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Abstract. Let G be a graph with vertex set V(G) and edge set E(G), a
vertex labeling f : V(G) — Z; induces an edge labeling f* : E(G) — Z,
defined by f*(z,y) = f(z) + f(y), for each edge (z,y) € E(G). For each
i € Zy, let vp(i) = {v € V(G) : f(v) = i}| and e;s(i) = |{e € E(G) :
f*(e) = i}|. A vertex labeling f of a graph G is said to he friendly if
lvg(1) — vs(0)] < 1. The friendly index set of the graph G, denoted by
FI(G), is defined as {|es(1) — ef(0)| : the vertex labeling f is friendly}.
The full friendly index set of the graph G, denoted by FFI(G), is defined
as {ef(1) — e;(0): the vertex labeling f is friendly}. In this paper, we
determine F'FI(G) and FI(G) for a class of cubic graphs which are twisted
product of Mobius.
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1. Introduction

Let G be a graph with vertex set V(G) and edge set E(G). Let A be
an abelian group. A labeling f : V(G) — A induces an edge labeling f* :
E(G) — A defined by f*(x,y) = f(x) + f(y), for each edge (z,y) € E(G).
For a € A, let vs(a) = |{v € V(G) : f(v) = a}| and es(a) = |{e € E(G) :
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f*(e) = a}|. G is A-cordial if there is a labeling f : V(G) — A such that
for all a, b € A, we have (1) |vs(a) —vs(b)| <1, (2) |es(a) —esp(b)] < 1. If
A = Zj, we will say that G is k-cordial.

The notion of A-cordial labelings was first introduced by Hovey [11],
who generalized the concept of cordial graphs of Cahit [2]. For more details
of known results and open problems on cordial graphs, see [1-4, 7-9,11, 12,
14, 15] ete.

In this paper, we will exclusively focus on A = Z3, and drop the refer-
ence to the group. A vertex v is called a k-vertex if f(v) = k, k € {0,1},
an edge e is called a k-edge if f*(e) =k, k € {0,1}.

In [6] the following concept was introduced.

Definition 1.1. The friendly index set FI(G) of a graph G is defined as
{les(1) — ef(0)| : the vertex labeling f is friendly}.

Note that if 0 or 1 is in FI(G), then G is cordial. Thus, the concept of
friendly index sets could be viewed as a generalization of cordiality. Cairnie
and Edwards (5] have determined the computational complexity of cordial
labeling and k-cordial labeling. They proved that deciding whether a graph
admits a cordial labeling is NP-complete. Even the restricted problem of
deciding whether a connected graph of diameter 2 has a cordial labeling
is NP-complete. Thus, in general, it is difficult to determine the friendly
index sets of graphs.

The following result was established in [13]:

Theorem 1.1. For any graph G with q edges, the friendly index set
FI(G)C {2i:0<i< %) ifqis even, and FI(G) C {2i+1:0<i < 431}
if q is odd.

In [14], it was shown that
Theorem 1.2. The friendly indices of a cycle formed an arithmetic se-
quence:

(i) FI(Con) = {4i:0<i < 5} if n is even;

FI(Cp,) = {2 +4i:0<i< 251} if n is odd.
(ii) FI(Con41) = {21 +1:0<i<n—-1}.

The numbers in FI(C,,) for any cycle form an arithmetic progression. In
[16], it is shown that for a cycle with an arbitrary non-empty set of parallel
chords, the values in its friendly index set form an arithmetic progression
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with common difference 2. If the chords are not parallel, the numbers in
the friendly index set might not form an arithmetic progression. See [17]
on the friendly index sets of Mobius ladders. For more details of known
results and open problems on friendly index sets, the reader can see relevant
papers.

Shiu and Kwong [18] extended FI(G) to FFI(G).

Definition 1.2. The full friendly index set FFI(G) of a graph G is defined
as {ef(1) — ef(0) : the vertez labeling f is friendly}.

