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Abstract

Let k be a non-negative integer, two digraphs G = (V, A), G’ = (V, 4')
are {k}-hypomorphic if for all k-element subset K of V, the subdigraphs
G[K] and G'[K] induced on K are isomorphic. The equivalence relation
Dg,g' on V is defined by : zDg ¢y if £ = y or there exists a sequence
ZTo = Z,...,Tn = Yy of elements of V satisfying (z;,zi11) € A if and only
if (zi,ziy1) € A’, for all i, 0 < i < n — 1. The main result of this paper
is the following : Let v, k be non-negative integers with v > k + 6, if G
and G’ are two digraphs, {4}-hypomorphic and {v — k}-hypomorphic on
the same vertex set V' of v vertices, and C is an equivalence class of the
equivalence relation Dg ¢, then G'[C — A] and G[C — A} are isomorphic
for all subset A of V of at most k vertices. In particular, G'[C] and G[C]
are {v — h}-hypomorphic for all h € {1,2,...,k}, G'[C] and G[C] (resp. G’
and G) are isomorphic. In particular, for k = 1 and k = 4 we obtain the
result of G. Lopez and C. Rauzy [7]. As an application of the main result,
we have : If G and G’ are {v — 4}-hypomorphic on the same vertex set V
of v > 10 vertices, then G[X] and G’[X] are isomorphic for all subset X of
V'; the particular case of tournaments was obtained by Y. Boudabbous [2].

Key words : Digraph, Isomorphy, Hereditary isomorphy, Hypomorphy,
Reconstruction, Tournament.

1 Introduction

A directed graph or simply digraph G consists of a finite non-empty
set V(G) of vertices together with a prescribed collection A(G) of orde-
red pairs of distinct vertices, called the set of the arcs of G. Such a di-
graph is denoted by (V(G), A(G)) or simply by (V, A). The cardinality of
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G is that of V. We denote this cardinality by |V(G)| as well as |G|. For
example, given a non-empty set V', (V, 0) is the empty digraph on V whereas
(Vi{(z,y) : ¢ # y € V}) is the complete digraph on V. Given a digraph
G = (V, A), with each non-empty subset X of V associate the subdigraph
(X, AN (X x X)) of G induced by X denoted by G[X]. The subdigraph
G[V —X], where X C V, (resp. G[V —{z}], where z € V') is also denoted by
G —X (resp. G—z). Let G = (V, A) be adigraph. Forz #y e V,z —¢cy
or y +—¢ = means (z,y) € A and (y,z) ¢ A, T +—¢ y means (z,y) € A
and (y,z) € A, z...cy means (z,y) ¢ A and (y,z) € A. Forz € V and
Y CV, xz — Y signifies that foreveryy € Y,z —¢c y. For X,Y C V,
X —¢ Y signifies that for every 2 € X, 2 —¢ Y. For z € V and for
XYcV,ze——(qY, z¢¢cY, z..cY,X+—cgY and X..cY are
defined in the same way. Given a digraph G = (V, A), distinct vertices z
and y of G form a directed pair if either £ — ¢ y or £ «—¢ y. Otherwise,
{z,y} is a neutral pair; it is full if z +—¢ y, and void when z...cy. A
digraph T = (V, A) is a tournament if all its pairs are directed. A transitive
tournament or total order or n-chain is a tournament T of cardinality n
such that for z,y,2 € V(T), ift —r y and y — 1 2 then z — 7 z. Given
a total order O = (V,A), z <y meansz —o y for z,y € V.

In another respect, given digraphs G = (V, A) and G’ = (V', A’), a bijec-
tion from V onto V' is an isomorphism from G onto G’ provided that for
any r,y € V, (z,y) € A if and only if (f(z), f(y)) € A’. Two digraphs are
then isomorphic if there exists an isomorphism from one onto the other,
in that case write G ~ G'. In the contrary case, write G % G’. With each
digraph G = (V, A) associate its dual G* = (V, A*), defined as follows :
forz #yeV, (z,y) € A* if (y,z) ¢ A. Say that a digraph is self-dual if
it is isomorphic to its dual. A digraph H embeds into a digraph G if H is
isomorphic to a subdigraph of G. Given digraphs G and G’ with the same
vertex set V, G and G’ are hereditary isomorphic if for each subset X of
V, G[X} and G’[X] are isomorphic; given an integer k, the digraphs G and
G’ are {k}-hypomorphic if for every set K of k vertices, the subdigraphs
G|K} and G’[K] are isomorphic. Then, a digraph G is {k}-reconstructible
if every graph G’ which is {k}-hypomorphic to G is in fact isomorphic to
G. If |V| > k, we say that G and G’ are {—k}-hypomorphic if they are
{lV| — k}-hypomorphic. A digraph G is {—k}-reconstructible if every graph
G’ which is {—k}-hypomorphic to G is isomorphic to G. When G and G’
are {p}-hypomorphic, for every p < k, we say that G and G’ are (< k)-
hypomorphic. When G and G’ are {k}-hypomorphic and {l}-hypomorphic,
we say that G and G’ are {k,l}-hypomorphic. In the same way, we intro-
duce the notion of (< k)-reconstruction.

