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Abstract. The splitting-off operation has important applications for graph con-
nectivity problems. Shikare, Dalvi, and Dhotre [splitting-off operation for binary
matroids and its applications, Graphs and Combinatorics, 27(6) (2011), 871-889)
extended this operation to binary matroids. In this paper, we provide a sufficient
condition for preserving n-connectedness of a binary matroid under splitting-off
operation.
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1. Introduction

For notations and undefined concepts, we refer to Oxley [10]. Throughout
this paper, we consider only loopless graphs and loopless matroids with at
least three elements. Let G be a graph and let = = vv; and y = vv; be two
edges of G. We denote by G, the graph obtained from G by deleting z,y
and adding the new edge a = v,v;. The transition from G to G, is called
a splitting-off operation.

The splitting-off operation has important applications to connectivity
problems. Lovész [6] proved that if a graph G = (V U s,E) is k-edge
connected in V (k > 2) and d(s) is even, then given an edge su there
exists an edge sv such that splitting-off the pair su, sv maintains the k-
edge connectedness. For applications of splitting-off operation for graphs
see Lovész [6], Mader (7], Frank [4] and [5]), Nagamochi, Nishimura, and
Ibaraki {8]. This operation is extended to binary matroids by Shikare,
Dhotre, and Dalvi [13] as follows.

Definition 1.1. Let M be a binary matroid represented by a matrix A
over GF(2). Let z,y € E(M). We denote by A;, the matrix obtained from
A as follows: if {z,y} is a 2-circuit in M, then delete columns labeled by
z,y; otherwise add a new column labeled by a which is the sum of columns
of z,y over GF(2) and then delete the columns of = and y. Denote by M,
the matroid represented by the matrix A,. The transition from M to M,,
is called a splitting-off operation. The ground set of the matroid M, is
E(M)—{z,y} if {z,y} is a 2-circuit of M, otherwise it is (E(M) — {z,y})U
{a}.
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The circuits of the splitting-off matroid are characterized in [13] as below.

Lemma 1.2 [13]. Let M be a binary matroid with the ground set E(M)
and the collection of circuits C. Suppose {z,y} C E(M) is not a 2-circuit
of M and a € E(Mzy) — E(M). Let

Co = {C € C: C contains neither of z and y },

Ci ={(C—-{z,y})U{a}:C€C and z,y € C}, and

Cy = {(Cl ucC,; — {x,y})U{a} :C, C2eC,CiNCo=¢, z€Cy, Yy € C;
and C; U Cy contains no circuit of M containing both x and y, or neither
of them }.

Then the circuit collection of the matroid My, is Co U Cy UCa.

The splitting-off operation is closely related to the splitting operation
which is defined by Raghunathan et al. {11] for binary matroids as a nat-
ural extension of the corresponding operation for graphs introduced by
Fleischner [3].

Definition 1.3. Let M be a binary matroid represented by a matrix A
over GF(2) and let =,y € E(M). Denote by A, the matrix obtained by
adjoining an extra row to A with this row being zero everywhere except in
the columns corresponding to = and y, where it takes the value 1. Let M,
be the matroid represented by A;,. We say that M, is obtained from M
by splitting away the elements z and y.

The splitting operation is well studied in [1], [2], [9], {11], [12] and [14].
The two matroids M, and M., are obviously related to each other as
follows.

Lemma 1.4. Let M be a binary matroid and let z,y € E(M). Then
My = M\ {z,y} = Mgy \ {z,y} if {z,y} is a 2-circuit of M, otherwise
Mzy = Mey/z = Mzy/y.

In what follows we assume that n is an integer greater than 1. We
obtain a sufficient condition to preserve n-connectedness of a matroid under
splitting-off operation. The following resuit is the main theorem of this
paper.

Main Theorem 1.5. Let M be an n-connected, vertically (n + 1)-
connected binary matroid with |[E(M)| > 2n—1 and z,y € E(M). Suppose
every circuit of M containing x,y has size at least n+1, and every cocircuit
containing x,y has size at least n+2 and further, such a cocircuit does not
contain an n-circuit. Then the splitting-off matroid M, is n-connected.

Since every k-connected matroid is vertically k-connected, the next re-
sult follows immediately.

