A new class of 2-fold perfect 4-splitting authen-
tication codes*

Miao Liang! Sufang Jiang? Beiliang Du?

1 Foundation Department, Suzhou Vocational University, Suzhou 215104, P.R.
China

2 Department of Mathematics, Soochow University (Suzhou University), Suzhou
215006, P.R. China

Abstract Restricted strong partially balanced ¢-designs were first for-
mulated by Pei, Li, Wang and Safavi-Naini investigation of authentica-
tion codes with arbitration. We in recent proved that optimal splitting
authentication codes that are multi-fold perfect against spoofing can be
characterized in terms of restricted strong partially balanced t-designs.
This article investigates the existence of optimal restricted strong partially
balanced 2-design ORSPBD(v,2 x 4,1), and shows that there exists an
ORSPBD(v,2 x 4,1) for even v. As its application, we obtain a new infi-
nite class of 2-fold perfect 4-splitting authentication codes.
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1 Introduction

Let S denote a finite set of source states (or plaintexts), M a finite set of
messages (or ciphertexts), and £ a finite set of encoding rules (or keys).
Using an encoding rule e € £, the transmitter encrypts a source state
s € S to obtain the message m = e(s) to be sent over the channel. The
encoding rule is communicated to the receiver via a secure channel prior to
any messages being sent. When it is possible that more than one message
can be used to communicate a particular source state s € S under the same
encoding rule e € &£, then the authentication code is said to have splitting.
In this case, a message m € M is computed as m = e(s, r), where r denotes
a random number chosen from some specified finite set R. If we define
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e(s) := {m € M :m = e(s,r) for some r € R}

for each encoding rule e € £ and source state s € S, then splitting means
that |e(s)] > 1 for some e € £ and some s € S. A splitting authentication
code is called c-splitting if |e(s)| = ¢ for every encoding rule e € £ and
every source s € S.

We address the scenario of a spoofing attack of order »: Suppose that
an opponent observes r > 0 distinct messages, which are sent through the
public channel using the same encoding rule. The opponent then inserts a
new message m’ (being distinct from the r messages already sent), hoping
to have it accepted by the receiver as authentic. The casesr =0andr =1
are called impersonation game and substitution game, respectively.

For any r, the deception probability P, denotes the probability that
the opponent can deceive the transmitter/receiver with a spoofing attack
of order r. We have the following information-theoretic lower bounds on
deception probabilities, and a information-theoretic lower bound on the
size of encoding rules for splitting authentication codes that are multi-fold
secure against spoofing. We define

M"={m" = (my,mg,---,m;) :m; E M,1Ki< T}

and write E and M7 for the random variables describing the splitting au-
thentication code and taking vales e and m” in £ and MT, respectively.

Lemma 1.1 [15, 16] In a splitting authentication code, for every 0 <r <
t — 1, the deception probabilities are bounded below by

P, > oH(EIM™!)-H(E|M")

A splitting authentication code is called t-fold key-entropy minimal if
the deception probabilities meet the lower bounds with equality for all
0<r<t-1.

Lemma 1.2 [15, 16] If a splitting authentication code is t-fold key-entropy
minimal, then the number of encoding rules is bounded below by

IE|> (PoPy+-- Poy) ™

Analogously, we call a splitting authentication code t-fold perfect if the
number of encoding rules meets the lower bound with equality.

We (11] in recent proved that optimal splitting authentication codes
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that are multi-fold perfect against spoofing can be characterized in terms
of restricted strong partially balanced t-designs. Let v, b, u, k, A, t
be positive integers and t < u. A restricted partially balanced t-design
RPBD(v,b,u x k; A, 0) is a pair (X, B) where X is a v-set (of points) and
B is a collection of b subsets of X (called blocks) with size uk such that the
following properties are satisfied:

1. every B € B is expressed as a disjoint union of « subblocks of size k:
B=BlU32U---UBu,

2. for every t-subset {z;,z3,---,z:} of X either occurs together in ex-
actly A blocks B = B; UBa U -+ U By such that z; € B;,,z2 €
Bi,,--+,z¢ € By, (i, =1,2,---,t, different in any two) or does not
occur in any block. :

The blocks of a t-design RPBD(v, b, u x k; A, 0) will be displayed in the form
{aV,aM, ..., a;0® ..., a?;..;a 0¥, ... ,a{™} in this paper.
The number { X |= v is called the order of restricted partially balanced
t-design. It is easy to see that b < || 25hs -+ {5421 1], where |z

denotes the greatest integer satisfying |z] < z.