The following notion is due to G. Lopez [4]. Let G = (V, A) and G’ =
(V, A") be two (< 2)-hypomorphic digraphs. Denote D¢,/ the binary re-
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lation on V such that : for z € V, zDggz; and forz £y € V, zDe¢ gy
if there exists a sequence zo = ,...,2n = y of elements of V satisfying
(zi,%iq1) € A if and only if (z,7i41) € A’, for all i, 0 < i < n—1. The
relation D¢ g is an equivalence relation called the difference relation, its
classes are called difference classes.

The main result of this paper is :

Theorem 1.1. Let k > 1 be an integer. If G and G’ are two {4,—k}-
hypomorphic digraphs on at least k + 6 vertices and C is a difference class
of D¢ g, then :
1. The subdigraphs G'[C — A] and G[C — A] are isomorphic for all subset
A of V of at most k vertices.

2. G'[C] and G[C] are {—h}-hypomorphic for all integer h € {1,2,...,k}.

3. ¢'[C) ~ G[C).

4. G'~@G.

In particular for the cases k = 1 and k = 4, we obtain the following
result of G. Lopez and C. Rauzy [7].

Theorem 1.2. [7]

1. The digraphs on at least 7 vertices are {4, —1}-reconstructible, (i.e :
if G and G' are {4, —1}-hypomorphic then G’ and G are isomorphic).

2. The digraphs on at least 10 vertices are {—4}-reconstructible.
An application of the Theorem 1.1 is the following :

Theorem 1.3. Two {—4}-hypomorphic digraphs on at least 10 vertices,
are hereditary isomorphic.

In Theorem 1.3, the particular case of tournaments was obtained by Y.
Boudabbous [2].

Theorem 1.4. (2] Two {—4}-hypomorphic tournaments, on at least 10
vertices, are hereditary isomorphic.

2 Some particular digraphs

Consider the following digraphs : F3 = ({0, 1,2}, {(1,0), (0,2), (2,0)}),
Pf = ({0, 1, 2}, {(1,0), (2,0),(1,2),(2,1)}), P, = ({0,1, 2},{(1,0), (210)})‘
A digraph isomorphic either to F3 or to Fj is called a flag. A full (resp.
void) peak is a digraph isomorphic to Py or its dual (resp. to P, or its dual).
A peak is either a full pick or a void pick (see Figure 1).
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FIGURE 1 - Flag, full peak, void peak.

Let Dy = ({0,1,2,3},{(0,2),(2,1),(1,0),(0,3),(1,3),(2,3)}). A die-
mondis a digraph isomorphic to Dy or to D} (see Figure 2). Given an integer
n > 2, the digraph C,, is defined on {0,1,...,n—1} by i —¢, j if and only
if j = i+1foreachi € {0,1,...,n—2}, and all its other pairs are neutral and
having the same type. A digraph isomorphic to C,, is called a n-consecutivity
or simply a consecutivity. Clearly, a n-consecutivity has exactly (n — 1) di-
rected pairs and its neutral pairs are all void pairs or all full pairs. A n-cycle
or cycle is any digraph isomorphic to one of the digraphs gotten from C;, by
replacing the neutral pair {0,n — 1} by (n — 1) — 0, clearly every 3-cycle
is iomorphic to the tournament ({0, 1,2}, {(1,0), (0,2), (2,1)}).

T
/ 3 \ / -O>‘-2 1/,_‘0>*2

FIGURE 2 - Diamond, 3-consecutivity, 3-cycle.

A n-near-chain or a near-chain is every digraph obtained from a n-chain
by replacing the directed pair formed by its extremities by a neutral pair.
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Clearly, a 3-near-chain is a 3-consecutivity.

Given a digraph G = (V, A), a subset I of V' is an interval of G if for a,b € I
andz € V — I, (a,z) € A if and only if (b,z) € A, and the same for (z,a)
and (z,b). For instance, §, V and {z}, where = € V, are intervals of G,
called trivial intervals. A digraph is indecomposable if all its intervals are
trivial, otherwise it is decomposable.

Given a digraph S = ({0,1,...,m — 1}, A), where m > 1 is an integer, for
i€ {0,1,...,m — 1} we associate a digraph G; = (V;, A;), with |V;| > 1,
such that the V;’s are mutually disjoint. The S-sum of the G;’s is the di-
graph denoted by S(Go, Gy, ...,Gm—1) and defined on the union of the V;’s
as follows : given z € V; and y € V;, where i, € {0,1,...,m — 1}, (z,y) is
an arc of $(Go,G1,...,Gm-1) if either ¢ = j and (z,y) € A; or i # j and
(¢,7) € A. This digraph replaces each vertex i of S by G;. We say that the
vertex ¢ of S is dilated by G;.