Corollary 1.6. Let M be an (n+1)-connected binary matroid with |E(M)| 2
2n — 1 and let ,y € E(M). Suppose every cocircuit in M containing x,y
has size at least n + 2. Then the matroid Mz, is n-connected.
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The special case for n = 3 of the above corollary is proved in [13]. Also,
a similar result for n = 2 is obtained by Borse and Dhotre (2] for splitting
matroid M; .

We prove the main theorem in the second section, and discuss the sharp-
ness and other consequences of this theorem in the last section.

2. Proof of the Main Theorem

We need the following well-known results.

Lemma 2.1 [10, pp 75]. Let M be a matroid and let Q be a cocircuit of
M. Then Q is a nonempty subset of E(M) such that |CNQ| # 1 for each
circuit C of M.

Lemma 2.2 [10, pp 273]. If M is an n-connected matroid with |E(M)| >
2(n — 1), then all circuits and all cocircuits of M have at least n elements.

Lemma 2.3 (10, pp 275]. Let (X,Y) be a k-separation of a k-connected
matroid and suppose | X| = k. Then X is either a coindependent circuit or
an independent cocircuit.

The next two results are related to the rank function of the matroid
M_,y.

Lemma 2.4 (13]. Let M be a binary matroid and let {z,y} be an inde-
pendent set in M. Suppose r and r' are the rank functions of the matroids
M and Mgy, respectively. Then, for X C E(M_,)

r(X) if a does not belong to X
(X)=<{ (X —a) if a is not a coloop of Myy|X
r(X —a)+1 if aisacoloopof My|X

Lemma 2.5 [13]. Let M be a binary matroid and let x,y € E(M). Then
(M) = r'(Mzy) if {x,y} does not contain e cocircuit of M.

A hyperplane of a matroid M is a flat of rank (M) — 1. By [10, Propo-
sition 2.1.6], a subset ¥ of E(M) is a hyperplane if and only if E(M) —Y
is a cociruit in M. The next lemma follows immediately.

Lemma 2.6. Let M be a matroid and X C E(M) such that r(M \ X) =
(M) — 1. Then X contains a cocircuit of M.

We need some properties of cocircuits of My, which can be obtained
from the corresponding properties of cocircuits of the splitting matroid
M; ,, due to Mills [9]. The following lemma is a consequence of Theorems
2.7 and 2.8 of [9).

Lemma 2.7. Let M be a binary matroid and let =,y be elements of M
such that {z,y} does not contain a cocircuit of M. Then
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() {z,y} is a cocircuit of M ,;

(%) if Q is a cocircuit of M with {z,y} C Q, then Q — {z,y} is a cocircuit
of Mz.y;

(iit) if Q' is a cocircuit of Mz, with Q' N {z,y} = ¢ such that Q' does not
contain a cocircuit of M, then Q'U{z,y} is a cocircuit of M, or Q' is union
of two disjoint cocircuits of M each containing x or y.

Lemma 2.8. Let M be a binary matroid and let z,y be elements of M
such that {z,y} does not contain a cocircuit of M. Then

(i) if Q is a cocircuit of M with {z,y} C Q, then Q — {z,y} is a cocircuit
of Mzy;

(i) if Q' is a cocircuit of Mz, with a ¢ Q' such that Q' does not contain a
cocircuit of M, then Q' U {z,y} is a cocircuit of M, or Q' is union of two
disjoint cocircuits of M each containing x or y.

Proof. (i). By Lemma 2.7(i), {z,y} is a 2-cocircuit of M, . Suppose
Q is a cocircuit of M with {z,y} C Q. If {z,y} is a 2-circuit of M, then
M,y = M\{z,y} and hence Q — {z, y} is a cocircuit of M. Suppose {z,y}
is not a 2-circuit of M. Then, by Lemma 1.4, My, = M.,/ = M. ,/y.
Therefore, by Lemma 2.7(ii), Q — {z,y} is a cocircuit of M,.

