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Abstract

We prove the following Turdn-Type result: If there are more than
9mn/16 edges in a simple and bipartite Eulerian digraph with vertex par-
tition size m and n, then the graph contains a directed cycle of length 4
or 6. By using this result, we improve an upper bound for the diameter of
interchange graphs.
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1 Introduction

Interchange graphs are defined by Brualdi [1] as follows: Let R = (r1,72,
*,Tm) and § = (sy, - , s,) be non-negative integer vectors. Let A(R, S)
be a set of all m x n matrices A = (a;;) satisfying

a;j=0o0rlfori=1,.--,mand j=1,--- ,n;

n
E g =rifori=1,.-- ,m;
Jj=1

and
m
Zaij =g;forj=1,---n.
i=1
We define the interchange in A(R, S) as the transformation which replaces

the 2x 2 submatrix ((1) (1)) with ((1) (1)) or vise versa. Obviously, an

interchange does not change the row and column sum vectors of a matrix,
so an interchange transforms a matrix of A(R,S) into another matrix of
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A(R,S). If the matrix A € A(R,S) can be obtained by exactly one in-
terchange from B € A(R,S), we define an edge between A and B. Let
E be a set of all edges defined like above and let V be A(R,S). The
graph G(R, S) = (V, E) is called interchange graph. Ryser (2] and Gale (3]
independently proved all of the interchange graphs are connected.

For A,Be A(R,S), let i(A, B) be the distance from A to B in G(R, S),
that is, i(A, B) is the minimum number of interchanges we need to trans-
form A into B.

The diameter of the interchange graph is defined as D(R, S) := max{
i(A,B) |A, B € G(R, S)}. The following conjecture is still an open problem.

Conjecture 1 (Brualdi, 1980, [1])
D(R,S) < %"- = 0.25mn.

Where m and n are the sizes of the matrix we consider.

Shen and Yuster (4] proved D(R,S) < 5/12mn =~ 0.4167mn. Their
method is to use a distance formula, the explanation of which requires
several notations. Let d(A, B) be the number of different entries of A and
B. Let I be the bipartite digraph defined by A — B = (c;;) as follows:
A partition sets of T are defined as X = {z1,-** ,Zm}, Y = {1, ,¥n}
where m, n are row and column sizes of matrices A and B. Directed edges of
T, (zi,y;) and (y;,;) are defined according to ¢;; = 1 or —1 respectively
(namely, T is a digraph whose adjacency matrix is A — B). A digraph
G = (V,E) is called Eulerian if for each vertex of V, the indegree of the
vertex is equal to its outdegree. From the definition, I is a simple and
Eulerian graph. Let

g(A, B) = max{n|I’ can be divided into n parts
of edge-disjoint directed cycles}.

Brualdi’s distance formula is the following:

Theorem 1 (Brualdi, 1980, [1]) We have

d(A, B)
2

i(A,B) = —q(4, B).

From the formula, we know the following Turdn type question is worth
considering.
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Question For a simple and bipartite Eulerian digraph, how many edges
do we need to guarantee the existence of small directed cycle in the graph,
regardless of the edge arrangement of the graphs?

Let o be the edge density of I', that is, @« = #E/mn where m,n are
sizes of partition sets of T.

Lemma 1 (Shen and Yuster, 2002, [4])

Ifa> -:2,: = 0.66, then I' has a cycle of length 4.

By using Lemma 1, they proved D(R, S) < 5mn/12 =~ 0.4167mn. Similar
to their method, we get the following lemma, which will be proved in the
next section.

Lemma 2 If a > % = 0.56, then I" has a cycle of length 4 or 6 .

By Lemmas 1 and 2, we can get the following upper bound for the
interchange graphs.

Theorem 2 We have the inequality

115
< —==mn=0. .
D(R,S) < 988 ™" 0.3994mn

Proof of Theorem 2. Let A, B be elements in A(R,S) and I" an bi-
partite digraph whose adjacency matrix is A — B. From Lemma 1, T

d(4, B) — 2mn/ 3] = I-i - ﬂ"l" arc-disjoint cycles of

4 4 6

length 4. Let IV be a subgraph obtained from I' by deleting edges of

the cycles. Put E = [i - ﬂ] From Lemma 2, there are at least

4 6
d(A,B)—E-4-%
[ (4,B) 5 lsmn" cycles of length 4 or 6 in I'". So, we have

has at least [

d —E. 4%

dA,B) _2,_3
> E+—-6—— 3E 32m'n,
_ l d(A,B) _mn d(A,B) _ 3
i ( 1 6 )t 6 ~m™
_ d(A,B) 43
=~ 4 g™
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This together with Theorem 1 gives

d(A,B) _d(AB) , 3
2 4 288

_ d(A,B) | 43

= =41 Tagg™
mn 43 _ 115

S 77 Teg™" T o8

i(A,B) < mn

< — 4+ mn.

Hence we proved Theorem 2. O

2 Proof of Lemma 2

Proof of Lemma 2. Let ' = (V, E) be a simple and bipartite Eulerian
digraph which does not contain any cycle of length 4 or 6. Let X and Y
be partition sets of V and d} out degree of v € V. We can assume all of
the outdegrees of the vertices are positive. For each v € V, we define p,, as

d+
= (ve X),
. n
Py = dF
o (veY).

