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Abstract

The well known infinite families of prisms and antiprisms on the sphere
were, for long time, not considered as Archimedean solids for reasons not
fully understood. In this paper we describe the first two infinite families
of Archimedean maps on higher genera which we call “generalized” prisms
and “generalized” antiprisms.
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1 Introduction

Archimedean solids is an old topic that still fascinates by its beauty. The way it
is so well spread in the Internet reflects the strong global interest that it induces
on people in general. While Platonic solids are the birth of regular maps on any
genus, Archimedean solids are only now moving to higher genera. It is not hard
to see why; the definition of Archimedean solid, when viewed as a topological
object on the sphere (not in R3), is somewhat evasive and clearly very restricted
to the sphere. There seems to be no single and clear definition of Archimedean
“solid” that can be extended to all orientable or not, or even with boundary,
connected surfaces. Cayley maps seem to be close, since almost all Archimedean
solids (i.e. on the sphere) are Cayley maps, with only two exceptions: the great
rhombicosidodecahedron and the great rhombicuboctahedron (see Table 1).
By the classical definition, an Archimedean solid is a 3-dimensional convex
polyhedron whose facets (here called faces) are regular convex polygons of two
or more different types, such that any two vertices can be transformed one into
the other by applying a solid’s symmetry. According to this definition there
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are infinitely many Archimedean solids (or convex polyhedra) arranged in 13
classical Archimedean solids (not counting the mirror images of the snub cube
and the snub dodecahedron), plus two infinite families of prisms and antiprisms,
see Table 1. These are attributed to Plato, Archimedes and others, although
it was Kepler that put the classification into the organized form that is known
today. Modern proofs are given by Walsh [11] (1972) and by Ball and Coxeter
[2] (1987). More detailed information, as well as nice pictures, can be found
in Wolfram MathWorld [13] and in the popular Wikipedia [12], to name but a
few. By dropping the restriction “two or more different types” from the above
definition, the list of Archimedean solids will include the five Platonic solids
(tetrahedron, cube, octahedron, icosahedron and dodecahedron).

The classification of the Archimedean solids can be obtained by purely
combinatorial methods, viewing convex polyhedra as graphs embedded in the
sphere, in which case the graph will be polyhedral, that is, planar, simple and 3-
connected. Within this view, Archimedean solids are particular maps having a
combinatorial symmetry. Attempts to generalize Archimedean solids to higher
genera have been sparse and essentially focused on the torus. This has been
the case of Griinbaum and Shephard [5], by means of semi-regular tilings of the
plane, Babai [1], Proulx [10], Gross and Tucker [6], by means of vertex-transitive
group actions on the torus. To higher genera there is only one known attempted
generalization given by Karabds and Nedela [8].

For genus g > 1 there are no known infinite families of Archimedean maps.
In this paper we give the first two of such examples.

2 Preliminaries

In the following, all graphs will be assumed to be connected and the term

surface will always mean an orientable, connected, compact surface without

boundary. Groups will be always finite and, as usual in group theory, we denote

by |g| the order of an element g of a group G, whose order (size) is |G|. For

tzlements Z1,...,Z5 of a group G, (z1,...,Z,) denotes the group generated by
Tlyeony :c,.}.

A (topological) map is an embedding M : ' — S of a graph I into a surface
S, called the supporting surface of M, such that the connected components of
S\ M(T), called faces of M, are simply connected subspaces of S.

Fixing an orientation on the supporting surface S of the map M, we can
describe M combinatorially by a triple (D; R, L), where D is the set of darts (di-
rected edges or arcs, pictured as half edges) of the embedded graph M(T'), R is
the permutation of D which cyclically permutes darts around vertices of M(T’),
according to the fixed orientation on &, and L is the involutory permutation of
D, possibly with fixed points, whose orbits are the edges (including loops and
semi-edges) of M(T"). Due to the connectivity of the underlying graph M(T'),
the (permutation) group Mon(M) = (R, L), called the monodromy group of
M, acts transitively on D.