(ii). Suppose Q' is a cocircuit of M, with a ¢ Q'. Then Q' C E(M) —
{z,y}. We prove that Q' is a cocircuit of the matroid M, ,. Let C be a
circuit of M, intersecting Q'. If C N {z,y} = ¢, then C is a circuit of
M. Hence, by Lemma 1.2, C is a circuit of Mzy. Therefore |C N Q’| # 1.
Suppose C N {z,y} # 1. Then, by Lemma 2.7(i), {z,y} C C. By [Theorem
2.2, 11], C is a circuit of M or it is disjoint union of circuits of M each
containing z or y. It follows from Lemma 1.2 that C' = (C — {z,y}) U {a}
is a circuit of Myy. Hence |CNQ’'| =|C'NQ’| # 1. Thus, by Lemma 2.1,
Q' contains a cocircuit Q" of M; . Obviously, Q” is disjoint from the 2-
cocircuit {z,y} of My ,. It follows from Lemma 1.4 that Q" is a cocircuit
of M;,. Hence Q" = Q'. Thus Q' is a cocircuit of M, ;. Now, the result
follows from Lemma 2.7(iii). O

Lemma 2.9. Let M be a binary matroid, {z,y} be an independent set in M
and (X,Y) be a partition of E(Myy) witha € X. Let X' = (X —a)U {z,y}.
Then r(X') < (X)) + 1, where r and r' are rank functions of the matroids
M and M_,, respectively. Equality holds if and only if either both xz,y are
coloops or they form a 2-cocircuit in M|X'.

Proof. Suppose {z,y} is a cocircuit of the matroid M|X’. Then z,y belong
to a circuit C of M|X’. By Lemma 1.2, (C — {z,y}) U {a} is a circuit in
M,, and hence in M,y|X. Thus a is not a coloop in M;y|X. Therefore
(X) = 7(X — a). By Lemma 2.4, 7(X — a) = 7/(X — a). Hence r(X') =
"X —{z,y)+1=r(X-a)+1=7(X -a)+1=r"(X)+1. Suppose
both z and y are coloops in M|X'. Then, by Lemma 1.2, there is no circuit
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in My|X containing a. Therefore a is a coloop in M;y|X. Hence r(X') =
X' —{z,y}) +2=r(X—-a)+2=r'(X—-a)+2=r"(X) + 1

Suppose only one of z and y, say z is a coloop in M|X’. Then z does
not belong to any circuit but y belongs to a circuit in M|X’. By Lemma
1.2, a is a coloop in Myy|X. Therefore r(X') = r(X' - {z,y}) +1=r(X —
a) + 1 = r/(X). Finally, suppose {z,y} does not contain a cocircuit in the
matroid M|X’. Then there exist circuits C; and C, in M|X’ containing z
and y, respectively such that y ¢ C; and z ¢ C,. Hence, by Lemma 2.4,
X)) =r(X'—{z,y}) =r(X —a) =7(X —a) < r(X). (]

Proof of Theorem 1.5. Suppose M,, is not n-connected. Then it has
an (n —1)-separation (X,Y’). Therefore min{|X|,|Y|} 2 n—1 and '(X) +
(YY) —r'(Mzy) < n—2, where ' is the rank function of M,,. Since n > 2
and every circuit containing z,y has at least n + 1 elements, {z,y} is not
a 2-circuit of M. Hence the ground set of M,, is (E(M) - {z,y}) U {a}.
We may assume that a € X. Let X’ = (X — a) U {z, y}. Then |X'| > n.
Suppose |Y| = n — 1. By Lemma 2.2, Y is independent in M. Also, by
Lemma 1.2, Y does not contain any circuit of M_,. Therefore 7'(Y) =n—1.
Consequently, 7'(X) < r'(Mz,) —7'(Y) +n -2 = r'(M,y) — 1. By Lemma
2.5, Y contains a cocircuit Q of Mzy. As |Q| < n — 1, by Lemma 2.2, Q
does not contain a cocircuit of M. Further, QU{z, y} cannot be cocircuit of
M because it has size less than n + 2. Therefore, by Lemma 2.8, QU {z,y}
is disjoint union of two cocircuits of M each containing z or y. By Lemma
2.2,n+12>|QU {z,y}| = 2n. Hence n = 1, a contradiction. Thus |Y]| > n.
This implies that min{|X'|,|Y|} > n.

