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Abstract

For the positive integers j and k with j > k, L(j,k)-labelling is
a kind of generalization of the classical graph coloring in which ad-
jacent vertices are assigned integers that are at least j apart, while
vertices that are at distance two are assigned integers that are at least
k apart. The span of an L(J, k)-labelling of a graph G is the difference
between the maximum and the minimum integers assigned to its ver-
tices. The L(j, k)-labelling number of G, denoted by A;x(G), is the
minimum span over all L(j, k)-labellings of G. An m-(j, k)-circular
labelling of a graph G is a function f : V(G) — {0,1,...,m—1} such
that | f(u)— f(v)|m 2 j if u and v are adjacent; and | f(u)— f(v)|m > k
if u and v are at distance two, where |z|m = min{|z|,m — |z|}. The
span of an m-(j, k)-circular labelling of a graph G is the difference
between the maximum and the minimum integers assigned to its
vertices. The m-(4, k)-circular labelling number of G, denoted by
0;,x(G), is the minimum span over all m-(j, k)-circular labelling of
G. The L'(j, k)-labelling, is a one-to-one L(j, k)-labelling and the
m-~(j, k)'-circular labelling is a one-to-one m-(j, k)-circular labelling.
Denoted by Aj(G) the L'(j, k)-labelling number and o} ,(G) the
m-(j, k)'-circular labelling number. When j = d,k = 1, L(j,k)-
labelling becomes L(d, 1)-labelling. The other labellings are similar.
[Discrete Math. 232 (2001) 163-169] determined the relationship be-
tween A2,1(G) and 02,1(G) for a graph G. We generalized the concept
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of the path covering to the t-group path covering (Inform Process
Lett(2011)) of a graph. In this paper, using the t-group path cov-
ering, we establish some relationships between X} ;(G) and 0y ,(G)
and some relationships between A;x(G) and o;«(G) of a graph G
with diameter 2. Using those results, we can have shorter proofs to
obtain the ¢; x-number of Cartesian products of complete graphs [J
Comb Optim (2007) 14: 219-227].

Keywords: distance two labelling; circular distance two labelling;
t-group path covering; product graph; assignment problem in MC

1 Introduction

Suppose we have to assign frequencies to a number of transmitters or sta-
tions in an area. In order to reduce the interference, “close” transmitters
must receive different frequencies and “very close” transmitters must re-
ceive frequencies that are at least two apart. Hale firstly formulated this
problem into a graph vertex coloring problem which called distance two la-
belling in [13]. The L(2,1)-labelling, introduced by Griggs and Yeh in (7],
arouse from a variation of the frequency assignment problem. And then it
was been generalized to the L(j, k)-labelling. For positive integers j and &k
with j > k, an L(j, k)-labelling of G is a mapping f from V(G) to integers

such that: ) £ .

) if d(u,v) =1,

FORSIOER WU b

Without loss of generality, we may assume that the minimum label of
an L(j, k)-labelling is always 0. Then the span of f is the maximum vertex
label. The L(j, k)-labelling number of G, denoted by A;x(G), is the min-
imum span over all L(j, k)-labelling of G. If span(f) = A;x(G), then we
say that f is a A x-labelling of G. A variation of L(j, k)-labelling, namely,
L'(j, k)-labelling, is a one-to-one L(j, k)-labelling. Denote by X’ ,(G) the
L'(j, k)-labelling number of G.