242



Conversely, given such a triple M = (D; R, L), defining vertices, edges and
faces of M as orbits of the action of (R}, (L) and {RL) on D, respectively, while
incidence is given by nonempty intersecting orbits, we get an embedding of a
graph I on a surface S determined by its genus, given by the well known Euler
formula.

A morphism from a (combinatorial) map M = (D; R, L) to a (combinato-
rial) map M’ = (D’; R', L'} is a function ¢ : D — D’ such that ¢R = R'¢ and
oL = L'¢. If there is a morphism from M to M’ then, the assignment R+ R',
L — L' extends to an epimorphism from Mon(M) to Mon(M’). Due to the
transitivity of the respective actions of Mon(M') and Mon(M), any morphismn
from M to M’ is onto and uniquely determined by the image of a dart. There-
fore morphisms are also called coverings and injective coverings are called iso-
morphisms. Recalling that a (combinatorial) map M = (D; R, L) arises from a
(topological) map M : T' = S by fixing an orientation on the supporting surface
&, isomorphisms from M to M will be called orientation preserving automor-
phisms of M. Changing the orientation on the supporting surface S, the same
(topological) map M : T' =+ S will be combinatorially described by the triple
(D; R, L), called the mirror image of (D; R, L). Hence, we call isomorphisms
from M = (D; R, L) to (D; R™!, L) orientation reversing automorphisms of M.
The (permutation) group Aut(M) of all automorphisms of the map M is the
(full) autormorphism group of M. Topologically, an automorphism of the map
M : T = S is an automorphism of the underlying graph M(T') which extends
to a self-homeomorphism of the supporting surface S. The group Autt(M)
of orientation preserving automorphisms of M = (D; R, L), which is by defini-
tion the centralizer of Mon(M) in the symmetric group on D, is a subgroup of
Aut(M) of index at most two. If Aut*(M) = Aut(M) then M and its mirror
image are not isomorphic. Otherwise, Aut*(M) has index two in Aut(M) and
there is an orientation reversing automorphism (also called a reflection) sending
M to its mirror image.

Any automorphism group G £ Aut(M) of a map M = (D; R, L) gives rise
to a covering ¢ from M to the gquotient map M/G. Each dart of the quotient
map M/G is a set Gz = {g(z) : g € G}, z € D, and we have well-defined
permutations R’ and L' of D' = {Gz : z € D} given by R'(Gz) = GR(z)
and L'(Gz) = GL(z), = € D, describing the quotient map M/G as a triple
(D'; R',L"). The function ¢ : D — D', £ — Gz is then a covering from M to
M/G.

A map M will be called vertez-transitive® if the (full) automorphism group
Aut(M) acts transitively on vertices. Any vertex-transitive map M gives rise to
a one- or two- vertex quotient map by factoring M by its orientation preserving
automorphism group Aut*(M). In [8], a vertex-transitive map M is called of
type I or of type II, according to the quotient map M/Aut* (M) having one or
two vertices respectively.

Cayley maps are particular embeddings of Cayley graphs. Given a group
G with a set of generators S such that 1 € S = S, the Cayley graph (G, S)

1For some authors M is vertex-transitive if Aut*(M) acts transitively on vertices.
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(determined by G and S) is the graph with vertex set G and edges {g, gs},
g € G, s € S. Calling a graph simple if it has no loops, no semi-edges and no
multiple edges, that is, edges incident with the same vertices, we have that any
Cayley graph is a connected vertex-transitive simple graph. A Cayley map is
an embedding of a Cayley graph (G, S) into an oriented surface S (that is, a
surface with a fixed orientation) such that the action of R on the set of darts
G x S is the same at each vertex g € G, that is, there is a cyclic permutation
p of S such that R(g,s) = (g,p(s)) for any s € S. In other words, a Cayley
map is a group G with a cyclically ordered set S of generators of G such that
1¢ 8 =51 So we will denote a Cayley map by (G; (30, ..., 5a—1)). It follows
directly from the definition that, for any Cayley map M, A = Aut*(M) acts
transitively on vertices, giving a one-vertex quotient map M/A.