If a restricted partially balanced t-design RPBD(v,b,u x k;,0) is a
restricted partially balanced s-design RPBD(v,b,u X k;),,0) for0 < s < t
as well, then it is called a restricted strong partially balanced t-design
and is denoted by ¢-design RSPBD(v, b, u x k; A,0). It is easy to see that
a restricted strong partially balanced t-design is also a 1-design, that is
A1 = ry, the number of blocks which contain a fixed point.

Restricted strong partially balanced -designs were first formulated by
Pei, Li, Wang and Safavi-Nai [17] in investigation of authentication codes
with arbitration (see, also, (15, 16]). We [11] in recent established its an-
other application in splitting authentication codes.

Theorem 1.3 [11] Suppose there is a t-design RSPBD(v,b,u x k;1,0)
with ¢ > 2. Then there is a t-fold perfect k-splitting authentication code
for u equiprobable source states, having v messages and b encoding rules.
Conversely, if there is a t-fold perfect k-splitting authentication code for
u source states, having v messages and b encoding rules, then there is a
t-design RSPBD(v, b, u x k; 1, 0).

A restricted strong partially balanced ¢-design RSPBD(v, b, u x k; A, 0) is
optimal if b is the maximum number of blocks in all ¢-design RSPBD(w, b, ux
k; A, 0)s (or equivalently, r, is the maximum number of blocks which contain
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a fixed point in all t-design RSPBD(v, b, u x k; A, 0)s). An optimal restricted
strong partially balanced 2-design is denoted briefly by ORSPBD(v, u x
k, A).

t-design ORSPBD(v, b, uxk; A, 0)s have been studied by many researchers

(see, for example, Ogata, Kurosawa, Stinson and Saido [14], Du [5, 6], Liang
and Du [9], Ge, Miao and Wang [7], Wang [18], Wang and Su [19] and Chee,
Zhang and Zhang [1]). We [12, 13] have determined the existence of op-
timal restricted strong partially balanced 2-design ORSPBD(v,u X k,1)
with u x k = 2 x 2,2 x 3 and 3 x 2. From Theorem 1.3, we then es-
tablished a class of 2-fold perfect 2-splitting authentication codes with 2
source states, a class of 2-fold perfect 3-splitting authentication codes with
2 source states and a class of 2-fold perfect 2-splitting authentication codes
with 3 source states. We [10, 11] and Chee, Zhang and Zhang (1] also have
obtained two classes of optimal restricted strong partially balanced 3-design
ORSPBD(v,5,3 x 2,1) and then established two classes of 3-fold perfect
2-splitting authentication codes with 3 source states. In this article, we
focus on the existence of the optimal restricted strong partially balanced
2-design ORSPBD(v, 2 x 4,1) for even v.

An easy calculation shows that r, < [E(&;_%J for an optimal restricted
strong partially balanced 2-design ORSPBD(v,u x k,1). Let m, = max
{m : m is a positive integer, m < |zr s 1)J and mv = 0 (mod uk)} and

v = vp (mod k?u(u~1)), 1 < v < k?u(u—1). For every case v = vo (mod
k2u(u — 1)) and 1 < vg < k?u(u — 1), we calculate the maximum m which

satisfied m < [éz‘;——_ll)yj and mv = 0 (mod uk). Then we have the following
expression of m, for u x k=2 x 4,

-1 vo =0 (mod 4),
m, = { =2 4+4, vy =18, 22, 26, 30,
=Yoo, otherwise.

We shall prove r, = m,. That is, our main objective is to establish the
following results.