Circular distance two labelling is another kind lablling which similar to
the distance two labelling. Given a real number 7, let C” denote a circular
of length ». We fix a point on C” and label it by 0. We label each point
on C™ by a real number z € [0,r) according to the length of the arc from 0
along reverse clockwise on C” to this point. The circular difference of two
numbers (or two points on C7) z and y with 0 < z,y < r on C", denoted
by |z — y|-, is defined as min{|z — y|,r — |z — y|}. For positive integers j
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and k with j > k, an m-(j, k)-circular labelling of a graph G is a function
f:V(G)—{0,1,...,m — 1} such that:

1£(2) = F(©)lm 2 { A 3&3 Za

The minimum m such that there exits an m-(j, k)-circular labelling for
graph G is called the g x-number of G and denoted by o; x(G). A variation
of m-(j, k)-circular labelling, namely, m-(j, k)'-circular labelling, is a one-
to-one m-~(j, k)-circular labelling. Denote by o7 ,(G) the m-(5, k)'-circular
labelling number of G.

When j = d and k = 1, L(j, k)-labelling is the L(d, 1)-labelling and m-
(4, k)-circular labelling is the m-(d, 1)-circular labelling. A;(G) is A4,1(G)
and 0;x(G) is 04,,(G).

The following results are some relationships between L(j, k)-labelling
and m-(j, k)-circular labelling of graphs.

Theorem 1.1 (2] If G is a graph , for given j,k € Z*,j > k,then:
Ajk(G) +1 < 0jk(G) < Ajk(G) + 5.
Aik(G) +1 £ 054(G) < X 4(G) + 3,
2a,1(G) +1<05,(G) £ 25,(G) +d.

Using the above results, we can see that the numerical difference between
ojx-number and A; x-number range from k to j. How to decide the quan-
titative value about the numerical difference is unsolved problem. Next we
will introduce some results under three topics: some relationships between
A2,1(G) and 02,1(G); some relationships between \; x(G) and 0} x(G); some
related results.

¢ Axk(G) and o;4(G) of G
In 2001, Liu prove the following result:

Theorem 1.2 [2] Suppose the path covering number of G¢ is p,(G°®),

@) <n, if G¢ is Hamiltonian,
921 =n+p(G%), i p,(G°) > 2.

Up on the above result, we can get the results as follows:
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Theorem 1.3 [2] If G is a graph on n vertices, the following are equiva-
lent,

(1) 021(G) =n+1;

(2) 02,1(G) =n+1, and A2 1(G) =n —1;

(3) p,(G°) = 1 ,and G is not Hamiltonian, where p,(G) is the path cov-
ering of G.

Using the above results, we can give some relationships between Az1(G)
and 02,1(G).

Theorem 1.4 G is a graph on n vertices. If G® is not Hamiltonian, but
it contains a Hamilton path ,then 03,1(G) = A2,1(G) + 2.

Note: If G° is a Hamiltonian, 02,1(G) = A21(G) + 1 or 02:1(G) =
A2,1(G) + 2 cannot be determined.

¢ Aix(G) and 0;x(G) of G

For a diameter 2 graph G, when k < j < 2k, Lam, Lin and Wu deter-
mined the relationship between A;x(G) and ¢;x(G) by the Hamiltonian of
G¢ as follows:

Theorem 1.5 [14] If G is a diameter 2 graph on n vertices, then

(1) If G¢ contains a Hamilton r — 1-power path, then for all j,k, when
i <r, Aa(G) = (n =1k,

(2) If A\j x(G) = (n— 1)k, then G° contains a Hamilton r-power path for
anyr(2<r< [%])

Theorem 1.6 [14] If G is a diameter 2 graph on n vertices, then

(1) If G¢ contains a Hamilton r-power cycle, then for all j, k, when
% <r, ojx(G) =nk,

(2)If 0 x(G) = nk, then G° contains a Hamilton r-power cycle for any
r(2<r S[-,H)

¢ Some related results

In 2011, We generalized a concept of the path covering to the t-group
path covering [3] (Be introduced in section 2). Using this concept, we
determined the Aj ;-number of a graph and Aj.k-number of a graph G with
diameter 2.
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Theorem 1.7 [3] Let G be a graph of order n, d (> 2) is an integer,
GPCy_1(G?) is a (d — 1)-path covering number of G¢, then A} (G) =
n—d+ GPCy4_1(G°).