Shiu and Kwong [18] determined FFI(P, x P,). Shiu and Lee [19]
determined the full friendly index sets of twisted cylinders. Shiu and Wong
[20] determined the full friendly index sets of cylinder graphs. Shiu and Ho
[21] determined the full friendly index sets of some permutation Petersen
graphs, they also determined the full friendly index sets of slender and flat
cylinder graphs [22]. Shiu and Ling [23] determined the full friendly index
sets of Cartesian products of two cycles. Sinha and Kaur [24] studied the
full friendly index sets of some graphs such as K, C,, fans F,,, F5,, and
P3 X Pn.

Let (G, (z,9)), (H, (u,v)) be a pair of cubic graphs with (z,y) € E(G)
and (u,v) € E(H). The twisted product of (G, (z,y)), (H, (u,v)), denoted
by (G, (z,y))§(H, (u,v)) is the graph with
V((G, (= )H(H, (u,v)) = V(G) UV (H),

E((G, (z, y)i(H, (u,v))) = (E(C)~(z,y))V(E(H) - (u, v))V{(z,u), (y,v)}.

We have a new cubic graph (G, (z,y))i(H, (u,v)).

Notation: Let n be an integer greater than 1. The M6bius wheel is the
cycle Ca,, with n additional edges joining diagonally opposite vertices. We
will denote this graph by Ms,, the vertices by v;, where 1 < i < 2n. Then
the edges are (v;,vi41), where 1 < ¢ < 2n — 1 and (vgn,;) on the cycle,
and the n diagonals are (v;, v, 4;), where 1 <i < n.

Let V(M2m) = {u; : 1 <4 <2m} and V(My,) = {v; : 1 < i < 2n} for
m,n > 2. Let TM(2m,2n) = (Mam, (41, Uom ) )i(Man, (v1,v2,)), which is
illustrated by Figure 1. In TM(2m,2n), we have |V| = 2(m + n), |E| =
3(m +n).
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Figure.l. TM(2m,2n) graph
In this paper, we determine the full friendly index of TM(2m, 2n).

2. Preliminaries

Now, we present some derived results and prove some results which will
be used in the following discussions.
Lemma 2.1.([18]) Let f be a labeling of a graph G that contains a cycle
C as its subgraph. If C contains an I-edge, then the number of 1-edges in
C is a positive even number.

An edge is called an (i, j)-edge if it is incident with an i-vertex and a
j-vertex. The number of (i, j)-edges is denoted by Ef(1,1).
Lemma 2.2.([23]) Let f be a labeling of a graph G with q edges. If the
degree sum of 1-vertices is s, then es(1) — ef(0) = 25 — 4E¢(1,1) — q.
Lemma 2.3.([23]) Let f be a friendly labeling of G. If G is a regular graph
of even order, then the degree sum of 1-vertices is equal to the size of G.
Hence, Ef(O, 0) = Ej(l, 1).
Theorem 2.4. In any friendly labeling f of TM(2m,2n), if any two
vertices labels are exchanged, then es(1) is increased by —6, —4, -2, 0, 2,
4, or 6.
Proof Since the graph TM(2m,2n) is cubic, so, any vertex u is adjacent
to three vertices u, us, and ug.

In a friendly labeling of T M (2m,2n), suppose that the vertices u, u,,
us, and us are labeled by z, 1, 2, and z3 ( z, 71, T2, z3 € {0,1} )
respectively. When we revise the label of u to 1 — z, the number of 1-edges
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is increased by -3, —1, 0, 1, or 3. For any two vertices of « and v in
TM(2m,2n), there will be three possibilities, which listed in Figure 2.

u \ u vy v u N

’/ | \ / | | \
s W oW VviooW2

u w3 iz oy uw W v o\
@ ® @

Figure.2.

Exchange the labels of u and v, ef(1) is increased by —6, —4, -2, 0,
2,4, 0r 6in (a), and —4, -2, 0, 2, or 4 in (b) and (c). Hence, if any two
vertex labels are exchanged, then ef(1) is increased by —6, —4, —2, 0, 2,
4, or 6. (]

Theorem 2.5. When m and n are odd, the mazimum value of eg(1) is
3(m + n), where f is a friendly labeling of TM (2m, 2n).