One-vertex maps will be denoted by X,()). Combinatorially X(A) =
(Z,;p, A) where p is the permutation p(i) =i + 1 (mod n) of Z,. If a quotient
map M /G is a one-vertex map, then M/G = X,,(A) for some involution A of Zy,
where n is the number of darts of M/G. In this case, there is a covering ¢ from
M = (D;R,L) to Xp()) inducing an epimorphism from Mon(M) = (R, L) to
Mon(X,(A\)) = (p, A) sending R to p and L to A.

3 Archimedean maps

Given a map M : T — S, we call closed walks on M(T") whose vertices and
edges are all the vertices and all the edges incident with a face of M, M-facial
walks (see [9]). We say that M is polyhedral if (1) I' is a simple graph, (2)
faces have valency at least 3, (3) any M-facial walk is a cycle and (4) any two
M-facial walks are either disjoint or their intersection is just a vertex or an
edge of M(T"). We note that, as a consequence of Proposition 5.5.12 in [9], any
polyhedral map has a 3-connected simple underlying graph.

As polyhedral maps are natural generalization of convex polyhedra ([9],
p-151), the following generalization of Archimedean solids seems to be natu-
ral, despite the first generalization includes a convention for spherical maps,
which makes rather suspicious to call it “natural”.

Definition. An Archimedean map is a polyhedral vertex-transitive map.

As a consequence of the fact that Aut* (M) has index at most 2 in Aut(M),
we have that Aut*(M) acts on vertices of a vertex-transitive map M with at
most two orbits. According to the action of Aut* (M) on vertices or on darts
of M, we may distinguish four disjoint classes of Archimedean maps, ordered
by the increasing Archimedean degree defined next.

Definition. An Archimedean map M will be called:
o perfect Archimedean if Aut*(M) does not act transitively on vertices;

o accurate Archimedean if Autt(M) acts regularly on vertices;
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o fair Archimedean if Aut*(M) acts transitively on vertices but not regu-
larly neither on vertices nor on darts;

o Platonic if Aut*(M) acts regularly on darts, that is, if M is a regular
map.

Remark. Earlier definition of Archimedean solid requires a map M to have
“two or more different types of faces”. This “regularity destruction” forces the
size of Aut*(M) to be less than the number of darts of M. We see the extreme
case, i.e. when an Archimedean map M has the smallest size of Aut*(M)
for a fixed number of darts, as the one that best fits this spirit of “regularity
destruction”, hence the name “perfect” for this situation. Those that have
Aut* (M) acting regularly on vertices, are not perfect but still fits the spirit
just right, hence the name “accurate”. The “fair” Archimedean maps fit the
definition more “loosely”. The Platonic ones do not fit the earlier definition at
all and so they were not considered as Archimedean in the past.

Denoting respectively by D and V' the sets of darts and vertices of the
Archimedean map M, we have the inequality L‘,}l < |Autt(M)| < |D|. Let the
quotient

utt
s = Lt

denote de Archimedean degree of M. One can easily see that M is perfect if
and only if 6(M) = %, accurate if and only if (M) = 1, fair if and only if
1 < §(M) < v, where v is the common valency (degree) of the vertices of M,
and Platonic if and only if (M) = v.

The classification of spherical Archimedean maps (Archimedean solids) is
done by their local types. A local type of a map M at a vertex v is the
ordered set of valencies of the faces adjacent to v written in a cyclic order
(according to a fixed orientation of the supporting surface). The local type
of an Archimedean map, which does not depend on the choice of the ver-
tex due to vertex-transitivity, will be written in a multiplicative form like
(3.4.6.4) or (34.5) = (3.3.3.3.5). These are known as Cundy and Rolett symbols.
Archimedean maps whose local type has no repeating factors are necessarily per-
fect since then, adjacent vertices must belong to different orbits under the action
of orientation-preserving automorphisms.