Given an integer n > 1, we define the family S, of digraphs on the 2n
vertices £1,%2,...,t2n by t; —s, tigx for i € {1,2,...,2n} and k €
{1,2,...,n—1}, and the pairs {¢;,%;1.} are neutral for every i € {1,2,...,n},
these integers are here considered modulo 2n. Next, we introduce a particu-
lar family £(S,) of extensions of the digraphs family S,. An element §,, of
this family is obtained from an element of S,, by adding mutually disjoint
sets s1,52,...,52n (the set s; is called a sector and it could be empty) to
the vertex set {t;,s,...,%2,} of Sy satisfying the following conditions :

(i) 6, does not embed diamonds.

(ii) For all 7 € {1,2,...,2n}, the subdigraph &,[s; U {t;,t;41}] is a finite
chain with ¢; as first element and ¢;;; as last element.

iii) For all 4, j, if s; U s; is non-empty, then J,(s; U s;) is a tournament.
3 3

(iv) For all 4, for all z in s; U {t;} and for every y in s;y;, where j €
{1,2,...,n—1}, we have £ —5_ v.
(v) Foralli, forall j € {n,n+1,...,2n—1} and for all y in s;;, we have
y —s, ti.
Let h be an non-negative integer. The integers below are considered mo-
dulo 2h + 1. The tournament Ton4; defined on {0,1,...,2hk} (see Figure 3)
by Tor+1[{0,1,..., h}] is the usual total order on {0,1,...,A}, Ton+1[{h +
1,...,2h}] is also the usual order on {h+1,h +2,...,2h} however {i +
L,i+42,.....,h} —p, ., t+h+1 —p,,, {0,1,...,i} for every i €
{0,1,...,h — 1}. A digraph G is said to be an element of D(Ton41) if
G is obtained by dilating each vertex of T4, by a finite chain p;, then
G = Tont1(po,p1,...,p2n). We recall that Topy is indecomposable and
D(T3h41) is the class of finite tournaments without diamond [6].
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FIGURE 3 - T2h+1.

3 Combinatorial Lemma of M. Pouzet

A well-known lemma in combinatorics is the following famous result of
M. Pouzet [8].

Lemma 3.1. (Combinatorial lemma of M. Pouzet [8]) Let p and r be non-
negative integers, V be a set of size v > p+r elements, U and U’ be sets
of subsets P of p elements of V. If for every subset Q of p+r elements of
V, the number of elements of U which are contained in Q is equal to the
number of elements of U’ which are contained in Q, then for every finite
subsets P! and Q' of V, such that P’ is contained in Q' and Q' \ P’ has at
least p+r elements, the number of elements of U which contain P' and are
contained in Q' is equal to the number of elements of U’ which contain P’
and are contained in Q'.

In particular if |[V| > 2p+ 7, we have U = U".

To continue, some notations are needed :

Notation 3.2. Given a digraph G=(V,A), a subset A of V and a digraph
H, denote : N(G,H,A)={PCV : ACP, G[P|~ H}and n(G,H,A) =
(G, H, A)|. Moreover i \V(H)| = |A| + 1, we set N(G,H,A) = {z €
V-4 : GAU{z}] ~

Note that z € N(G, H, A) zf and only if AU {z} € N(G, H, A),

s0 |N(G, H, A)| = n(G, H, A).

From Lemma 3.1, follows the following results :
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Lemma 3.3. [8, 9] Let k > 1 be an integer, G and G’ be two digraphs
defined on the same vertex set V of v elements. If G and G' are {k}-
hypomorphic, then G and G’ are (< min(k,v — k) )-hypomorphic.

From Lemma 3.3, follows immediately this result.

Corollary 3.4. For an integer k > 1, two digraphs {—k}-hypomorphic on
at least 2k vertices are (< k)-hypomorphic.

Proposition 3.5. Let k > 1 be an integer, G and G' be two {—k}-
hypomorphic digraphs defined on the same vertex set V of cardinality v, and
H be a digraph verifying |V(H)| < v — k. Then n(G, H, A) = n(G', H, A)
for each subset A of V with |A| < k.

Proof. We apply Lemma 3.1 to the sets :
U={PCV :GPl~H}andU'={PCV :G'[P|~H}

We conclude considering p = |V(H)|, r=v—k—-p, PP=Aand Q' = V.
a

4 Proof of Theorem 1.1

The proof uses the following results.
Lemma 4.1. [6] Given two (< 4)-hypomorphic digraphs G and G, and C
an equivalence class of Dg g, then :

1. C is an interval of G and G', moreover if C' is an another class of
D¢ ¢, we have either C — C' orC' — C orC «— C' or C...C'
in G and G'.