Proof Note that TM(2m,2n) is bipartite with bipartition (X,Y), say,
where |X| = |Y| = m + n. We label all vertices in X by 0 and in Y by 1.
Then all edges are 1-edges under this labeling f. Hence e;(1) = 3(m+n).0

Theorem 2.6. When m and n are even, the upper bound of es(1) is
3(m + n) - 2, where f is a friendly labeling of TM(2m,2n).

Proof When m, n are even, the cycles ujua -+ upy1u; and vivg - - Uy v;
are two edge-disjoint odd cycles. For any labeling f, ef(0) > 2. Hence
ef(1) < 3(m + n) — 2. In the next section, we will show that this upper
bound can be obtained. O

Theorem 2.7. When ezactly one of m and n is odd, the upper bound of
ef(1) is 3(m + n) — 2, where f is a friendly labeling of TM(2m, 2n).

Proof Without loss of generality, we may assume m is odd and n is even.
The cycle vivg - - v, 1v1 is an odd cycle. For any labeling f, there exists at
least one O-edge. Suppose ef(1) = 3(m+n)—1, then, vp42, Vnta, -- -, Von,
U2m, U2m—1, - .. , U are labeled alternately by 0 and 1, thus, in v,4;, where
2 < i £ n, exists one vertex (suppose vn4j) such that f(vny;) = f(v;),
ef(0) > 2, contradiction. Hence, when exactly one of m and n is odd, the
upper bound of es(1) is 3(m + n) — 2. In the next section, we will show
that this upper bound can be ohtained. a

Theorem 2.8. Suppose f is a friendly labeling of TM(2m,2n). The
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mazimum value of e;(0) equals

(1). 3(m +n) -2 for jm —n| =0;

(2). 3(m +n) — 3 for |m —n| =1.

Proof Let f be a friendly labeling of TM(2m, 2n). Then vs(1) = v£(0) =
m+mn > 0. Since TM(2m, 2n) is a connected, there exist adjacent vertices
z and y such that f(z) = 1 and f(y) = 0. Thus eg(1) > 1. Since C =
U U * - - UgmUanVan— - - - V1% is a Hamiltonian cycle of TM(2m,2n), by
Lemma 2.1, ey(1) is a positive even number. So es(1) > 2 and hence
ef(0) < 3(m+n)—2.

(1). m=n.

Suppose ef(1) = 2 for some friendly labeling f of TM(2m, 2n). By the
argument above, we know that the two 1-edges must lie in C. We claim
that f*(u1,v1) = 1 = f*(ugm, u2n).

Suppose not, without loss of generality, we may assume f*(v;,viz1) =1
for some i, 1 < i < 2n — 1. By symmetry, we may assume that 1 <7 <
n. By Lemma 2.1 and ef(1) = 2, the cycle v;vi41Un4i+1Un+iv; contains
exactly two l-edges and other edges outside this cycle are 0-edges. So
F*(vngisUnsit1) = 1. On the other hand, the cycle v;viy1 -« vntiv; also
contains two l-edges. It is a contradiction.

So we conclude that if ef(1) = 2 for some friendly labeling f of T M (2m,
2n), then f*(u1,v1) = 1 = f*(u2m,uzn). Since all other edges are 0-
edges and f is friendly, m = n. From the proof ahove, it is clear that
es(0) = 3(m + n) — 2 is attainable when m = n. So we have (1).

(2). Im=nl=1.

By Lemma 2.3, we know that es(0) is even for any friendly labeling
f. We have known that es(1) > 2. Since m + n is odd, the number of
edges ¢ = 3(m + n) is odd, so, ef(0) < 3(m + n) — 3. The upper bound is
attainable by labeling u; and v; for 1 <i < 2n by 0, and u; for 2 < j < 2m
by 1. Hence we have (2). O

We shall denote the graph labeling f of TM(2m, 2n) by G(a) in which
es(1) - e1(0) = a.