Cayley maps are not necessarily Archimedean; those that are Archimedean,
include all accurate Archimedean, some fair Archimedean and some Platonic
maps. This is a consequence of the well known fact that a map M is Cayley if
and only if Aut*(M) has a subgroup G acting regularly on vertices, which is
not the case for perfect Archimedean maps and not always guaranteed for fair
Archimedean maps or Platonic ones. Moreover, as any Cayley map has a simple
underlying graph, a Cayley map is Archimedean if and only if it is polyhedral.
Thus, even regular Cayley maps need not to be Archimedean. For example,
(Zn,(1,-1)) is a regular Cayley map (on the sphere) which is not Archimedean
(since its underlying graph is not 3-connected, polyhedrality fails). The Cayley
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map (Zg, (2,3,4)) (on the torus) is neither regular nor Archimedean (see Figure
1), since the facial walk given by the non-triangular face is not a cycle. For
higher genera see section 4, where two other families of Cayley maps which are
not Archimedean arise from Proposition 4.2 and Proposition 4.4.

b
Figure 1: The Cayley map (Zg, (2,3,4)) (on the torus).

Remark. By definition, a map is Platonic if and only if it is a polyhedral
regular map. As regular maps are classified up to genus 101 (see [3]), regular
Cayley maps, as well as Platonic maps up to genus 101 can be extracted from
this classification. Although Proposition 2.1 in [4] gives necessary and sufficient
conditions for a regular map to be Cayley, the classification of regular Cayley
maps (on any genus) is still open.

Fair Archimedean maps seem to be relatively rare, especially on low genus.
There are no fair Archimedean maps on genus 0 (see Table 1). On genus 1
(torus), of the 11 local types of vertex-transitive maps only three local types
support fair Archimedean maps (see Table 2). According to the census (7], there
are no fair Archimedean maps on genus 2, there are five on genus 3 (of which
2 are non-Cayley) and three on genus 4 (of which 2 are non-Cayley). The first
examples of fair Archimedean non-Cayley maps appear on genus 3.

Archimedean maps on the sphere

Besides the well known Platonic solids (Platonic maps), the Archimedean maps
on the sphere are listed in Table 1 below. It displays a picture of the map (taken
from Wikipedia [12]), its local type and its class according to the definition given
in the previous section. Note that the great rhombicosidodecahedron and the
great rhombicuboctahedron, being perfect Archimedean maps, are not Cayley
maps, while the others Archimedean maps on the sphere, being accurate, are
all Cayley maps.
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Map Picture Type Class

Cuboctahedron (3.4.3.4) | accu

Great

rhombicosidodecahedron (4.6.10) | perf

Great

rhombicuboctahedron (46.8) | perf

Icosidodecahedron (3.5.3.5) | accu

Small

rhombicosidodecahedron (3.4.5.4) | accu

Stnall

943
rhombicuboctahedron (3.4%) aced

ESILJIB (3'.4) | accu
ggsgcahedron (3%.5) accu
;I:gélcated (3.82) aceu
;%?)glxelcc::ltlz‘g] ron (3 102) accu
giiﬁ::ﬁin (5.6%) | accu
g‘éaﬁfﬁ%‘n (4.6%) | accu
?Jc‘iﬁﬁiﬁi‘én (3.6°) | accu

n-Prism (n # 4) (42m) | accu

n-Antiprism (n # 3) (3%.n) | accu

‘able 1: The Archimmedean maps on the sphere.

Archimedean maps on the torus

Toroidal Archimedean maps arise from the semi-regular planar tilings either
by describing quadrilateral fundamental regions, approach followed by Gross
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and Tucker (6], or by analyzing the different actions that arise from the 17
planar wallpaper groups as in Babai [1]. There are infinitely many toroidal
Archimedean maps grouped in 11 possible local types (see Table 2}, up to mirror
image. With the exception of all the perfect Archimedean maps, which are non-
Cayley maps, all the remaining Archimedean maps on the torus are Cayley.