Theorem 1.8 [4] Let G be a graph of order n and diameter 2. Suppose j
and k are two positive integers with j > k. Let j = tk +1, wheret > 1 and

t—1
0<1<k-—1. Then A;r(G) =nk—j+mcin{k- (3 en) +1-ce}, where C
h=1

takes over all t-group path coverings of G°.

For some special graphs, there are some results about the A; x-number
and o;,-number. Next, we will give the ); z-number and o ;-number of
two kind product graphs.

Given two graphs G and H, the Cartesian product of G and H is the
graph GOH with vertex set V(G) x V(H) in which two vertices (z,y) and
(«',y’) are adjacent if z = z/, yy’ € E(H) or y = ¢/, zz’ € E(G). The
Direct product of G and H is the graph G x H with vertex set V(G) x V (H)
in which two vertices (z,y) and (z',y’) are adjacent if zz’ € E(G) and
yy' € E(H). For convenience’s sake, we call this two kind graphs the
product graph of G and H. And denote their vertex (z;,y;) be (4,7),
where V(G) = {zo,z1,...,2\v(e)-1} and V(H) = {yo,¥1,.. -, yjvay-1}
0<iL|V(G)-1,0<5 L |V(H)|-1.

K, is the Complete Graph with n vertices.

Aj.x and ok for graphs K,OK,, and K,OK, have been determined in
[6] and [11] as stated in the following:

Theorem 1.9 (6] Let j, k,m,n be positive integers with 2 < n < m and
j>k. Then

| _f (m=1)j+(n—1)k, ifj/k>n,
Ag,k(KnDKm) - { (mn — 1)k, lf]/k <n.

Theorem 1.10 [6] Let j,k,n be positive integers with n > 2 and j > k.
Then

. _f (n-1)j+(2n-2)k, ifj/k>n-1,
A (KnDKn) = { (n2 — 1)k, ifj/k <n—1

Theorem 1.11 [11] Let j, k, m, n are positive integers, and 2 < n < m,
j >k, then .
mj, iff>n

O'j,k(KnDKm) = { mnk, zf“?:‘ 2 n
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Theorem 1.12 [11] Let j, k, n are positive integers, and 2 < n, j > k,
then

ok (KnOKy) = { g ’:' nk, :;é- 2n- :

In this paper, we are going to established some relationships between
distance two labelling and circular distance two labelling and give shorter
proofs about the ¢ r-number of the product graphs of the complete graph
based on the above results. Firstly, we list some related preliminary defi-
nitions, example and lemma about the t-group path covering number and
Hamilton t-power cycle of a graph [3] in the section 2 . In the section 3, we
establish the relationship between the L’(d, 1)-labelling number (d > 2) and
the m-(d, 1)’-circular-labelling number G based on the above definitions. In
the section 4, we obtain a more general result about the relationship be-
tween A x(G) and 0;x(G) for diameter 2 graphs when j > k. Using this
result, we finally give shorter proofs to determine the o;(K,0OKy,) and
ok (KnOKy).

2 Preliminary definitions and lemmas

Throughout this paper, only finite simple graphs are considered.

Definition 2.1 Let the vertex set of graph P be V(P) = {v1,...,vn}, the
edge set be {v;v;,1 < |i — j| < t}. We call this kind graph be t-power path
with n vertices, where t(= 1) is an integer.

Definition 2.2 Let G be a graph with verter set V(G) = {vi,...,v,} and
edge set E(G). A collection of vertezx disjoint t-power paths {Py, Py, ..., P}
in G is called a t-power path covering of G if each vertex of G belongs to
ezactly one of P;s.

Definition 2.3 [3] Suppose G is a graph with vertez set {vy,va,...,vn}.
Let t be a positive integer not less than 2. A permutation = of {1,2,...,n}
defines an order of vertices of G as Ur(1), Ur(2)s- - - » Un(n)-
Then C = {C1(G),...,Ct(G)} is called a t-group path covering of G if the
following two rules are satisfied.