3. The full friendly index sets of TM(2m,2n)
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In this section, we show how the values in FFI(TM(2m,2n)) can be
obtained by exhibiting the respective of the vertices with 0 and 1.
Theorem 3.1. When m andn are odd with |m—n| = k. FFI(TM(2m, 2n))
equals
(1). {-3(m+n)+4i:1<:i< 3B for k=0,

(2). {-3(m+n)+4i:2<i<g ﬂ'—"2"'—"1} fork >0and m+n=0,2
(mod 4).
Proof From Theorem 2.5, we have G(3(m + n)).

Define the labeling f, by assigning u;, where 1 < i < 2m and v; where
1 £ 7 £ 2n both alternately by 0 and 1. Then vy, (1) = vy, (0) and all edges
are l-edges except the edges (u;,v;) and (ugm,v2,). Thus, the number of
1-edges is 3(m + n) — 2. Hence, we can obtain G(3(m + n) — 4).

Step 1. In G(3(m + n)), we exchange the labels of uy and uy, 42 so that
the number of 1-edges is decreased hy 4. Let this new labeling be g;. Then
€g,(1) = 3(m + n) — 4 and ey, (0) = 4. Successively exchange the labels of
ug; and Um42;, Where 2 < j < mT‘l Each of these exchanges so that the
number of 1-edges is decreased hy 4 and the number of 0-edges is increased
by 4. Once all the exchanges are completed, we obtain G(3(m + n) — 85),
where 1 < j < 2L,

Step 2. In G(3n — m + 4), we exchange the labels of v and v,,2 so that
the number of 1-edges is decreased by 4. Let this new labeling be k. Then
en, (1) = 3n+m—2, and ep, (0) = 2m+ 2. Successively exchange the labels
of vg; and v, 425, where 2 < j < 1‘-51 Each of these exchanges so that the
number of 1-edges is decreased by 4 and the number of 0-edges is increased
by 4. Once all the exchange are completed, we obtain G(3n — m + 4 — 85),
where 1 < j < 251,

Step 3. In G(3(m + n) — 4), use the procedure in the proof of Steps 1 and
2 to ohtain G(3(m 4+ n) —4 — 8j), where 1 < j < fn 1,

By Steps 1, 2 and 3, we can conclude that {—3(m+n)+4i: 1+$-"%2 <
i < 3minhyy ¢ RRI(TM(2m, 2n)).

Case 1. m=n.

From Theorem 2.8, we have G(—3(m + n) + 4).

In G(—-3(m +n) +4), we exchange the labels of us,, and v; so that four
0-edges change to 1-edges, and two 1-edges change to 0-edges. Let this new
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labeling be go. Then ey, (1) = 4 and ey, (0) = 3(m + n) — 4. Successively
exchange the labels of ugm—; and vj4;, where 1 < j < m — 2. Each of
these exchanges so that the number of 1-edges is increased by 2 and the
number of 0-edges is decreased by 2. Once all the exchange are completed,
we obtain G(—3(m +n)+4j), where 2 < j < 24, Hence, {-3(m+n)+4i
11K} © FRI(TM(2m,2n)).

Case 2. m—n|=k>2.

Without loss of generality, suppose m — n = k. Because m,n are odd,
so, k is even. For convenience, we let k = 2r for some r > 1.

Because ¢ = 3(m + n) is even, by Lemma 2.2 and 2.3, we know that
es(1) is even for any friendly labeling f. Hence, ef(1) > 4.

Define the labeling f3 by assigning u; and um4j, where 1 <j<m—r
by 0 and the other vertices by 1. Then all edges are labeled by 0 except the
edges (u1,v1), (Um—r,Um—r+1)s (UmsUm+1) and (U2m—r, U2m—r4+1). Hence,
es,(1) = 4 and ef,(0) = 3(m + n) — 4. We obtain G(—3(m + n) + 8).