Theorem 1.4 There exists an ORSPBD(v, 2 x 4, 1) for even v.
From Theorems 1.3, we then have the following result, where b is the

number of the blocks of the ORSPBD(v, 2 x 4,1) in Theorem 1.4.

Theorem 1.5 Let v = 0 (mod 2) and v > 8. Then there exists a 2-fold
perfect 4-splitting authentication code with |[M| =, |£| = b, and |S| = 2.
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2 Preliminaries

In this section we shall define some of the auxiliary designs and some of
the fundamental results which will be used later. The reader is referred to
(2, 5, 14] for more information on designs, and, in particular, group divisible
designs and splitting group divisible designs.

Let K and M be sets of positive integers. A group divisible design
(GDD) GD[K, 1, M;v] is a triple (X, G, B) where X is a v-set (of points),
G is a collection of nonempty subsets of X (called groups) with cardinality
in M and B is a collection of subsets of X (called blocks) with cardinality
at least two, in K, such that the following properties are satisfied.

1. G partition X,
2. no block intersects any group in more than one point, and,

3. each pair set {z,y} of points not contained in a group is contained in
exactly one block.

The group-type (or type) of the GDD (X, G, B) is the multiset of sizes |G|
of the group G € G and we usually use the “exponential” notation for its
description: group-type 1¢273% ... denotes i occurrences of groups of size 1,
J occurrences of groups of size 2, and so on.

We need to establish some more notations. We shall denote by GD[k, 1,
m;v] a GD[{k},1, {m};v]. We shall sometimes refer to a GD[K, 1, M; ]
(X,G,B) as a K-GDD.

Lemma 2.1 There exists a {2}-GDD of type m“n! for any positive integers
m and n.

For our purpose we need to introduce the concept of splitting group
divisible designs. Let u and k be positive integers and M be set of positive
integers. A splitting group divisible design (splitting GDD) splitting GD[u x
k,1, M;v], is a triple (X, G, B) where X is a v-set (of points), G is a collection
of nonempty subsets of X (called groups) with cardinality in M and Bis a
collection of subsets of X (called blocks) with cardinality uk such that the
following properties are satisfied.

1. G partition X,

2. every B € B is expressed as a disjoint union of u subblocks of size k:
B=BjUByU---UB,,
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3. no block intersects any group in more than one subblock, and,

4. for each pair set {z,y} of X not contained in a group, there exists
exactly one block B = B;UB,U---UB, such that z € B;,y € B; (i #

-

The group-type (or type) of the splitting GDD is the same as that of the
GDD. We shall sometimes refer to a splitting GD[u x k,1, M;v] (X, G, B)
as a u X k-splitting GDD.

For splitting group divisible designs, we can establish the following re-
sults which will be used later.

Lemma 2.2 [12] There exists a 2 x k-splitting GDD of type k* for any
u>2.

Lemma 2.3 [12] Suppose that there exists a K-GDD of type gig2-
and that for each ¥’ € K there exists a 2 x k-splitting GDD of type h
Then there exists a 2 x k-splitting GDD of type (hg1)(hg2) - (hgu)-

We shall illustrate the main technique that will be used throughout
the remainder of the article, which is “Filling in Holes” construction. As
the “Filling in Holes” construction will generally involve adjoining more
than one infinite point to a splitting GDD, we will require the notation
of an optimal restricted strong partially balanced design with an empty
subdesign. Specifically, we write ORSPBD(v, w;u x k,1) for a structure
(X,Y,B), where X is a set of v points, Y C X is a set of w points (Y is
called the hole), and B is a collection of subsets of X (called blocks), such
that

1. every B € B is expressed as a disjoint union of u subblocks of size k:
B=BiUByU---UB,y,

2. for each pair set {z,y} of X, there exists exactly one block B =
BjUB,yU---UB, such that z € B;, y € B; (i # j) or does not occur
in any block,

3. each pair set {z,y} of Y do not occur in any block B = B, U B2 U
-+U By, such that = € B;, y € B; (i # j),

4. for each point of X, there exist exactly r, blocks B = BjUB2U- - -UB,,

5. 7, is the maximum number of blocks which contain a fixed point in
all RSPBD(v, u x k, 1).
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Now we are in a position to give our main construction.