(R1) Fori=1,2,...,t, each Ci(G) = {P},P},...,P.} is an i-power
path covering of G, where each P; (1 < j < ¢;) is an i-power path of G
spanned by a consecutive subsequence of (Ur(1), Un(2)s- - - »Vn(n))-
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(R2) Let Ci(G) = {P}, F},..., P}, Cusa(G) = {P{*!, P{*',... Pit!}

(1 <i<t—1), then for each j € {1,2,...,ci11}, V(Ff;'“) - V(Pk) for
somek with1 <k <c;.

Definition 2.4 [3] Given a graph G and a positive integer t with t >
2. The t-group path covering number of G, denoted by GPC(G), is de-

fined as the minimum number of Z c; for all t-group path coverings C =

{C1(G),...,Ci(B)} of G, where c, |C (G)| fori=1,2,...,t. The order
of the 'verte:c sequence along the 1-power path covering of C is called the op-
timal vertez order. SupposeC’' = {C{(G),...,C{(G)} of G’ is a t-group path

covering of G, where ¢, = |C{(G)| fori=1,2,...,t. If Z = GPCy(G),
then we call C' the optimal t-group path covering of G.

From the above definition, it is obvious to see ¢; < ¢3 < --- < ¢. A
graph G has a Hamilton ¢-power path if and only if G has a t-group path
covering C = {C1(G),...,Ce(G)} withey =co =+ =¢, = 1.

We use the same example in (3] to illustrates the above definitions.
Example: Let {v,vyvs, v4vsvsvr, Us¥UgU10v11v12} IS & 2-power path covering
of H in Figure 1.

Figure 1: The graph H in the example[3].

Consider the 3-group path covering of H. Let Ci(H) = {v1v2...v12},
Co(H) = {v1v2v3, v4Usvev7, Vguguiov11v12}, C3(H) = {v1v2v3, v4us, vevr,
vsUgU10V11, V12} and C3(H) = {v1v2v3, v4vs, vgu7, vsVev10, V11V12}-
{C:\(H),C3(H),C3(H)} and {C1(H),C2(H),C4(H)} are two 3-group path
coverings of H with ¢) = 1, ¢o = 3 and ¢z = 5. It is not hard to see that
they are both optimal 3-group path coverings of H. And GPC3(H) =

{v1,v2,v3,v4, s, vs,v7, 8,9, V10,11, V12} is the optimal t-group path
covering of H. |

Next, we introduce another related definition.

Definition 2.5 If F is a circular distance two labelling of G, define the
following for 0 < s <r:

Fy:={v: F(v) = s},
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H(F):={s:F, = @}.

All the indices above are taken mod r. If {s+1,8+2,...,s+I} CH(F)isa
consecutive subsequence, and s, s+1+1¢ H(F), then {s+1,5+2,...,5+1}
is called an l-hole of F.

/ /
3 41(G) and 0;,(G)
From the above definition, we can obtain the following lemma:

Lemma 3.1 If G is the graph on n vertices, then oy ;(G) = n if and only
if G¢ contains a Hamilton (d — 1)-power cycle.

Proof. Suppose G¢ contains a Hamilton (d—1)-power cycle, i.e. vg,v1,...,
Yn—1, Vo, then the function L(v;) = z is an n-(d, 1)’-circular labelling of G.
So 0} ,(G) < n. The (d,1)-circular labelling is a one-to-one function, and
V(G) =n, s0 0;,(G) > n. Hence 0 ,(G) =n.