2. If G'[C] and G[C] are isomorphic for each equivalence class C of
D¢ g, then G and G’ are isomorphic.

3. Neither peaks nor flags and no diamonds are embeddable in the sub-
digraphs G[C] and G'[C).

4. Every 3-consecutivity (resp. 3-cycle) in G[C] is reversed in G'[C].

5. If G[C] is an element of £(S,) or G[C] embeds a 3-cycle, then there
is no adjacent neutral pairs in G[C].

Lemma 4.2. [6] Given two (< 4)-hypomorphic digraphs G and G', and a
difference class C of Dg .

1. If G[C] is a tournament, then there exists an integer h > 0 satisfying
that G[C] is an element of D(Tan+1).

2. If G[C] has not any 3-cycle, then G|C] is either a chain or a near-
chain or a consecutivity or a cycle.
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3. If G[C] has a 3-cycle and G[C) is not a tournament, then there ezists
an integer n > 1 such that G[C) is an element of £(Sy).

From Lemmas 4.1 and 4.2, follow immediately this result :

Corollary 4.3. Let G and G’ be two (L 4)-hypomorphic digraphs and C
be a difference class of Dg .
1. If G[C)] is neither a tournament without diamonds nor an element of
E(Sn), then G'[C] and G[C] are hereditary isomorphic.
2. Whenever G[C] is either a tournament without diamonds or an ele-
ment of £(Sy), then G'|C) =~ G*[C].

Proposition 4.4. [1, 3] Given a digraph G on at least two vertices, consi-
der the digraph R (resp. R') obtained by dilating a vertez ip of G by a
digraph H (resp. H'). If R and R' are isomorphic, then H and H' are
isomorphic too.

The next result is a consequence of Proposition 4.4.

Corollary 4.5. Letp > 1 be an integer, M and M’ be two digraphs defined
on the same vertez set {0,1,...,p}, f be an isomorphism from M into M’
and H (resp. H') be a digraph. Given ig € {0,...,p}, and a digraph R (resp.
R') obtained from M (resp. M') by dilating the vertex io (resp. f(io)) by
H (resp. H'), then R' ~ R if and only if H' ~ H.

Proposition 4.6. Given G = (V, A), G' = (V, A") two {4, —1}-hypomorphic
digraphs on at least 7 vertices. For each difference class C of Dg g, we have

1. G'[C] and G[C] are isomorphic.
2. G'[C — z] and G[C — z) are isomorphic for every z in V.

Proof. If G has one difference class, we apply directly Theorem 1.2. Other-
wise, if G[C] is neither a tournament without diamonds nor an element of
£(Sn), by Corollary 4.3, G’[C] and G[C] are hereditary isomorphic. To
continue, we assume that G[C] is either a tournament without diamonds
or an element of £(S,).

1. Let b € C and H = G|C]. From Lemma 4.1, H has neither peaks

nor diamonds and its eventual neutral pairs are disjoint. Evidently,

C is an element of N(G,H,{b}) = {PCV : b€ Pet G[P| > H}.

Consider P C V such that P # C. We claim that P € N(G, H, {b})

if and only if P € N(G’, H, {b}). Let C’ be a difference class of Dg,c

such that PNC’ # 0, and z € P— C’. By Lemma 4.1, C'N P is an
interval of G[P] and G'[P].

- Ifz «—g C orz...gC', as G(P) ~ H and its eventual neutral

pairs are disjoint in H, then |PNC’| = 1, so G'(PNC') =~ G(PNC").
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-Ifz —¢ C' or C' —¢ z, as G(P) ~ H and H does not embed
any peak, then G(PN (") is a tournament. In an other hand, G[P)
does not embed any diamond, then G(P N C’) is a chain. Thus,
G'(PNC)~G(PNnC').

From the two cases above, we have G’[P] ~ G[P)],so P € N'(G, H, {b})

if and only if P € N(G', H, {b}).

According to Proposition 3.5, n(G’, H, {b}) = n(G, H, {b}) and then

C € N(G', H,{b}). Therefore, G’[C] and G|[C] are isomorphic.

2. Consider 79 € C. The digraphs M and M’ are defined as follows :
M = G[(V-C)U{ip}] and M’ = G'[(V —C)U{ip}]. As any difference
class C’ of Dg g distinct from C is a difference class of Dy, ¢/, by the
first assertion M’[C’] = M[C"]. Then, there exists an isomorphism f
from M onto M’ satisfying that f(io) = io. Let H = G[C — z] and
H' = G'|C — z]. Clearly, the digraph R = G — z (resp. R' = G' — 1)
is obtained from M (resp. M’) by dilating the vertex io by H (resp.
H'). Since G — z and G’ — z are isomorphic, then by Corollary 4.5,
G[C — z] and G'[C — z] are isomorphic.