Construction 2.4 Suppose

1. there exists a 2 x 4-splitting GDD of type g1g3- - - gu, Where g;
0 (mod 32) for 1 < i < u,

2. there exists an ORSPBD(g; + w,w;2 x 4,1) for each i,1 < i < u,
where w € {2,6, 10,14},

3. there exists an ORSPBD(g,, + w,2 x k, 1).

Then there exists an ORSPBD(v,2 x k,1), where v = w + 3_, <<, 9i-

Proof We start with a 2 x 4-splitting GDD of type gi1g2--- g. (X, G, B),
where G = {G1,G2,---,Gy}, |Gil =9iy 1 <i<u. Foreach G;, 1 <i<u,
let (G; UW, A;) be the ORSPBD(g; + w,w;2 x 4,1), where |[W| = w and
XNW =9. Let (G, UW, 4,) be the ORSPBD(g,, +w,2 x 4,1). Then the
design we construct will have point set

X*=XUW,
and the block set
B* = BU (U,<icu Ai)s

It is easy to check that the (X*, B*) is an ORSPBD(v,2 x 4,1) with r, =

v—w

¥ _ m,, |

Construction 2.5 Suppose that u is odd, and
1. there exists a 2 x 4-splitting GDD of type gig2--- gu, Where g; =
16 (mod 32) for 1 < i< u,

2. there exists an ORSPBD(g; + w,w;2 x 4,1) foreach i, 1 < i < u,
where w € {2,6,10, 14},

3. there exists an ORSPBD(g,, + w,2 x 4,1).
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Then there exists an ORSPBD(v,2 x 4,1), where v =w + leiSu Ji-

Proof It is the same as Construction 2.4 to get the design (X*,B*), and
easy to check that it is an ORSPBD(v,2 x 4,1) with v = 16 + w (mod 32)
and r, = 3’;(’—"—*;—1%5 = M. O

3 ORSPBD(v,2 x 4,1)s

In this section, we shall investigate the existence of ORSPBD(v,2 x 4,1).

Lemma 3.1 [12] There exists an ORSPBD(v, 2x4, 1) for any v = 0 (mod 4)
and v > 8. '

Lemma 3.2 There exists an ORSPBD(v, w; 2 x 4,1) for (v, w) = {(34,2),
(38,6), (42, 10), (46,14)}.

Proof We construct directly the designs as follows:
ORSPBD(34,2;2 x 4,1):

Point set: X = Z34, Y = Z,.

Block set: Develop the following blocks +2 mod 34:
{0,1,2,3;4,5,8,9}, {0,1,2,3;12,13,16,17}.

ORSPBD(38,6;2 x 4,1):

Point set: X = Zag, Y = Zs.

Block set: {0,1,2,3;6,7,8,9}, {0,1,2,3;22, 23, 24, 25},
{0,1,2,3;10,11,12,13}, {0, 1, 2, 3; 26,27, 28, 29}, {0, 1, 2, 3; 14,15, 16,17},
{0,1,2,3; 30,31, 32,33}, {0,1,2,3;18,19, 20,21}, {0,1, 2, 3; 34, 35, 36, 37},
{4,5,6,7;8,9,10,11}, {4, 5, 22, 23; 24, 25, 26,27}, {4,5,6,7; 12,13, 14, 15},
{4,5,22,23; 28,29, 30,31}, {4,5,6,7,16,17,18, 19}, {6, 7, 8,9; 26, 27, 28, 29},
{4,5,8,9; 20,21, 22,23}, {4, 5, 24, 25, 36, 37,6, 7}, {4, 5, 22, 23; 32, 33, 34, 35},
{6,7,8,9;30,31,32,33}, {6,7,8,9; 34, 35,36, 37}, {8,9, 10,11; 16, 17, 18,19},
{22,23,24,25;18,19,20,21}, {22, 23, 24,25;10,11,12,13},
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{24,25,26,27; 28,29, 30, 31}, {24, 25, 26, 27; 32, 33, 34, 35},
{10,11,12,13; 20, 21,30, 31}, {26, 27, 28, 29; 36,37, 14,15},
{26,27,28,29; 16,17, 18,19}, {10, 11, 30, 31; 28,29, 36, 37},
{12,13,14,15;16,17, 36, 37}, {28, 29, 30, 31; 32, 33, 20, 21},
{30,31,32, 33; 34, 35, 18,19}, {16,17,18,19; 20, 21, 36,37},
{10,11,12,13;32, 33,34, 35}, {26,27,14,15;12,13,20, 21},
{14,15,16,17;18,19, 34, 35}, {32, 33, 34, 35; 36, 37, 20, 21},
{22,23,24,25;14,15,16,17}, {8,9,10,11;12, 13,14, 15}.