Since M is n-connected with n > 2, it does not have a coloop. Further,
every cocircuit of M containing both x and y has size at least 4. Therefore
{z,y} does not contain a cocircuit of M. By Lemma 2.5, (M) = 7'(My,).
Suppose r(X’) < r/(X). Then r(X’) + r(Y') — r(M) < '(X) + (Y) —
7'(Mzy) < n— 2. Thus (X',Y) is an (n — 1)-separation of M, which is a
contradiction. Therefore r(X’) > r/(X). By Lemma 2.9, r(X’) = /(X)) +1.
This implies that (X’,Y) is an n-separation of M. If r(X'),7(Y) > n,
then (X',Y) is a vertical n-separation of M, a contradiction. Therefore
r(X')=n—-1orr(Y)=n—1. Suppose r(X’') = n— 1. Let X, be a subset
of X’ with | X;| = n and z,y € X;. Then X; is dependent in M. By Lemma
2.2, X, is a circuit in M containing both = and y, a contradiction to the
hypothesis. Thus 7(X’) > n and 7(Y) = n — 1. Therefore, by Lemma 2.2,
every subset Y; of Y with |Y;| = n is a circuit in M|Y. If |[Y| > n+1,
then it follows that Uy 5 is a minor of M|Y, which is a contradiction. Hence
Y} =n and Y is a circuit of M. As (X',Y) is an n-separation of M, by
Lemma 2.3, Y does not contain any cocircuit of M.

Since r'(Y) =n -1, (X)) < rv'(Mzy) —r'(Y)+n =2 = v'(Mgy) ~ 1.
By Lemma 2.6, Y contains a cocircuit Q of M,. As Y does not contain
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any cocircuit of M, @ also does not contain a cocircuit of M. Obviously,
a ¢ Qand QN {z,y} = ¢. By Lemma 2.8, QU {z, y} is a cocircuit of M or
it is union of two disjoint cocircuits of M each containing = or y. Suppose
QU {z,y} is a cocircuit of M. Since every cocircuit of M containing both
z and y has size at least n + 2, n = |[Y| > |Q| > n. Therefore Y = Q.
Thus Y U {z,y} is a cocircuit of M such that Y is an n-circuit of M, a
contradiction to the hypothesis. Suppose QU {z,y} = Q. U Q,, where Q.
and @, are disjoint cocircuits of M containing z and y, respectively. By
Lemma 2.2, |Q;|,|Qy| = n. Hence n+2 > |QU {z,y}| = |Qz| + |Qy| = 2n.
Therefore 2 > n. As M does not have coloops, each cocircuit of M has at
least two elements. This implies that |Q| = |Q.| = |Qy| =2 =n. Thus Y is
a 2-circuit in M such that [Y NQ;| = [QNQ;| = 1, which is a contradiction
by Lemma 2.1. a

3. Remarks

In this section, we discuss the sharpness of Theorem 1.5.

Remark 3.1. Splitting-off operation does not preserve connectedness of a
binary matroid in general. We give some examples here. Let G, G3 and
G4 be the graphs of Figures 1, 2 and 3, respectively. Then G, is i-connected
but not (i+1)-connected. Therefore the cycle matroid M (G;) is i-connected
but not vertically (¢ + 1)-connected for i = 2, 3,4. Let z and y be any two
edges of G; that are incident to the vertex u as shown in figures. Then the
matroid M(G;)zy is not i-connected for i = 2,3, 4. Hence the condition of
vertical connectivity in Theorem 1.5 is necessary.

U u
T Yy T Y

G2 GS
Figure-1 Figure-2
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Figure-3

Remark 3.2. Let M be a binary n-connected matroid with |[E(M)| > 2n
and let {z,y} be an independent set in M. Suppose there is an n-circuit
C in M containing z,y. By Lemma 1.2, (C — {z,y}) U a is a circuit of
the matroid M, of size less than n. Hence, by Lemma 2.2, M., is not
n-connected. Similarly, if M has a cocircuit Q containing both z and y
with 2 < |Q| < n+2, then, by Lemma 2.8, Q — {z,y} is a cocircuit of M.,
of size less than n and therefore, by Lemma 2.2, M,, is not n-connected.
Suppose M has a cocircuit @ of size n + 2 containing both z and y such
that Y = Q — {z,y} is an n-circuit in M. By Lemma 2.8, Y is a cocircuit of
Mzy. Let X = E(M,,) —Y. Then X is a hyperplane in M., and therefore
m(X) = r'(Mzy)-1. Thus (X,Y) is a partition of M, with [X|,|Y| > n—1
and further, r'(X)+r'(Y) —r'(M,y) = ' (Myy)—14+n—1—1'(Mzy) = n-2.
Hence (X,Y) is an (n — 1)-separation of M,. Therefore M, is not n-
connected. This shows that the conditions on circuits and cocircuits of M
containing x,y in the hypothesis of Theorem 1.5 are necessary.
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