Type Class Type Class Type Class
(3.3.3.3.3.3) | Plat, fair (3.4.6.4) | accu (4.6.12) | perf
(3.3.3.3.6) accu (3.6.3.6) | fair (4.8.8) | perf, accu
(3.3.3.4.4) accu (3.12.12) | accu (6.6.6) | Plat, accu
(3.3.4.3.4) accu (4.4.4.4) | Plat, fair

Table 2: The 11 local types of toroidal Archimedean maps.

Archimedean maps of higher genera

Fixing the genus g of the supporting surface, according to Euler formula (see
(2) in next section), there is a finite number of Archimedean maps of genus
g > 1. According to the census given in [7], we have the following numbers of
Archimedean maps (counted up to isomorphism and mirror image):

e On genus 2 there are 17 Archimedean maps: 8 perfect (non-Cayley) and
9 accurate (Cayley).

o On genus 3 there are 103 Archimedean maps: 25 perfect (non-Cayley), 69
accurate (Cayley), 5 fair (4 Cayley and 1 non-Cayley) and 4 Platonic (2
Cayley and 2 non-Cayley).

e On genus 4 there are 111 Archimedean maps: 35 perfect (non-Cayley), 71
accurate (Cayley), 3 fair (2 Cayley and 1 non-Cayley) and 2 Platonic (1
Cayley and 1 non-Cayley).

4 Generalized prisms and antiprisms

We describe now two families of accurate Archimedean maps called general-
ized prisms and generalized antiprisms. They show that there are at least two
(accurate) Archimedean maps on any even genus.

Any member of the two families is a Cayley map (G;(so,...,8n-1)), that
is, a map M = (D;R,L) with D = G x S, where S = {so,...,5n-1} and
R,L: D — D are given by

R(g,8:) = (9,3p(1) Wwith p(i)=i+1 modn and
L(g,s:) = (gsi,8x()) With A(3) = j such that s; = s;~1.

For any a € G, (g, s;) — (ag, i) is an orientation preserving automorphism of
M. So, we can regard G as a subgroup of Aut*(M) that acts regularly on ver-
tices. Factoring M by G < Aut* (M) we get a one-vertex map X,(\) (see end
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of section 2). Vertices, edges and faces of M are (in one-to-one correspondence
with) the orbits of the action of (the subgroups generated by) R, L and RL on
G x S, respectively. Hence, the number of vertices of M is |G| and the number
of edges is J%lﬁ The set of faces of M is partitioned in equivalence classes, each
class determined by faces covering the same face of the one-vertex map X, ().
Since elements of G are automorphisms of M, faces in the same equivalence
class have the same valency, which is a multiple of the valency of the face of
X () they cover. The multiplicity is determined by the order |g| of an element
g of G. To be more precise, we first remak that, recursively we have

(RL)>(g, 3:) = (93:8pa(3) S(o0)2(5) - - - S(pn)a-1(3)» S(pN)a(3) ) » (1)

for any & € N. Let ¢; be the length of the orbit of i € Z, by pA. Then,
looking at the action of (RL)* on (g, s:), we get that the length of the orbit
of (g,s:) by RL is a;m;, where m; = [3;8,x(;) ...S(P,\)oi—l(i)l. This order m;,
which is independent of g, is constant on the orbit of 7 by pA, since conjugation
preserves order. Therefore M has local type (aomeo,-..,@n—1mn-1), up to
cyclic permutations. Using the Euler formula and the orbit-counting theorem-
(Burnside’s Lemma) we easily get the Euler characteristic x of the supporting

surface of M,
n 1
x—|G|(l_§+iezz-a‘_mi)‘ @

Generalized prisms
Consider the family of Cayley maps

Pk = (G; (301 eeey 35)) = (DZk; (x:yy 2, y-l, u, u—l))

defined on the dihedral group Dyx = (y, 2z | y%* = 22 = (yz)? = 1), with z = y*
and u = y*~1, where k > 3. Since sy0) = so~! = sp (z is an involution),
sx(1) = 8171 = 83, S5(2) = 527! = s (2 is an involution) and sy(g) = 547! = ss,
thzen 2'Pk covers the one-vertex map Xg(A) with A = (1,3)(4,5) and local type
(32.22.3.1).