In G(—3(m + n) + 8), we exchange the labels of u;j;; and uom—ri1+;
where 0 < j < r—1. Each of these exchanges so that the number of 1-edges
is increased by 2 and the number of 0-edges is decreased by 2. Once all
the exchange are completed, we obtain G(—3(m + n) + 12 + 4j), where
0<j<r-1

In G(—3(m + n) + 8 + 4r), successively exchange the labels of u;;, and
U2n—j+1, Where 1 < j < n —2. Each of these exchanges so that the number
of 1-edges is increased by 2 and the number of 0-edges is decreased by 2.
Once all the exchange are completed, we obtain G(—3(m+n)+8+4r+4j),
where 1 < j <n—2. Sincem—n=k=2r, G(-3(m+n) +4r +4n) =
G(—m — n).

Combining with the result obtained after Step 3, we have {-3(m+n)+
4i: 2 < i < Azin)y ¢ FRI(TM(2m, 2n)).

For hoth two cases, by Lemma 2.2, Theorems 2.5 and 2.8, we have the
result. This completes the proof. a

Theorem 3.2. When m andn are even with |m—n| = k. FFI(TM(2m,2n))

equals
(1). {-3(m+n)+4i: 1 <i< 3 1} for k= 0;
@). {-3m+n)+4i: 2<i< U _1} for k>0 and m+n =0,2
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(mod 4).

Proof Define the labeling f; by assigning u;, ug, ... , Um, Unt1, Uns2,
..., Vg, alternately by 0 and 1; um+1, Um42, .., U2m, VU1, V2, --. 5 Un
alternately by 1 and 0. Then vy, (1) = vy, (0), all edge are 1-edges except
edges (Um, Um+1) and (v, vny1). Hence, e, (1) = 3(m+n) -2, ef,(0) = 2.
so, we obtain G(3(m + n) — 4).

Define the labeling f, by assigning u;, ug, ..., Um, and vy, v, ..., Un
hoth alternately by 0 and 1; umt1, Um+2, -+ , U2m, and Ung1, Ung2, ..,
von both alternately by 1 and 0. Then vy, (1) = vy, (0), all edges are 1-
edges except the edges (um, Um41), (Vn,Unt1), (u1,v1) and (uz2m,v2n), SO,
ef, (1) = 3(m + n) — 4,e5,(0) = 4. Hence, we obtain G(3(m + n) — 8).
Step 1. In G(3(m + n) — 4), we exchange the labels of uz; and umq42;

where 1 < j < 2= 2 successively. After the manner of the argument of the
Step 1 of Theorem 3.1, once all the exchanges are completed, we obtain
G@3(m+n)—-4—8j), where1 <j < "'—2'2-

Step 2. In G(3n — m + 4), we exchange the labels at vy; and vn 425, where
1<i< "T‘z successively. After the manner of the argument of the Step 1
of Theorem 3.1, once all the exchanges are completed, we obtain G(3n —
m+4—8j), where1 <j < %

Step 3. In G(3(m + n) — 8), use the procedure in the proof of Steps 1 and
2 to obtain G(3(m +n) — 8 — 8j), where 1 < j < (BFm _ o

By Steps 1, 2 and 3, we can conclude that {—3(m + n) + 4 + 4i :
14 0 < < i) _ Ny ¢ FRI(TM(2m, 2n)).

Case 1. m =n.

From Theorem 2.6, we have G(—3(m + n) + 4).

In G(-3(m+n) +4), we exchange the labels of us,, and v; so that four
0-edges change to 1-edges and two 1-edges change to O-edges. Let this new
labeling be g;. Then ey, (1) = 4 and ey, (0) = 3(m + n) — 4. Successively
exchange the labels of u2,—; and v;4+1, where 1 < 5 < m—1. Each of these
exchanges so that the number of 1-edges is increased by 2 and the number of
0O-edges is decreased by 2. Once all the exchanges are completed, we obtain
G(-3(m+n)+4+4j), where1 < j < (m#l Hence, {—3(m + n) + 4i:
1<i< ) 1)y ¢ FRI(TM(2m, 2n)).

Case 2. m—n|=k>0.
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Without loss of generality, suppose m —n = k. For convenience, we let
k = 2r for some r > 1.

After the manner of the argument of the case 2 of Theorem 3.1, we
know that ey(1) > 4 for any friendly labeling f.