Suppose a{“(G) =n, L is an n-(d, 1)’-circular labelling of G. Let vy =
L-1(z), where 0 < £ < n—1. Then we can obtain a Hamilton (d—1)-power
cycle of G¢ along the vertex order v, vy,...,VUn-1, 0. | |

We give the main result of this paper as stated in the following Theorem:

Theorem 3.2 If G is a graph on n vertices, then

(1) If G is not a Hamiltonian, then oy ,(G) = Xy ;(G) +d;

(2) If G° contains a Hamilton (d — 1)-power cycle, then oy ,(G) =
Ag1(G) +1;

(3) If G¢ hasn't a Hamilton (i+1)-power cycle, but it contains a Hamilton
i-power cycle along the optimal vertex order of G, then gy | (G) = Xy 1(G)+
d—i, wherel <i<d-2.

Proof. (1) By theorem 1.1, it is obvious that o} ;(G) < X} ;(G) + d.
Suppose G¢ is not Hamiltonian. Let 07 ,(G) = p and f be a p-(d,1)"-
circular labelling of G. Let A be the labels used by f, then |A| = n and
A c {0,1,...,p — 1}. Because of p > n, there must be some holes of f.
There must be a (d—1)-hole of {0,1,...,p—1}. Otherwise we can obtain a
Hamilton cycle of G¢ as follows: for any label i, i € {0,1,...,p—1},if i is
used by f, then f~1(3i) is a vertex of G; if i is not used by f, let f~1(s) = &.
We can see that the sequence S = (f~!(0), f~1(1),...,f~Y(p—1), F~1(0))
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contains all the vertices of G and several s. Obviously, any maximal
consecutive & subsequence is the hole of f. Delete all ®s of S, then S is
divided into several parts, i.e. S,3S2,...,S.. The sub-graph of G with the
vertices of S; must be contain a path, where 1 < 7 < ¢. We prove this result
as follows. Along the vertices of Pi, Ps,..., P,, we can establish a vertex
order of G. In this vertex order, each vertex order of P; is a sequences of
{0,1,...,p — 1}. Because there is not a (d — 1)-hole of {0,1,...,p — 1},
so there must not be a (d — 1)-hole of any vertex order of P;. It is easy
to see that: the difference between any two vertex labels on P; is at most
d — 1, so the two vertex is not adjacent in G. They must be adjacent
in G°. Hence, each P; contains a path of G¢. For any adjacent paths,
i.e. P, Piy1(1 < i £ ¢ —1), the label of the last vertex on P; is at
most differ by d — 1 from the label of the first vertex on P;;;, then the
two vertices are not adjacent in G but adjacent in G°. Along the vertex
order of Py, P,,..., P, G° contains a Hamilton cycle which is contradict
the assumption. Hence , in {0,1,...,p — 1}, there must be a (d — 1)-hole,
ie. {h+1,...,h+d~1},0 < h < p-— 2, where all the indices are taken
mod p. Let:
fv)=fw)+p—h—d mod p

It is easy to see that f’ is also a p-(d,1)’-circular labelling of G with
fip-d+1)=f~p-d+2) == f"1p-1) = ®isan L'(d1)-
lablling of G. Then A} ,(G) < p—d=04,(G) ~d.

Hence 0 ,(G) = A} ,(G) +d.

(2) If G° contains a Hamilton (d — 1)-power cycle , then o},,(G) = n
based on lemma 3.1. G° contains a Hamilton (d — 1)-power path, then
24,1(G) = n — 1 based on theorem 1.7.

The result is proved .

(3)Let Ay ,(G) = p, f be a p-L'(d, 1)-lablling of G, then the labels of f
must be defined along the optimal vertex sequence of G, v, v1,...,¥n-1, vo.
We will prove f is a (p + d — i)-(d, 1)’-circular labelling of G. G° does
not contain a Hamilton (i + 1)-power cycle, but it contains a Hamilton
i-power cycle along the optimal vertex order of G, there must exist that
1 < |f(z) - f(y)| < p—1 for any two vertices =, y when d(zy) = 2 and
|f(z) = fW)|p+d—i 2 15 @ < |f(w) — f(v)| < p — i for any adjacent vertices
u, v and |f(u) — f(v)lp+d—-i > d. Hence 03 ,(G) < X; 1(G) + (d —1).