(]
Proof of Theorem 1.1. The assertions 2 and 3 are consequence of the
first one. The assertion 4 follows from 3, and 2 of Lemma 4.1. We will do
the proof of the first assertion by induction on k. If £ = 1, we conclude
by Proposition 4.6. For k > 1, assume that G and G’ are {4,—(k + 1)}-
hypomorphic, consider C a difference class of D¢ ¢'. Denote by V' the vertex
set of G and G'. We will prove that G'[C'— A] ~ G[C — A], for all subset A of
V with |A| < k + 1. If G[C] is neither a tournament without diamonds nor
an element of £(S,) then, by Corollary 4.3, G’'[C] and G[C] are hereditary
isomorphic, so G'{C — A] and G[C — A] are isomorphic. Now, we may assume
that G[C] is a tournament without diamonds or an element of £(S,,).
Remark If z € C, then C — z is a chain or a neutral pair or a difference
class of Dg_z g/—z.
Indeed, since G[C] is a tournament without diamonds or an element of
&(Sn), G[C — 7] is a chain or a neutral pair or admits a 3-cycle or a 3-
consecutivity. From Lemma 4.1 every 3-cycle and 3-consecutivity in G[C]
is reversed in G’[C], then C — z is a difference class of Dg_z,c'—z-

1. If V= C, we have G —x and G’ — z are {4, —k}-hypomorphic. From
induction hypothesis G’ —z ~ G — z, so G and G’ are {4,-1}-
hypomorphic. Hence, Theorem 1.2 implies that G’ ~ G. From Remark
above we may suppose that V — z is a difference class of Dg_z,G'~z-
From the induction hypothesis, G'[V — BU {z}] ~ G|V — BU {z})
for B C V with B| <k, so G'[C — A] ~ G[C — A] for all subset A of
V with |[A| <k +1.

21V #C,letyeV—C, we have G — y and G’ — y are {4,—k}-
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hypomorphic and C is a difference class of Dg_y,g'—y. From the in-
duction hypothesis, G’|[C] ~ G[C]. Let z € C, we have G — z and
G' — z are {4, —k}-hypomorphic. From Remark above, we assume
C — z is a difference class of Dg—z,¢'—¢. From the induction hypo-
thesis, G'(C — BU {z}] ~ G[C — B U {z}] for all subset B C V
with |B| < k. So, G'[C ~ A] =~ G[C — A] for all subset A of V' with
Al < k+1.

o

5 Proof of Theorem 1.3

We introduce the three non self-dual subdigraphs, of cardinality five,
gotten from S,. We denote by As and Bg elements of £(S;) such that
s1 = {1,2}, s2 = {3} are the only sectors of As also Bs, s2 — s1 and
the neutral pair of As (resp. Bs) is full (resp. is empty). We call Cs every
element of £(S;) such that the cardinality of the sector s; is 1 and its two
neutral pairs are full for i = 1 and void for 7 = 2, (see Figure 4).

131 ty i .01

SN N
/

1—2) 3+ ., (1—2) ta----

ANVZERNVZZEEAN

FIGURE 4 — A;, By and Cs.

3

Let us recall the following result due to G. Lopez which is very useful
for the proof.

Theorem 5.1. [{, 5] All digraphs are (< 6)-reconstructible.

From Theorem 5.1 and Lemma 3.3 follows immediatly this result
Corollary 5.2.
1. Every two (< 6)-hypomorphic digraphs are hereditary isomorphic.

2. For all integer k > 6, every two {—k}-hypomorphic digraphs on at
least k + 6 vertices are hereditary isomorphic.
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3. If G'[C] and G[C] are (< 6)-hypomorphic and C is an interval of
G and G’ for each equivalence class C of Dg,c, then G and G’ are
hereditary isomorphic.

Proposition 5.3. Given two {—4}-hypomorphic digraphs G and G’ defined
on the same vertex set on at least 9 vertices. Let C be a difference class
of Dg,g:. If G[C] is not a tournament without diamonds, then G'|C] and
G|C] are hereditary isomorphic.

Proof. From Corollary 3.4, G and G’ are (< 4)-hypomorphic, so G[C|
and G’[C] are (< 4)-hypomorphic. From Corollary 4.3, we may suppose
that there exists an integer n > 1 such that G[C] is an element of £(S,).
Proposition 3.5 is often used in this proof by choosing particular subset X
of V(G) such that G[X] ~ A5 or Bs or Cs or sometimes their duals. As
every 3-consecutivity and even 3-cycle in G[C] is reversed in G’[C] (Lemma
4.1), G'[X] =~ G*[X]. According to n, we have the next claims :

Claim 5.4. Ifn > 3, then G[C] € S,.