Let p = max{p,|v € V'} and we choose a v* such that p = p,.. Without loss
of generality, we can assume v* € X. Andlet Y+, Y-, X+, X, Y++ Y-~
be the subsets of V such that:

Y+ = {yeY|(vy) € E},

Y™ = {yeY|(y,v") € £},

Xt = {zeX|ByeYt (v,z) € E},

X~ ={zeX|3yeY ,(z,y) € E}u {v*},

Y = {yeY\ (Y UY )z e X,(y,z)€E,(z,2) e E=>2¢ Y},
Y~ = {yeY\(YTUY )|z e X,(z,y) €E,(z,z) E E=>2¢ YT}

Let = :=#X"/m, ot :==#Xt/m , B:=#Y""/n, f/ :=#Y*+*/n and
order the vertices of each sets such that Y* = {y1,92, " ,ypn}, Y~ =

{ypn+la te ay2pn}a X_={$1 = ’U‘,(Ez, ot ':ma'm}a Xt ={:L"1,a:'2, tet ,xla-fm}v
Y-- ={yi7yé’ e 'lylﬂn}’ Y++={y’1,1 tU ’y’ﬂ"n}' X\(X_UX+) = {xa-m-i-la
Toa~m+2y " 7xn—a+m}- And we define Tme—a-m+i = x,v Yoontsi = y_-,,':

Yzon+pn+i = ;- The set Y must satisfy Y = Y+ UY-uY++uY-—(if
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there exists y € Y\ {YTUY - UY+*UY "} then there is a cycle of length
6).

We set adjacency matrix M of I with m rows and n columns as fallows.
Let M = (a;;), and for each z; € X, and y; € Y,

1 (.’L‘,', y,-) € E,
a,-j = -1 (y,-,x,-) € E,
0 otherwise.
We can divide M into twelve sub-matrices M;,- .- , My, corresponding to

subsets of vertex sets (Figure 1). Denote by M; the sub-matrix consisting
of therowsi =1, --- ,a&~m and columns j = 1,---, pn. Denote by M> the
sub matrix consisting of rows i = a~m +1,--- ,m — a*m and columns
j=1,.--,pn. The matrices Ms,--- , M2 are also defined similarly so we
omit to state their definitions. Because the graph does not contain a cycle

Y+ Y- Y-- y++
Y1 Y2 - Yon Ypn+l..- Y2pon yi e Y yl’. - Ygin
vt =1 11——1|-1—-1|0—0{0—0
Z2
OTED M| My | My | My
z, - | No—1here No —1here
a~m
M, My | Mg | My,
No —1 here No 1 here
)
X+ zh M3 M6 Mg M12
, No 1 here |{No 1 here
T
atm

Figure 1: Adjacency matrix of T

of length 4, there is no —1 in M. Similarly, there is no 1 in Mg. By the
definitions of X+ and X, there is no —1 (resp.1) in M3 (resp.Ms). And
by the definitions of Y=, Y *¥, there is no 1 (resp.—1) in My (resp.Mjo).

Foreachi=1,2,.--,12and j = -1,0,1, let f be

f(i;5) = #(number of j's in M;).
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For simplicity, we use the following notations. For each j = —1,0,1 and a
subset {ay,---,ax} C {1,2,:--,12}, we define

k
far, a2, ,ax55) = Y (@i, )
i=1
and for each i =1,2,---,12 and a subset {b;,--- ,b} C {-1,0,1},
t
f(i;blabZ"' ,bl) = Zf(libj)'
=1

From the definition of p, we have foreachy €Y,
(number of 1 in y column part of M) =d} < pm. (1)
Similarly, it holds
(number of 1 in = row part of M) = d} < pn 2)

for each £ € X. Since o means the edge density, we obtain

l—a = (number oflin M) Zf(’ 0)

> f(1,2,6; 0) +f(5,0) + f(9, 12;0) + f(7,8,10,11;0).  (3)

From f(1,2;0) + f(1,2,;1) = p(1 — &™), £(1,2,3;1) = f(3; —1) and
f(6;0,~1) = pa*, we have

f(1,2,6;0) = £(1,2;0) + f(6;0)
= p(1 -a*) - f(1,2;1) + f(6;0)
= p(1—a*)+ f(3;1) — f(3;-1) + £(6;0)
= p— f(3-1)+ f(3;1) — f(6; -1). 4)

By £(9,12;0) = (1 — 2p)at — f(9;-1) - f(12;1,-1), £(3,6,9,12;-1) =
£(3,12;1) and (4), we have

£(1,2,6;0) + £(9,12;0)
= p— £(3,6,9,12; -1) + f(3; 1) + (1 - 2p)a™ — f(12;1)
= p— F(3,121) + £(31) + (1 - 2p)a* — F(12;1)
= p+(1-2p)at —2f(12;1). (8)
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Furthermore, by f(7,8,10,11;0) = (1 — 2p)(1 — o*) — £(7,8,10,11;1) —
f(7,8,11; —1) and (5), we obtain

f(1,2,6;0) + £(9,12;0) + £(7,8,10,11;0)
= p+ (1 - 2P) - f(7, 81 107 117 12; 1) - f(12) 1) - (7’ 81 11: —'1)

From (1), we know that the inequality f(7,8,10,11,12;1) < p(1—2p) holds,
from which we deduce

£(1,2,6;0) + £(9,12;0) + £(7,8,10,11;0)
= 20" —2p+1- f(12;1) - f(7,8,11; -1). (6)

Combining (3) and (6), we get
1-a>20°—2p+1+{f(50) - f(811;-1)} - £(7;-1) — f(12;1). (7)

On the other hand, from the fact that I' is Eulerian and inequality (2), we
know

f(sa O) - f(8a 11 _1) = p(l -at - a—) - f(5, 8, 11; _1)
>pl-at—a")-p(l—at—a")=0. (8)

Again, from (1), we have

f(12;1) < f(10,11,12;1) < pf'. (10)

By 8+ 8 =1-2p and (7) — (10), we have

l1—a > 20" -2p+1-p(B+0)
=202 —20+1—-p(1-2p)=4p*> -3p+1.

Therefore, we obtain

2
a4 +3p=-1(p-3) + 2
and the desired estimate o < 1—%— O
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