ORSPBD(42,10;2 x 4,1):

Point set: X = Z43, Y = Zyp.

Block set: {0,1,2,3;10,11,12,13}, {0,1,2,3; 26,27, 28,29},
{0,1,2,3;14,15,16,17}, {0, 1,2, 3; 30,31, 32, 33}, {0, 11,2, 3; 18, 19, 20, 21},
{0,1,2,3;34,35,36,37}, {0,1,2, 3; 22, 23,24, 25}, {0, 1,2, 3; 38, 39, 40, 41},
{4,5,6,7;10,11,12,13}, {4,5,6,7; 26,27, 28,29}, {4,5,6,7;14,15, 16,17},
{4,5,6,7;30,31, 32,33}, {4,5,6,7; 18,19, 20,21}, {4,5,6,7; 34, 35, 36, 37},
{30,31,32,33; 20,21, 22, 23}, {20, 21,22, 23; 24, 25, 40, 41},
{12,13,14,15;22, 23, 24,25}, {28, 29, 30, 31; 38, 39, 40, 41},

{30,31,32, 33; 36, 37,18, 19}, {14, 15, 16, 17; 36, 37, 38, 39},

{16,17,18, 19; 24, 25, 40, 41}, {32, 33, 34, 35; 40, 41, 24, 25},
{8,9,14,15;10,11,12, 13}, {10,11,12,13;16,17,18,19},

{8,9, 34, 35; 30, 31, 32, 33}, {10, 11,12, 13; 32, 33, 34, 35},

{8,9,10,11; 22, 23, 24,25}, {26, 27, 28, 29; 20, 21, 22, 23},

{8,9, 26,27, 38, 39, 40, 41}, {26, 27, 28, 29; 32, 33, 34, 35},
{8,9,22,23;18,19, 20,21}, {10,11, 12,13; 20,21, 30, 31},

{8,9,38,39; 34, 35, 36, 37}, {26, 27, 28, 29; 16, 17, 18, 19},

{8,9,30,31; 26,27, 28, 29}, {36, 37, 38, 39; 40, 41, 24, 25},

{8,9,18,19; 14,15, 16,17}, {26, 27, 28, 29; 36, 37, 14, 15},

{4,5,6,7; 38,39, 40,41}, {10, 11,12, 13; 36, 37, 38, 39},

183



{4,5,6,7;22,23,24, 25}, {14, 15, 16, 17; 20, 21, 34, 35}.

ORSPBD(46,14;2 x 4,1):

Point set: X = Z4g, Y = Z14.

Block set: {0,1,2,3;14,15,16,17}, {0,1,2, 3;30, 31, 32,33},
{0,1,2,3;18,19,20,21}, {0, 1,2, 3; 34, 35, 36, 37}, {0,1, 2, 3; 22, 23, 24, 25},
{0,1,2,3; 38,39, 40,41}, {0,1,2, 3; 26,27, 28,29}, {0, 1, 2, 3; 42, 43, 44, 45},
{4,5,6,7;14,15,16,17}, {4,5,6,7; 30,31, 32,33}, {4,5,6,7;18,19, 20,21},
{4,5,6,7;34,35,36,37}, {4,5,6,7; 22,23,24,25}, {4,5,6,7; 38, 39,40, 41},
{18,19,20,21; 28, 29, 38, 39}, {34, 35, 36, 37; 44, 45, 22,23},

(36,37, 38, 39; 40, 41, 42, 43}, {22, 23,24, 25; 28,29, 44, 45},

{24,25, 28, 29; 26, 27, 42, 43}, {40, 41, 44, 45; 42, 43, 26, 27}.