Proof. By contradiction, we may assume that there existsani € {1,...,2n}
such that s; # 0. Without loss of generality, suppose that s; # §. Let
b € s1. Set A = {t34n,t24n,t14n,b} and H the subdigraph induced by G
on AU {t1}. Notice that H =~ A} or B;. The only sectors of H are {b} and
{t24n,ta+n}. As every 3-consecutivity and even 3-cycle in G[C] is rever-
sed in G’[C] (Lemma 4.1), G’'[AU {t,}] is isomorphic to H*. It is clear that
N(G,H, A) (resp. N(G', H, A)) is a subset of {t;,t2,3}, t1 € N(G, H, A)
and t; € N(G', H, A). As {b,t34,} is an interval of the induced subdigraphs
of G and G’ on {b,t3,t24n,t34n}, and not an interval of G[A U {t3}] and
G'[AU{t2}], t2 is neither an element of N(G, H, A) nor of N(G', H, A). Like-
wise, the vertex t3 is neither an element of N(G, H, A) nor of N(G', H, A).

Thus, n(G,H,A) =1 and n(G', H,A) = 0; which contradicts Proposition
3.5. (m]

Claim 5.5. Ifn > 3, then n =3, so G[C] € S3 and its neutral pairs have
the same type. So, G'[C] and G|C] are hereditary isomorphic.

Proof. Firstly, suppose by contradiction that n > 4. By Claim
5.4, the sector s; is empty, for every i € {1,...,2n}. We consider A; =
{t1,t2,t3,t14n} and Hy = G[A; U {t4+n}]- Notice that H; =~ As or Bs. The
only sectors of H; are {t2,t3} and {t44+.}

By definition of S, N(G, Hy, A1) = {tiyn;4 <i<n}and N(G', H}, A;) =
0. This implies that n(G, Hy, A1) =n—3 > 1 and n(G’, Hy, A;) = 0; which
contradicts Proposition 3.5.

Now G[C] € S;. Without loss of generality, we assume that all the neu-
tral pairs of S3 are void except that of {ts,ts}. For Ay = {t1,ta,t3,t4}
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and Hy = G[A2 U {t¢}], we have Hy ~ Cs, N(G,Hy,A2) = {ts} and
N(G',Hz, A3) = 0. Thus, n(G, Hz, A2) # n(G', Hz, A2) ; which contradicts
Proposition 3.5. So, all neutral pairs of G[C] are of the same type. We recall
that every 3-consecutivity and 3-cycle in G[C] is reversed in G’|C] (Lemma
4.1). Hence G[C] and G'[C] are hereditary isomorphic. o

Claim 5.6. Ifn =2, then G[C] € S; or G[C] € £(S2) and its two neutral
pairs have the same type and its sectors are empty except one of cardinality
1. So, G[C] and G'|C) are hereditary isomorphic.

Proof. Assume by contradiction that there exists an i € {1,2,3,4} such
that |s;| > 2. Without loss of generality, let b # ¢ € s;. A; = {t1,b,¢,t4}
and H; = G[A; U {t3}]. Clearly, H; ~ As or Bs, {b,c} and {t4} are the
only sectors of Hy, N(G, Hy, A;) and (resp. N(G', H1, Ay)) is a subset of
{t2,t3}. From Lemma 4.1, G'[A; U {t3}} =~ Hy then t3 € N(G, Hy, A;), but
ts € N(G', Hy, Ay). Since {t1,b,c} is an interval of the induced subdigraphs
of G and G’ on {t4,t1,b,c,t2}, ta is neither an element of N(G, Hy, A1)
nor of N(G', Hy, A;). So, n(G, Hy, A;) = 1 and n(G’, H;, A;) = 0; which
contradicts Proposition 3.5. Thus, if it exists an ¢ € {1,2,3,4} such that
s; # 0, then s; is a singleton. We more suppose that there is at least two
non-empty sections. If those two sectors are consecutive; for instance, let
8 = {bl} and sg = {bg}. Let Ay = {bl,tz,bz,ts}, and H; = G[Az U {t4}].
Notice that Hy ~ As or Bs, {bs,t3} and {b,} are the only sectors of H
and N(G, Hj, A2) (resp. N(G',Hs, Ap)) is a subset of {t1,t4}. Clearly,
ts4 € N(G,Ha, Az) but t4 & N(G',Hp, A3). As {by,b2,t2} is an interval
of the induced subdigraphs of G and G’ on {3, b1,b2,t2,t1}, t; is neither
an element of N(G, Hy, A;) nor of N(G', Ha, A2). Thus, n(G, Hz, A3) =1
but n(G’, Hy, A2) = 0; which is absurd. Therefore, there exists exactly
two non-consecutive sectors which are singletons. Without loss of genera-
lity, we may suppose that s; = {c1}, s3 = {c3} and ¢; —¢ c¢3. Consider
Az = {01,03,t3,t4} and H3 = G[AsU{tz}]. We have H3 ~ As or Bs, {t3,63}
and {c;} are the only sectors of H3. N(G, Hs, A3) (resp. N(G', H3, A3)) is a
subset of {tl,tg}. We have t; € N(G, Hz, A3) but t2 ¢ N(G', H3, A3). Since
the set {c3,t4} is an interval of the induced subdigraphs of G and G’ on
{t1,t3,c3,t4} and not an interval of the induced subdigraphs of G and G’ on
A3U{t 1}, t; is neither an element of N(G, H3, A3) nor of N(G’, H3, As3). So,
we have n(G, H3, A3) = 1 which is not equal to n(G’, H3, A3) = 0. Conse-
quently, G[C| has three empty sectors and the forth sector is a singleton.
To conclude, it suffices to show that if G[C] is an element of £(S2), its two
neutral pairs have the same type and its sectors are empty except one of
cardinality 1. By contradiction, we may assume that t; ... t3 and {3 +— ¢4
in G and G'. For Ay = C — {t4} and Hy = G[C), n(G, Hy, Ag) = 1 and
n(G', Hy, A4) = 0; which contradicts Proposition 3.5. o