Let’s prove 0} ;(G) > A (G)+(d—1). Let 0y ,(G) = p, f be ap-(d,1)-
circular labelling of G and A be the labels used by f, then |4| = n and
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Ac{0,1,...,p—1}. Because of p > n, there must be a (d — i — 1)-hole
of {0,1,...,p —1}. Otherwise, we can construct a Hamilton (% + 1)-power
cycle of G¢ as follows: for any label i(i € {0,1,...,p — 1}), if ¢ is used by
f, then f~1(i) is a vertex of G; if i is not used by f, then let f~1(i) =
®. The sequence S = (f~1(0), f~1(1),...,f~1(p — 1), f~1(0)) contains all
vertices of G and several ®s. It is obvious that any maximal consecutive
® subsequence is a hole of f. Delete all ®s of S, then S is divided into ¢
parts ,S1,S2,...,S;, we can obtain a vertex order P, P,,..., P; of G from
these parts. Each path, P;, contains an (¢ + 1)-power path of G°. And for
any 7,1 < j <c-1,if £ € Pj,y € Pj;; and the distance between z,y
be < (i + 1), then there must be |f(z) — f(y)| 2 d—%—1. So z,y are
not adjacent in G and adjacent in G°. and for each j, 1 < j £ ¢ —1, the
vertices whose distance differs at most ¢ + 1 on P; and P4, their labels
is at most d — i — 1 apart. So they are not adjacent in G, but adjacent
in G¢. G* contains a Hamilton (i + 1)-power cycle along the vertex order
of P, P,,..., P, contradicting the assumption. Hence there must be a
(d—i-1)-holeof {0,1,...,p—1},ie. {h+1,...,h+d—i—1}, 0< h <p-2,
where all indices are taken mod p. Let:

ffwy=f(w)+p—h—d+i mod p

We can see that f is also a p-(d, 1)’-circular labelling of G with f'~1(p—

d+i+1)=f"Yp—-d+i+2)=---= f"Yp—-1) = ®. Since f'is an
L'(d,1)-labelling of G, X} |(G) Sp—d+i=0y,(G)—d+i.
The theorem is proved. [ |

4 );jx(G) and 0,x(G) for diameter 2 graphs

For a diameter 2 graph G, when k < j < 2k, Lam, Lin and Wu determined
the relationship between A; x(G) and o;x(G) by the Hamiltonian of G¢. In
this section, we establish an extension of the above results when j > k.

Theorem 4.1 [11] Let G be a diameter 2 graph on n vertices, p,(G¢) be
the path covering number of G¢. When k < j < 2k, there must be:

(1) If G¢ is not Hamiltonian, then A\ jx(G) = (n—pu(G®))k+(pu,(G°)—1)j
and ;(G) = (n = po(G))k + P (GE)i;

(2) If G° is Hamiltonian, then o;x(G) = nk.
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Proof. (1) Let’s firstly prove A; x(G) = (n—p,(G®))k + (py (G¢) —1)j. Let
Pu(G®) = t(= 2), {P1, Py,---, P} be the path covering of G¢. Denote p;
be the vertex number of P;, where i = 1,2,...,t. Suppose v} be the l-th
vertex of path P;, then we give a labelling L as following:

i-1
L(v}) = [D_(ps = Dk + (L = Dk + (i ~ 1)j

s=1
It is not hard to see that L is an L(j, k)-labelling of G, then there must
be A;x(G) < (n — pu(G°))k + (po(G°) — 1)j. When p,(G°) =t =1, G°
must contain a path covering which contains only one path, namely P. We
can give the above labelling L for P. Because of k < j < 2k, L is also an
L(j, k)-labelling of G. So the result is right when p,(G®) = 1.