Define the labeling f3 by assigning u; and um+; where 1 < j <m—r
by 0 and the other vertices by 1. Then all edges are labeled by 0 except the
edges (u1,v1), (Wm—rsUm—r+1)s (Um,Um+1) and (Uzm—r, Uzm—rs+1). Hence,
es,(1) =4, ef,(0) = 3(m + n) — 4. We obtain G(-3(m + n) + 8).

In G(—3(m + n) + 8), we exchange the labels of u;41 and ugm—_ry145,
where 0 < 7 < 7—1. Each of these exchanges so that the number of 1-edges
is increased by 2 and the number of 0-edges is decreased by 2. Once all
these exchanges are completed, we obtain G(—3(m + n) + 12 + 45), where
0<j<r—1.

In G(-3(m + n) + 8 + 4r), successively exchange the labels of u,;; and
V2n—j+1, Where 1 < j < n —1. Each of these exchanges so that the number
of 1-edges is increased by 2 and the number of 0-edges is decreased by 2.
Once all the exchanges are completed, we obtain G(—3(m+n)+8+4r+4j),
where 1 < j<n-2. Sincem —n=k=2r, G(-3(m +n) + 4+ 4r + 4n)
=G(—m —n+4).

Combining with the result obtain after Step 3, we have {—3(m+n) +4i:
2<i<dmdn) 1y ¢ PRI(TM(2m,2n)).

For both two cases, by Lemma 2.2, Theorems 2.6 and 2.8, we have the
result. This completes the proof. ]

Theorem 3.3. When ezactly one of m and n is odd with |m — n| = k.
FFI(TM(2m,2n)) equals
(1). {-3(m+n)+2+4i:1<:i< :-331"—%'-‘-_—1)-} for|m—n|=1;
(2). {-3(m+n)+6+4i:1<i< ﬂﬂ;)_—s} forim —n|=k>1.
Proof Without loss of generality, we may assume m is odd and = is even.
Define the labeling f; by assigning u;, ug, ..., U2m, V2n, V2r—1, --- ,
Uns1, and vy, v, ..., v, are alternately by 0 and 1. Then all edge are
labeled by 1 except the edges (uy,v;) and (vn,vn41). Hence, ef, (1) =
3(m +n) — 2, ef, (0) = 2. So, we have G(3(m + n) — 4). ‘
In G(3(m + n) — 4), we exchange the labels at v,, and vz, so that the
labels of the edges (u2m,V2n), (Vn,Vn-1) and (ven—1,vs) are changed by 0
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and the label of (vn,vn41) is changed by 1. Let this new labeling be f.
Then ey, (1) = 3(m + n) — 4, ef,(0) = 4. Hence, we get G(3(m + n) — 8).
Step 1. In G(3(m + n) — 4), we exchange the labels of u; and w42 so that
four 1-edges change to 0-edges. Let this new labeling be g;. Then e, (1) =
3(m + n) — 6 and ey, (0) = 6. Successively exchange the labels of us; and
Um42j, Where 2 < j < ’"T‘l Each of these exchanges so that the number
of 1-edges is decreased by 4 and the number of 0-edges is increased by 4..
Once all these exchanges are completed, we obtain G(3(m + n) — 4 — 87),
where 1< j < "‘T‘l

Step 2. In G(3n — m), successively exchange the labels of vy; and vn4.2 ,
where1 < j < "’2'2. Each of these exchanges so that the number of 1-edges
is decreased by 4 and the number of 0-edges is increased by 4. Once all these
exchanges are completed, we obtain G(3n —m — 85), where 1 < j < 1‘-5-2-
Step 3. In G(3(m + n) — 8), use the procedure in the proof of Steps 1 and
2 to obtain G(3(m + n) — 8j), where 2 < j < HmEm=1,

By Steps 1, 2 and 3, we can conclude that {—3(m + n) + 2 + 4i :
i+l < < 3min-lyy ¢ FRITM(2m, 2n)).

Suppose m — n = k > 0. For convenience, we let k = 2r — 1 for some
r>1.

Case 1. r=1.

From Theorem 2.8, we have G(—3(m + n) + 6).