Claim 5.7. If n = 1, then G[C] is either a near-chain, or an element
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of £(S1) on 5 vertices with sectors s; = {bi,c1} and s; = {by} such that
G[{b1, b2, c1}] is a 3-cycle, or an element of £(S,) on 4 vertices. So, G[C]
and G'[C] are hereditary isomorphic.

Proof. If |s;| > 3, we will prove that s; = @ for j # i € {1,2}. By contradic-
tion, we may assume that for instance there exists by, c;,d; € s; and b, € s,
such that b, —¢ {b1,¢1}. Set A; = {tl,bl,bg,cl} and H; = G[A, U {tz}].
Notice that H; =~ A5 or Bs, {b1,c1} and {b;} are the only sectors of H;.
It is obvious that N(G,Hy, Ay) = {t2} and N(G',H,, A;) = 0. Conse-
quently, we get n(G, Hy, A;) = 1 and n(G’, Hy, A;) = 0; which is absurd
by Proposition 3.5. Therefore, G(C] is a near-chain or |s;| € {0,1,2}. If
|C| = 5, we suppose for instance that s; = {b1,a1} and so = {b2}. It
is sufficient to verify that the subdigraph G[{b1,bs,¢;}] is a 3-cycle. By
contradiction, assume that G[{b;, b2, ¢1}] is a 3-chain. If {b;,¢,} is an inter-
val of G, for Az = {t1,b1,b3,¢1} and Hz = G[A2 U {t,}], n(G, Hz, A2) =1
and n(G', Hz, A3) = 0. Therefore, {b),c1} is not an interval of G. Wi-
thout loss of generality, suppose that by —¢ ¢;1. If by —¢ b2, necessary
by —g c1. We get {b1,b3,t1} —¢ ¢ and G[{b1,bs,t1}] is a 3-cycle.
Consequently, G[{bi,b2,%1,¢}] is a diamond; which contradicts Lemma
4.1. Thus, by —g by so ¢; —rg ba. We get G[{b1,bs,c1}] is a 3-cycle.
If ICI = 6, then s, = {bl,cl} and s3 = {bz,Cz}. Let by —¢ ¢; and
by — g cz. From the previous case, to forbid chains, we have by —¢ b;
then G[{b1, b2, c2}] becomes a chain ; which is absurd. o

Let us recall the following result of Y. Boudabbous [2].

Lemma 5.8. (2] Let T and T' be two (< 4)-hypomorphic tournaments on
at least 6 vertices. Then, T and T' are (< 5)-hypomorphic.

Proof of Theorem 1.3. We shall denote the vertex set of G by V.
Let C be a difference class of Dg,g'. From Proposition 5.3, we may assume
that G[C] is a tournament without diamonds. From Corollary 3.4, G and
G’ are (< 4)-hypomorphic. In addition, Lemma 5.8 proves that G[C) and
G'[C] are (< 5)-hypomorphic. Using Corollary 5.2, it suffices to prove that
G[C] and G'[C] are {6}-hypomorphic. We distinguish five cases :

Casel : |C| > 10. Let X C C such that |X| = 4. By Theorem 1.1,
G[C - X] and G'[C — X] are isomorphic. Thus, G[C] and G'[C] are {—4}-
hypomorphic. We may conclude by Theorem 1.4.

Case 2:|C| = 9. Let X C C such that |X| = 3. By Theorem 1.1, G[C — X]
and G'[C — X] are isomorphic. which implies that G[C] and G'[C] are {6}-
hypomorphic.

Case 3 : |C| = 8. From Theorem 1.1, for z # y € C, G'[C - {z,y}] and
G[C — {z,y}] are isomorphic then G[C] and G’[C] are {6}-hypomorphic.
Case 4 : |C| = 7. Using Theorem 1.1, for z € C, G'[C — {z}] and G[C —{z}]
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are isomorphic then G[C] and G’[C] are {6}-hypomorphic.
Case 5 : |C| < 6. From Theorem 1.1, G’[C] and G|[C] are isomorphic then
G[C] and G'[C] are {6}-hypomorphic. (=]

6 {—k}-hypomorphic digraphs

Theorem 1.3 is done with k = 4, we will generalize it for k > 4.