Next we prove the opposite inequality. Let L be an L(j, k)-labelling
of G. Without loss of generality, suppose L(v;) = l;(¢ = 1,2,...,n) and
ly <ly <--- <, Because G is a diameter 2 graph, so the labels of any
two vertices of G differ from at least k. If |l; — l;| < j, then v,v; € E(G®).
Let p; is the minimum number for I, < ly, 41 — 7, then we can see that
V1V2...Vp, is a path of G°. Let py is the minimum number for p; > p;
and lp, < l;,41 — 7, then vp 11V, 42...Vp, 4+p, is the second path of G°.
Carrying on the above way, we can get a path covering of G¢. Suppose the
path covering contains ¢ paths ,then we can see that the span of the labelling
L is at least (n—t)k+(t—1)j > (n—pu(G°))k+ (pu(G¢)—1)j. Whent =1,
the result is also right. Hence, A x(G) = (n — p,(G®))k + (p,(G¢) — 1)j is
proved.

To prove 0;k(G) = (n — p.(G°))k + p,(G®)j is to prove o;x(G) =
Aj,k(G) +j when k < j < 2k. By theorem 1.1, 0;£(G) < Xjk(G) + 5. We
will prove the opposite. Suppose G° is not Hamiltonian. Let ojx(G) =1,
f be an l-(j, k)-circular labelling of G. There must be an (j — 1)-hole,
{h+1,...,h+j—-1}0< h<1-2)of {0,1,...,] — 1}, where all indices
are taken mod l. The proof is similar to the same part of the theorem 3.2.
Let:

FW)=f@)+l—h—j mod I

We can see that f’ is also an {-(j, k)-circular labelling of G with f'~1(l -
J+)=f"1l-j+2) =-..= f"Y(l - 1) = ®. Since f' is an L(j,k)-
labelling of G, A x(G) <l — j = 0;x(G) — j. G° is not Hamiltonian, so
the first vertex is not adjacent with the last vertex of P. The result is also
right for p,(G°) = 1 when k < j < 2k.
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Hence 0 x(G) = A x(G) + 5.
(2) Using the similar way and the p,(G°) of G¢, we can also prove
0;x(G) = nk. |

Based on the above theorem, we can get the relationship between A; x(G)
and 0,,x(G) for diameter 2 graph G when k < j < 2k.

Theorem 4.2 Let G be a diameter 2 graph on n vertices. When k < j <
2k,

(1) If G¢ is not Hamiltonian, then 0;x(G) = A\ x(G) + 5,

(2) If G¢ is Hamiltonian, then o;x(G) = Ajx(G) + k.

Next we establish an extension of the above results when j > k.

Theorem 4.3 If G is a diameter 2 graph on n vertices, j > k,

(1) If G¢ is not Hamiltonian, then ox(G) = A x(G) + J,

(2) If G¢ contains a Hamilton f-,’;-]-power cycle, then 0 k(G) = Ajx(G)+
k,

(3) If G¢ doesn’t contain a Hamilton (i+1)-power cycle, but G¢ contains
a Hamilton i-power cycle along the optimal L(j, k)-labelling vertex order of
G, then g;(G) = A\jx(G) + j — ik, where 1 <i < [£] - 1.

Proof. (1) Suppose G is a diameter 2 graph on n vertices,
By theorem 1.1, 0 x(G) < Ajx(G) + j. We will prove the opposite.
Suppose G¢ is not Hamiltonian. Let ¢;x(G) = I, f be an I-(j, k)-circular
labelling of G. There must be an (j — 1)-hole, {h +1,...,h +j —1}(0 <
h<l-2)of {0,1,...,1 — 1}, where all indices are taken mod {. The proof
is similar to the same part of the theorem 3.2. Let:

flv)=fw)+l—h—-3j mod !