{12,183, 16, 17; 28,29, 30, 31}, {12, 13, 32,33; 44, 45, 14, 15},

{30,31, 32, 33;18,19,20,21}, {16,17,18,19; 20,21, 22, 23},

{16,17,18,19; 24, 25, 26,27}, {32, 33, 34, 35; 40, 41, 42,43},

{20,21, 22, 23; 24, 25, 26, 27}, {38, 39, 40,41, 44, 45, 28, 29},
{8,9,10,11;14,15,16,17}, {12,13, 30, 31; 32, 33, 34, 35},

{8,9,10,11; 30, 31, 32, 33}, {12, 13, 30, 31; 36, 37, 38, 39},

{8,9,10,11; 22,23, 24, 25}, {12, 13, 14, 15; 24, 25, 26, 27},

{8,9,10,11; 42,43, 44,45}, {12,13, 14,15;16,17,18,19},
{8,9,10,11;18,19,20, 21}, {12,13, 14, 15; 20, 21,22, 23},

{8,9,10,11; 34, 35, 36, 37}, {12, 13, 30, 31; 40, 41,42, 43},

{8,9,10,11; 38, 39, 40,41}, {14,15,16,17; 34, 35, 36, 37},

{8,9,10,11; 26,27, 28, 29}, {32, 33, 34, 35; 36, 37, 38, 39},
{4,5,6,7;26,27,28,29}, {4,5,6,7;42,43, 44, 45}. O

Lemma 3.3 There exists an ORSPBD(v, 2 x 4, 1) for any v = vo (mod 32),
v € {2,6,10,14}.

Proof we begin with a 2-GDD of type 8¢, t > 2 (for whose existence,
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see Lemma 2.1), give the points weight 4, and apply Lemma 2.3 with the
input design 2 x 4-splitting GDD of type 42 to obtain a 2 x 4-splitting
GDD of type 32, t > 2. The desired result follows from Construction
2.4 with the input designs ORSPBD(v, w;2 x 4,1)s for (v,w) = {(34,2),
(38,6),(42,10), (46,14)} (for whose existence, see Lemma 3.2). O

Lemma 3.4 There exists an ORSPBD(v, w; 2 x 4, 1) for (v, w) = {(18,2),
(22,6), (26,10)}.

Proof We construct directly the designs as follows:

ORSPBD(18,2;2 x 4,1):

Point set: X = Z15, Y = Z,.

Block set: Develop the following blocks +2 mod 18: {0,1,2, 3;4,5,8,9}.

ORSPBD(22,6;2 x 4,1):

Point set: X = Zy,, Y = Z.

Block set: {0,1,2,3;6,7,8,9}, {0,1,2,3;10,11,12,13},
{0,1,2,3;14,15,16,17}, {0, 1,2, 3; 18,19, 20, 21}, {4,5,10,11;6,7,8, 9},
{4,5,14,15;10,11,12,13}, {4,5,18,19; 14,15, 16, 17},
{6,7,8,9;12,13,14,15}, {12, 13,20, 21;16,17, 18, 19},
{4,5,6,7;18,19,20,21}, {8,9,10,11;16,17,20, 21}.

ORSPBD(26,10;2 x 4,1):

Point set: X = Zgg, Y = Zj0.