Figure 2: The one-vertex map Xg(X) with A = (1, 3)(4, 5).

For convenience, in the following we set d(k) = s—c;@z,:f—k:ﬁ, which is k if k is
odd and 2k if k is even.
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Proposition 4.1 The Cayley map Py, has 4k vertices, 12k edges, 4k triangular
faces and 2k rectangular faces. If k is odd, then Py has four k-gonal faces, local
type (32.42.3.k) and genus k — 1. If k is even, then P; has two 2k-gonal faces,
local type (32.4%.3.2k) and genus k.

Proof. The number of vertices of Py, is |Dax| = 4k and the number of edges
is 122418 _ 19k Using the above notation, as the orbits of pA are {0, 1,4}, {2,3}
and {5}, we have g = a1 = a3 =3, ap = a3 = 2, a5 = 1 and mp = my = my,
mg = mga with:

mo = |80 91 84] = |zyu| = 1, since zyu = y?>* =1,
mg = |sg 83| = |2y~ = |yz| = 2,
ms = |s5| = Ju~| = |u| = d(k).
Hence P has local type (32.42.3.d(k)). Therefore Py has | Dok (3 + 3 + 3) =4k

triangular faces, | Dax| (§ + §) = 2k rectangular faces and J%,';‘S-l of the faces are
d(k)-gons. Euler formula (2) conclude the proof. O

Proposition 4.2 Py is Archimedean if and only if k is odd.
The family {Pam+1}meN is composed of accurate Archimedean maps.

Proof. Since P; is a Cayley map, it has a simple underlying graph and
Aut(Py) acts transitively on vertices of Pi. Therefore, we have only to check
polyhedrality. From the previous proposition, we know that Py has local type
(3%2.42.3.d(k)) = (cim;)iczs- Then the valencies of the six (not necessarily dis-
tinct) faces fo,..., f5 around (by some fixed orientation) the vertex v = 1 (or
any other vertex), have valencies 3, 3, 4, 4, 3 and d(k). Regarding faces as sets
of vertices, and following the action of RL on darts given by (1) (according to
the order given by the local type) we have:

fo={1, 50, 808px0)} = {1, 80,5031} = {1,9*,5**'};

i ={1,81,818001)} = {1, 81,5184} = {L,3,*};

1

f2 = {1, 52, 525,(2), 928p22) S(p712(2) } = {1, 52, 8253, 828352} = {1, 2, z¥%*~ 1, y};

f3 = {1, 53, 335,2(3), 35,(3)8(o7)2(3) } = {1, 83, 8352, 538283} = {1, %7, 29, 2};
fa={1,54,885073)} = {1, 54,5850} = {1, %1, 421},
S5 = {1,85,958,x(5):- - - 1958p(5) - - - S(pa)ttir-a(s) } = {85* 1 i =0,...,d(k) — 1}

= {y*+Di i =0,...,d(k) -1} .
Notice that pA = (0,1,4)(2,3) and '

(50» ey 35) = (x$y9zvy-lvu1u-1)) = (yk’y: z,y2k—l,yk—1‘yk+1) .
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This shows that fo, ..., f5 are distinct faces, and thus around any vertex there
are six distinct faces, proving that any Pi-facial walk is a cycle. If k is even,
then f4 = {1,y*"1,y%*1} C fs = {y*: i = 0,...,2k — 1} and therefore P is
not polyhedral. If k is odd, then f5 = {y* :i=0,..,k — 1} and any two faces
containing vertex 1 either have two adjacent vertices in common or 1 is the
unique common vertex. As this will happen for faces around any vertex, Py is
polyhedral, i.e. Py is Archimedean, in this case. O

By Proposition 4.2, {Pam+1}men is & family of Archimedean maps, whose
members will be called generalized prisms. All members of this family are accu-
rate since there is no non-trivial automorphism sending a face around a vertex to
another face around the same vertex (because their local type has no non-trivial
rotational symmetry), so vertex-stabilizers are trivial.

i f s

'. ”3;( oy ,.g‘ g A; '»‘.' ;' $33)--- L2703

Pe=(Dyi{v y z y' u u') with 34 faces and genus 4.