We can see that f’ is also an I-(4, k)-circular labelling of G with f'~1(l -
i+ =f"Y-5+2)=---= f~}(i-1) = ®. Since f’is an L(j, k)-
labelling of G, X x(G) <l —j =0, x(G) — 3.

Hence 0;x(G) = A x(G) + 3.

(2) If G° contains an [£]-power cycle, then G° contains an [£]-power
path. By theorem 1.6, we can obtain o;x(G) = nk. Hence A;x(G) =
(n—-1)k.

The result is proved.
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(3) The proof of 0;x(G) < Ajx(G) + (j — ik) is similar to the proof of
theorem 3.2. Let’s prove o;(G) > Ajx(G) + (j — ik). Let 0;x(G) = p,
f be a p-(4, k)-circular labelling of G, there must be an (j — ik — 1)-hole,
{h+1,...,h+j~-ik—1}, 0<h<p-1,0f {0,1,...,p — 1}, where all
indices are taken mod p. Let:

flv)=fw)+p—h—3j+ik mod p

It is easy to see that f’ is also a p-(j, k)-circular labelling of G with
frlp-j+ik+1)=f"Hp—j+ik+2)=---=f"(p—1)=&. So f’
is an L(j, k)-labelling of G, Ajc(G) < p — j + ik = 0 4(G) — j + ik. |

5 The application of the theorem

Lam, Lin and Wu [11] have gotten the o; x-number of the complete prod-
ucts(theorem 1.11 and 1.12). Using the results of this paper (theorem 4.3),
we can give a shorter proof of o;x-number of the complete products with
the A; x-number (theorem 1.9, theorem 1.10).

Let ¢,(G) be the number of r-power path covering of a graph G.

Lemma 5.1 [6] Let 2 <n < m.
(1) If r >n — 1, then ¢, ((K,OK,)¢) =m, and
(2) If1<r <n-1, then ¢,((K,OKn)) = 1.

Lemma 5.2 [6] Let 2 < n.
(1) If r > n — 2, then ¢, ((K,OK,)¢) = n, and
(2) If1<r<n-2, ¢((K,0K,)) =1.

Lemma 5.3 Let 2 < n < m, (K,0K,,)¢ hasn’t Hamilton l-power cycle,
where | > n — 1, but (K,0K,,)¢ contains a Hamilton r-power cycle along
the optimal L(j, k)-labelling vertex order of K,OK,,, wherer <n —1.

Proof. Since (K,0K,,)¢ = K,, x K,,. Put the vertices of K, x K, into
7 X m matrix, the vertices which is not in the same line and the same row
must be adjacent(in K, x K,,). By lemma 5.1 and theorem 1.9, when
r <n-1, (K,0K,,)¢ contains a Hamilton r-power path, vp,v1,..., Umn-1
along the optimal L(j, k)-labelling vertex order of K,0OK,,, where v; =
(a,b), t = ((n + 1)a — nb) mod mn. We can find that: along the vertex
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order of g, 1, ..., Vmn—1, i a0d Vi+; mod mn are not in the same row and
same line of K, x K,n, so these vertices are adjacent in K, X Ky, where
1<j<r. (K,OK,)® contains a r-power cycle, i.e. vg,v1,...,Ymn—1,%0,
along the optimal L(j, k)-labelling vertex order of K,0OK,. By Lemma
5.1, (K,0OK,)¢ contains no Hamilton l-power path, so it doesn’t contain
a Hamilton l-power cycle, where | > n — 1. | |

Lemma 5.4 Let 2 < n, (K,0K,)¢ hasn’t Hamilton l-power cycle, where
l > n—2, but (K,0K,)¢ contains a Hamilton r-power cycle along the
optimal L(j, k)-labelling vertex order of K,OK,, wherer < n — 2.

Proof. By lemma 5.2 and theorem 1.10, the proof is similar to lemma 5.3.

By theorem 1.9, 1.10 and theorem 4.3, the theorems 1.11, 1.12 can easily
be proved.
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