Block set: {0,1,2,3;10,11,12,13}, {0,1,2,3;14,15,16,17},
{0,1,2,3;18,19,20,21}, {0, 1,2, 3; 22, 23,24, 25}, {4,5,6,7; 10,11, 12,13},
{4,5,6,7;14,15,16,17}, {4,5,6,7; 18,19, 20, 21}, {4,5,6,7;22,23,24, 25},
{8,9,14,15;10,11,12,13}, {8,9,18,19; 14,15,16,17},

{8,9,10,11; 22,23, 24, 25}, {8, 9, 22, 23; 18, 19, 20, 21},

{12,183,16,17; 20, 21, 24, 25}. O

Lemma 3.5 There exists an ORSPBD(v, 2x4, 1) for any v = vo (mod 32),
v € {18,22,26}.
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Proof we begin with a 2-GDD of type 4%+, t > 1 (for whose existence,
see Lemma 2.1), give the points weight 4, and apply Lemma 2.3 with the
input design 2 x 4-splitting GDD of type 42 to obtain a 2 x 4-splitting
GDD of type 16%**!, t > 1. The desired result follows from Construction
2.5 with the input designs ORSPBD(v,w;2 x 4,1)s for (v,w) = {(18,2),
(22,6),(26,10)} (for whose existence, see Lemma 3.4). a

Lemma 3.6 There exists an ORSPBD(v,2 x 4,1) v € {30,94} and an
ORSPBD(62,14; 2 x 4,1).

Proof We construct directly the designs as follows:

ORSPBD(30,2 x 4,1):

Point set: X = Z3p.

Block set: Develop the following blocks +2 mod 30: {0,1,2,3;4,5,8,9}.

ORSPBD(94,2 x 4,1):

Point set: X = Zoq.

Block set: Develop the following blocks +2 mod 94:
{0,1,2,3;4,5,8,9}, {0,1,2,3;12,13,16,17}, {0, 1, 2, 3; 20, 21, 24, 25},
{0,1,2, 3; 28, 29, 32, 33}, {0,1, 2, 3; 36, 37,40, 41}.

ORSPBD(62,14;2 x 4,1):

Point set: X = Zg2, Y = Z14.

Block set: {0,1,2,3; 30,31, 32,33}, {0,1,2,3;46,47,48,49},
{0,1,2,3;14,15,16,17}, {0,1,2,3; 34, 35, 36, 37}, {0,1, 2, 3; 50,51, 52, 53},
{0,1,2,3;18,19,20,21}, {0,1,2, 3; 38, 39, 40, 41}, {0,1,2, 3; 54, 55, 56, 57},
{0,1,2,3;22,23,24,25}, {0,1, 2, 3; 42, 43, 44, 45}, {0, 1, 2, 3; 68, 59, 60, 61},
{0,1,2,3;26,27,28,29}, {4,5,6,7;30,31,32,33}, {4,5,6,7; 46,47, 48,49},
{4,5,6,7;14,15,16,17}, {4,5,6,7; 34, 35, 36,37}, {4,5,6,7; 50, 51,52, 53},
{4,5,6,7;18,19,20, 21}, {4,5,6,7; 38, 39, 40, 41}, {4,5,6,7; 54, 55, 56, 57},
{4,5,6,7;22,23, 24,25}, {4,5,6,7; 42,43, 44,45}, {4,5,6,7; 58,59, 60,61},
{12,183, 58, 59; 54, 55, 56, 57}, {24, 25, 27,29; 42, 44, 60, 61},