Corollary 8.1. Given an integer k > 4, let G = (V, A) and G' = (V, A')
be two {—k}-hypomorphic digraphs with at least k+6 vertices. Then, G and
G' are hereditary isomorphic.

Proof.

-~ If k=4, we apply simply Theorem 1.3 to G and G'.

- If k > 6, by Corollary 5.2, G and G’ are hereditary isomorphic.

- If k = 5, by Corollary 3.4, G and G’ are (< 5)-hypomorphic. Given a
subset A of V on at most 6 vertices, we shall prove that G[A] ~ G'[A].
Let = be an element of V — A. Then, G’ — z and G — z are two {—4}-
hypomorphic digraphs with at least 10 vertices. Using Theorem 1.3,
G — z and G’ — z are hereditary isomorphic, in particular, G[A] and
G'[A] are isomorphic, hence G and G’ are (< 6)-hypomorphic, so by
Corollary 5.2, G and G’ are hereditary isomorphic.

]

In Corollary 6.1, the value k+6 is optimal. For example, the tournament
T (see Figure 5) and its dual are {—k}-hypomorphic, where T is the dilating
of a 3-cycle by a 2-chain and a (k + 2)-chain.

0<1<...<k+1)

k+4 k+2— k+3)

FIGURE 5 - The dilating of a 3-cycle by a 2-chain and a (k + 2)-chain.

Obviously, T and T* are not (< 6)-hypomorphic (the restrictions of T
and T* on the set {0,1,2,k+ 2,k + 3,k + 4} are not isomorphic).
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Corollary 6.1 shows that two {—k}-hypomorphic digraphs on at least k + 6
vertices are hereditary isomorphic for all & > 4. What would happen for
k € {1,2,3}? The answer is negative for k € {1,2}, see Proposition 6.3,
however for £ = 3 we conjecture this :

Conjecture 6.2. All {4,—3}-hypomorphic digraphs are hereditary isomor-
phic.

Proposition 6.3. Given h > 4 and the tournaments T = Topy, and T' =
Tihar.

1. T and T' are {4, —1}-hypomorphic.

2. T and T’ are {4, —2}-hypomorphic.

3. T and T’ are not {—3}-hypomorphic.

4. T and T’ are not (< 6)-hypomorphic.

Proof. Given an integer h, all the considered integer are modulo 2k +1. We
start with two simple observations. Firstly, it is well-known that T544; and
its dual are (< 4)-hypomorphic. Secondly, for & > 2, since in Tox4) every
vertex ¢ dominates its h successive vertices and dominated by the other
vertices that is {i + A+ 1,i+h +2,...,i -1} —p,,, i and i —7y,,,
{i+1,i+2,...,i+ h} for every i € {0,1,...,2h}, Tony, is self-dual. It
suffice to consider the isomorphism f such that f(i) =i and f(i+j) =i—j
for every j € {1,2,...,h}.

1. Top4y — ¢ admits a single non trivial interval I; = {i + h,i + A + 1}.
Besides, we have Top41 — {i,i+h}, Tony1—{i,i+h+1} and To_ are
isomorphic. As Ty, is self-dual, we get an isomorphism from T — i
to T” — i which is denoted by g such that g(I;) = I;. Therefore T and
T' are {4, —1}-hypomorphic.

2. Top41 — {4,i 4 1} admits a single non-trivial interval I; = {i + h,i +
h+1,i+ h +2}. Consider the distinct elements z,y of I;. Evidently,
Tongr — {i,5+1,2,y} ~ Top—3. Thus there is an isomorphism k from
Tony1 — {i,i + 1} to T;h+l - {i,i + 1} such that h(I;) = I;. Lastly, it
exists ¢ # j € {0,1,...,2h} such that To411 — {4, 5} has exactly two
non trivial intervals I; = {i+ h,i+h+1}and I; = {j +h,j+h+1}.
Clearly there is an isomorphism k from To, 41 — {2, j} to T3, +1— {63}
such that k(I;) = I; and k(I;) = I;. Therefore T and T are {4, —2}-
hypomorphic.

3. It is sufficient to remove {0, 1,3}, we obtain that Io = {h,h+1,h+2}
and I3 = {h+3, h+4} the two non-trivial intervals of Top+1 —{0, 1, 3}.
Then, T—{0,1,3} and T"— {0, 1, 3} are not isomorphic because |Io| #
|I3|. Therefore T and T” are not {—3}-hypomorphic.
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4. T[0,1,2,3,4,3 + h] and even T[0,1,2,3,4,3 + h] are gotten from
a 3-cycle, with one of its vertices is 3 + h, by dilating the other
vertices by {0,1,2} and {3,4}. Obviously, T[0,1,2,3,4,3 + h] and
T'(0,1,2,3,4,3 + h] are not isomorphic. Therefore, T and T" are not
(£ 6)-hypomorphic.

=]
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