z. Then by Claims 7.1 (i), (iv) and 7.2 (ii), (iii),
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2(|C| — |Nc(H)|) < do(uf) + dg(u*) < |C|. Hence by Lemma 6 (i) and
Claim 7.1 (iii), de(z) = |[Ne(H)| = [C|/2 for all z € V(H). O

By Lemma 6 (i) and Claim 7.3, |u,-8ui+1| =3 foreach1 < ¢ < k. Hence
by Claims 7.1 (ii), (iii), 7.2 (i) and the maximality of |C|, I € N¢(H) and
|H| = 1. Let z be an unique vertex in H, and let D; := u,-zui+1_5ui for
each 1 € i < k. Then D; is a cycle containing I and |D;| = |C|, and hence
by the choice (ii), dg(u}) > dg(z) = |C|/2 = k for each 1 < i < k. By
Lemma 6 (i) and (ii), dg (%) = k and Ng(u}) = Ng(z) foreach1 <i < k.
Hence Kx 41 C G C Ky +Kipy withk = (n—1)/2 > 2and dg(c;) 2 k+1
fori=1,2.

This completes the proof of Lemma 2. [

Proofs of Lemmas 3 and 4. Let G € F5UFg, and suppose that G is not
covered by two cycles. Suppose furthermore that if G ¢ F5, then G — {c}
is not covered by two cycles. Then by Lemmas 8 and 9, diff(G) < 1. Let C
be a longest cycle of G, and let X := V(G — C) and X' := X — {c}. Note
that | X| > 3 since G is 2-connected and G is not covered by two cycles.
Moreover, if G ¢ Fs, then |X’| > 3 because G — {c} is not covered by two
cycles. Choose C so that (i) ¢ € V(C) if possible, (i) > cx: de(z) is as
small as possible, subject to (i).
Since diff(G) < 1, the following fact holds.

Fact 7.4 (i) X is an independent set of G.
(ii) Ne(z)* N Ne(y) = Ne(z)" N Ne(y) =0 for all z,y € X.
(iii) Let uy,uz € Nc(z) with uy # up for some z € X. Let Cy := u'l"auz
and Cy := u;Z')ul. Then (N¢,(u})~UNc,(uf_,)*)NNc,(z') = 0 for
eachz’ € X — {z} andi=1,2.

Claim 7.5 IfG € F5, thenc ¢ X.

Proof. Suppose that G € F5 and ¢ € X. By Fact 7.4 (i) and since G is
2-connected, we can take two vertices u;,u2 € Nc(c). Let £ € X’. Then
by Lemma 6 (ii) and Fact 7.4 (ii) {u},u],z} is an independent set of G.
Let C; := ufaug and C; := u’{aul. By Fact 7.4 (iii), (N¢,(uf)~ U
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Ne,(ud_)¥) N Ng,(z) = @ for i = 1,2. If there exists v € Ne, (ui)~n
Ne, (uf)*, then € := ulwz5v+uf 81}‘1@" 6u1 is a cycle such that |C'| =
|C| and ¢ € V(C’), which contradicts the choice (i). Thus Ng, (uf)~ N
Ng, (uf)* = 0. Similarly, Ng, (uf)* N N, (uf)~ = 0. Since Ng, (u})~ U
Ne, (ud_;)* U Ng,(z) € V(Ci) U {ui_,} for i = 1,2, we obtain de, (uf) +
de,(ui_;) + dc,(z) < |Ci| + 1 for i = 1,2. Hence by Fact 7.4 (i) and
(ii), do(uf) + de(ug) + do(z) = do(uf) + do(uf) + do(e) < IC] +2 <
|C| + | X| = n, a contradiction. O

Note that by Claim 7.5, |X/| > 3. Let z; € X' with dg(z1) =
min{dg(z) : z € X'}. Let {uy,...,ux} := Ng(z;). We may assume that
uy,...,u) occur in this order along C. Let zo,x3 € X'—{z,} with z3 # z3.
Then by Lemma 6 (i) and Fact 7.4 (i), we obtain dg(z2) + dg(z3) =
dc(z2) +de(zs) < |Cl/2+(C|/2=|C].

On the other hand, by Lemma B, Fact 7.4 (i) and Claim 7.5, and by
the definition of x,, we obtain 2 < dg(z1) = dc(z;) < |X’| — 1. Then
by Fact 7.4 (i), dg(z2) + do(z3) 2n —1~dg(z1) 2n-1-(|X'|-1) =
IC|+(|X|—1|X']) 2 |C]- Thus the equalities hold. Hence dg(z;1) = |X'| -1,
dg(zq) = da(z3) = |C|/2, dg(x2)+dc(z3) = n—1—dg(z;) and X = X', in
particular, |C| is even and G ¢ F5. Since z; and z3 are arbitrary distinct
vertices in X’ — {z,}, we have dg(z) = |C|/2 for all z € X' — {r,} =
X —{z1}.

Since there exists no cycle containing X, it follows from Lemma 7 that
|IC| < 2|X| — 1. Since |C| is even, |C] < 2|X| — 2. Hence by the definition
of 1, |X| -1 =dg(z;) <dg(z) =I|C|/2< |X]|-1forall z € X — {z,}.
This implies that dg(z) = |X| -1 = |C|/2 for all z € X. By Fact 7.4
(i), Ne(z) = Ne(zy) for all z € X — {z,} and |u; Cuiys| = 3 for all
1 <1<k, where we let ug4y :=uj. Then | X| =k +1 and |C] = 2k. Set
X :={z1,z2,Z3,...,Thp1}-

Suppose that ¢ € Ng(z1)*. We may assume that 4] = c¢. Then
C, = ulzk+1u26u1 and Cp 1= u1T1UT2 .. . Ug—_1Th-1ULTLU; are cycles
which cover G — {c}, a contradiction. Thus ¢ € N¢(z).

Let D; := ui$1Ui+l—6Ui for each 1 < i < k. Then D; is a longest
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cycle such that ¢ € V(C;) and V(C;) = (V(C) — {uf}) U {z1}. Hence
by the choice (ii) of C, dg(uf) > k = |C|/2. By Lemma 6 (i) and (ii),
de(uf) = k = |C|/2 and Ng(uf) = Ng(z:) for each 1 < i < k. Hence
Ki2k+1 € G C Ki + (2k + 1)K, and dg(c) > 2k + 1.

This completes the proofs of Lemmas 3 and 4. 0O
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