{30, 31, 32, 33; 36, 37, 38, 39}, {46,47,48,49; 52,53, 54, 55},
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{12,183, 30, 31; 42, 43, 44, 45}, {12, 13,46, 47; 58, 59, 60, 61},
{30, 31, 34, 35; 48, 49, 50, 51}, {46,47,50,51;16,17,18,19},
{30, 31,35, 36; 52, 53, 54, 55}, {46, 47, 51,52; 20, 21, 22, 23},
{30,31,33,34; 40, 41, 46, 47}, {46, 47,49, 50; 56, 57, 14, 15},
{14,15,19,20; 36, 37, 38, 39}, {30, 31, 36, 37; 56, 57, 58, 59},
{14,15,20,21; 40, 41, 42, 43}, {30, 31,37, 38; 60, 61, 16, 21},
{14,15,21,22; 44, 45, 48, 53}, {32, 33, 34, 35; 42, 43, 44, 45},
{16,17,18,19; 26, 27, 28, 29}, {32, 33, 35, 36; 60, 61, 16,17},
{16,17,19,20; 44, 45, 48, 49}, {32, 33, 36, 37; 50, 22, 23, 24},
{16,17,20,21; 34,54, 55,56}, {32, 33, 37, 38; 55, 25, 26, 27},
{16,17,21,22; 39, 57, 58, 59}, {34, 35, 36, 39; 25, 26, 27, 28},
{18, 19,20, 23; 57,58, 59, 60}, {34, 35, 38, 39; 56,57, 58, 59},
{18,19, 22, 23; 40, 41, 42, 43}, {36, 37, 38, 39; 40, 41, 44, 45},
{20, 21,22, 23; 24,25, 28, 29}, {40, 41, 42, 43; 44, 45, 56, 61},
{24, 25, 26, 27; 28, 29, 40, 45}, {40, 41,43, 45; 58, 60, 28, 29},
{46,47,52, 53; 24, 25, 26, 27}, {46, 47, 53,54; 28, 29, 32, 37},
{48, 49,50, 51; 58,59, 60, 61}, {48, 49, 51, 52; 28,29, 32, 33},
{48,49, 52, 53; 18, 38, 39, 40}, {48, 49, 53, 54; 23,41, 42, 43},
{50,51,52, 55; 41,42, 43, 44}, {50, 51,54, 55; 24, 25, 26, 27},
{52, 53, 54, 55; 56, 57, 60, 61}, {56, 57,58, 59; 60, 61,24, 20},
{8,9,10,11; 46,47, 48,49}, {12, 13,50, 51; 46, 47, 48, 49},
{8,9,10,11;50, 51, 52, 53}, {12, 13, 38, 39; 34, 35, 36, 37},
{8,9,10,11; 54,55,56,57}, {12, 13, 54, 55; 50, 51, 52, 53},
{8,9,10,11; 58,59, 60,61}, {12, 13,42, 43; 38,39, 40, 41},
{8,9,10,11;26,27,28,29}, {12, 13, 34, 35; 30, 31, 32, 33},
{8,9,10,11; 30, 31,32, 33}, {12,13,18,19; 14,15,16,17},
{8,9,10,11;14,15,16,17}, {12,13,22,23; 18,19, 20, 21},
{8,9,10,11; 34,35, 36,37}, {12,183, 26,27; 22,23, 24, 25},
{8,9,10,11;18, 19,20, 21}, {12, 13, 14, 15; 26, 27, 28, 29},
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{8,9,10,11;38, 39, 40,41}, {14, 15, 16,17; 20, 21, 22, 23},
{8,9,10,11;22, 23,24, 25}, {14,15,17,18; 24, 25,30, 31},
{8,9,10,11; 42,43, 44,45}, {14, 15,18, 19; 32, 33, 34, 35},
{4,5,6,7;26,27,28,29}, {56,57, 59, 61; 26, 28, 44, 45}. ]

Lemma 3.7 There exists an ORSPBD(v,2 x4, 1) for any v = 30 (mod 32).

Proof ORSPBD(30,2 x 4,1), ORSPBD(62,2 x 4,1) and ORSPBD(94, 2 x
4,1) see Lemma 3.6. For the other values of v, we begin with a 2-GDD
of type 12%s!, s = 4,12,20 and ¢ > 1 (for whose existence, see Lemma
2.1), give the points weight 4, and then apply Lemma 2.3 with the input
design 2 x 4-splitting GDD of type 42 to obtain a 2 x 4-splitting GDD of
type 48%(4s)!. The desired result follows from Construction 2.5 with the
input designs ORSPBD(62, 14;2 x 4,1) and ORSPBD(4s+ 14,2 x 4,1) (for
whose existence, see Lemma 3.6). O

Proof of Theorem 1.4 By Lemma 3.1, Lemma 3.3, Lemma 3.5 and
Lemma 3.7 we complete the proof of Theorem 1.4.
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