In G(-3(m + n) + 6), successively exchange the labels of uy,,—; and
vj, where 1 < j < n — 1. Each of these exchanges so that the number
of 1-edges is increased hy 2 and the number of O-edges is decreased by 2.
Once all the exchanges are completed, we obtain G(—3(m + n) + 6 + 47),
where 1 < j <n-1 Sincem-n=1, G-3m+n+2) =G(-m—n).
Hence, {-3(m +n) + 6 + 4i: 0 <i < BE2=3} € FE[(TM(2m, 2n)).
Case 2. r > 1.

After the manner of the argument of the case 2 of Theorem 3.1, we
know that ef(1) > 5 for any friendly labeling f.

Define the labeling f3 by assigning u;, 42, ..., Um—r+1, Um+1, Um+2s -+ -
Usm—r by 0 and the other vertices by 1. Then all edges are labeled by 0 ex-

cept the edges (ul 1) (Um—r g1, um—r+2)9 (Um—rt1, u2m—r+1)» (um, um+1)
and (Ugm—r, U2m—r+1). Hence, we obtain G(—3(m + n) + 10).
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Subcase 2.1. r = 2.

In G(—3(m + n) + 10), we exchange the vertex labels of usm—2 and v;
so that four 0-edges change to four 1-edges and two 1-edges change to two
0-edges, thereby the number of 1-edges is increased by 2 and the number of
O-edges is decreased by 2. Successively exchange the labels of ugm_2_; and
vjt+1, where 1 < j < n — 2. Each of these exchanges so that the number
of 1-edges is increased by 2 and the number of 0-edges is decreased by 2.
Once all the exchanges are completed, we obtain G(—3(m 4 n) + 10 + 47),
where 1 < j < mip=8
Subcase 2.2. r > 2.

In G(~3(m+n)+10), successively exchange the labels of #m_r424; and
Usm—r—i, Where 0 < j < r —3. Each of these exchanges so that the number
of 1-edges is increased by 2 and the number of 0-edges is decreased by 2.
Once all the exchanges are completed, we obtain G(—3(m + n) + 10 4 45),
where 1 <j<r—-2.

In G(—3(m+n)+2+4r), successively exchange the labels of ugm_k41-;
and v;41, where 1 < j < n—2. Each of these exchanges so that the number
of 1-edges is increased by 2 and the number of 0-edges is decreased by 2.
Once all the exchanges are completed, we obtain G(—3(m+n)+2+4r+4j),
wherel1 <j<n-2.

Since 2r—1 = k = m—n, so, G(—3(m+n)—2+4r+4n) = G(-m—n).
Hence, {—3(m +n) + 6 + 4i: 1 <i < 242=3} C FFI(TM(2m, 2n)).

For m < n, after the manner of the above discussions, we have the same
results.

By Lemma 2.2, Theorems 2.7 and 2.8 and the argument above, we have
the result. This completes the proof. O

Base on the above results, we have
Corollary 3.4. When m, n are odd,
1. m+n =0 (mod 4), TM(2m,2n) is cordial, and FI(TM(2m,2n)) =
{4i: 0 < i < Aminly,
2. m+n =2 (mod 4), TM(2m,2n) is not cordial, and FI(TM(2m,2n))
= {244i: 0 <4 < Amim2y

Corollary 3.5. When m, n are even,
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1. m+n =0 (mod 4), TM(2m,2n) is cordial, and FI(TM(2m,2n)) =
{4i: 0 < i < Hmtn) _py,

2. m+n =2 (mod 4), TM(2m,2n) is not cordial, and FI(TM(2m,2n))
= {2+ 4i: 0 < ¢ < Amdn=6y

Corollary 3.6. When ezactly one of m and n is odd with |m — n| = k.
(Mam, e)(Man, f) is cordial,

1. |m—n|=1, FI(TM(2m,2n)) = {2i —1: 1 < i < 3@in-ly,

2. m—n|=k>1 FI(TM(2m,2n)) = {2i —1: 1 <i < A@E)-Ty
{3(m + n) — 4}. )
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