Figure 3: The first two maps of the family of generalized prisms (numbers
label faces).

In Ps, the faces numbered 3, 6, 24 and 27 are pentagons.

Generalized antiprisms

Consider now the family of Cayley maps
Ak = (G; (30, vee )36)) = (DZk; (x:y7 z, wsy—l’usu_l))

defined on the dihedral group Dax = {y, z | ¥?* = 22 = (y2)? = 1) with = = y*,
u=1y*"! and w = y~1z, where k > 3. As s5(0) = so~* = 50 (z is an involution),
8x(1) = 817" = 84, Sx(2) = 827 = s (z is an involution), sy2) = 537! = 83
(w is an involution) and sy(sy = s5~! = 6, then A covers the one-vertex map
X7(X) with A = (1,4)(5,6) and local type (35.1).
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Figure 4: The one-vertex map X7(A) with A = (1,4)(5, 6).

Proposition 4.3 The Cayley map Ay has 4k vertices, 14k edges and 8k tri-
angular faces. If k is odd then Ax has four k-gonal faces, local type (3%.k) and
genus k — 1. If k is even then Ay has two 2k-gonal faces, local type (35.2k) and
genus k.

Proof. The number of vertices of Ay is | Dax| = 4k and the number of edges
is |Dok|Z = 14k. As p) = (0,1,5)(2,3,4), we have that ap = -+ = a5 = §,
as = 1 and mp = my = m5 = |sp 81 85| = |zyu| = |v?*| =1, mg = m3 =my =
|s2 83 84| = |zwy~| = |2?| = 1, mg = |s¢| = |u| = d(k). Therefore Ay has local
type (3%.d(k)). Hence there are | Da|§ = 8k triangular faces and 2gcd(2k, k—1)
of the faces are d(k)-gons. Euler formula (2) complete the proof. O

Proposition 4.4 Aj is Archimedean if and only if k is odd.
The family {Aam+1}meN is composed of accurate Archimedean maps.

Proof. Taking into account that the faces (regarded as sets of vertices)
containing vertex 1 are

fo={L*5v*'Y A ={L99*) fo={12y} fi={l,2y,2)
fa={L,9* 12y} fs={1,*1,9*" '} and

fom {y*:i1=0,...,2k-1} ifkiseven

=\ {v¥:i=0,....k—1} ifkisodd ’

in analogy with the proof of Proposition 4.2 we have that, A is polyhedral and
therefore Archimedean, if and only if k is odd.

For m > 1, Agm+1 is clearly accurate since its local type has no non-trivial
rotational symmetry. For m = 1, that is, for local type (36.3), another argument
must be given. The word relation xy® = 1 says that there is a closed walk
containing the vertices 1, z, zy, zy?, which gives rise to the monodromy element
W = RPLRALRALRL in the stabilizer of (1,z):

Lz) 5 @) B @y)S @) @) S @ty

B (a9?,9) 5 (@?, v~ = (Ly ) B (1,2).
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Now, if there is a non-trivial automorphism ¢ that fixes vertex 1, we may assume
that ¢ is a 1-step rotation around vertex 1 (since vertex-valency is prime), say
v(1,z) = (1,y). Then

eW(l,z) =We(l,z) & ¢(1,2) = W(Ly) & (1,y) = W(L,y),

that is, W fixes the dart (1,y). But one can easily check that W(l,y) =
(yuwz,w) # (1,y). Hence the vertex-stabilizer must be trivial and so A3 is
also accurate. [OJ

Members of the family of accurate Archimedean maps {Azm41}men Will be
called generalized antiprisms.

A=(Dygi(x v z wy' u u')) with 44 faces and genus 4.

Figure 5: The first two maps of the family of generalized antiprisms (numbers
label faces).

In As, the faces numbered 3, 6, 24 and 27 are pentagons.
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