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Abstract

Let A, be the alternating group of degree n with n > 4. Set
T={(123),(132),(12)(31%)| 4<1i<n}. The alternating group
network, denoted by AN,, is defined as the Cayley graph on A,
with respect to T. Some properties of AN, have been investigated in
[Appl. Math.—JCU. Ser. A 14 (1998) 235-139; IEEE Tran. Comput.
55 (2006) 1645-1648; Inform. Process Lett. 110 (2010) 403-409;
J. Supercomput. 54 (2010) 206-228]. In this paper, it is shown
that the full automorphism group of AN,, is the semi-direct product
R(An) @ Aut(An,T), where R(A,) is the right regular representation
of An, and Aut(A,,T) = {a € Aut(An) | T* =T} = S,_3 x Sa.
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1 Introduction

We follow [11, 12] for graph theoretical terminology and notation not de-
fined here. Throughout the paper graphs are undirected finite connected
without loops or multiple edges. For a graph G, denote by V(G), E(G),
A(G) and Aut(G) the vertex-set, edge-set, arc-set and full automorphism
group of G, respectively. A graph G is said to be vertez-transitive, edge-
transitive or arc-transitive if Aut(G) acts transitively on V(G), E(G) or
A(G), respectively.

For a set V and a group G with identity element 1, an action of G on
V is a mapping V x G = V, (v, g) = v9, such that v! = v and (v9)! = v9*
forve V and g,h € G. The subgroup K = {g € G | v9 = v,Vv € V} of
G is called the kernel of G acting on V. For two groups K, H, if H acts on
K (as a set) such that (zy)* = z"y" for any x,y € K and h € H, then H
is said to act on K as a group. In this case, we use K x H to denote the
semi-direct product of K by H with respect to the action.
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For a finite group G and a subset S of G such that 1 ¢ S and § = §~!
(where 1 is the identity element of G), the Cayley graph Cay(G,S) on G
with respect to S is defined to have vertex set G and edge set {{g,sg} | g €
G,s € S}. The automorphisin group Aut(Cay(G, S)) of Cay(G, S) contain-
s the right regular representation R(G) of G, the action of G on itself by
right multiplication, as a subgroup. Thus, Cay(G,S) is vertex-transitive.
Furthermore, Aut(G,S) = {a € Aut(G) | S* = S} is a subgroup of
Aut(Cay(G, S)),, the stabilizer of the vertex 1in Aut(Cay(G, S)). A Cayley
graph Cay(G, S) is said to be normal if R(G) is normal in Aut(Cay(G, S)).
Xu [13, Proposition 1.5] proved that Cay(G,S) is normal if and only if
Aut(Cay(G, S))1 = Aut(G, S).

Ji [6] proposed a new type of alternating group graph, ANp, which
improve the initial alternating group graphs AG, advocated by Jwo et
al. [7]. Let A, be the alternating group of degree n with n > 3. Set
T=1{123),(132),(12)34%) | 4 <i<n} The alternating group
network, denoted by AN, is defined as the Cayley graph

AN,, = Cay(An,T). (1)

It has been shown that the alternating group network has many nice
structures and properties. For example, Ji [6] proved that AN, has a node
degree that is smaller by a factor of about 2 while maintaining a diameter
comparable to that of AG,,, is maximally fault tolerant, and shares some
of the positive structural attributes of the well-known star graph. Chen
et al. [1] characterized the distance between any two nodes in AN, and
presented an optimal (shortest-path) routing algorithm for AN,,. Zhou [16]
determined the h-extra connectivity of AN,. Zhou et al. [18] showed that
in a given AN,,, there exist n — 1 parallel paths between any pair of nodes.
They also showed that the wide diameter of AN, is at most one unit greater
than the known lower bound D+ 1, where D is the network diameter. Zhou
et al. [17] studied the conditional diagnosability of AN,,.

However, the full automorphism group of AN, remained unknown.
Computing the automorphism group of a graph is a very difficult topic in
algebraic graph theory, and there are a lot of work along this line, see, for
example, (3, 4, 8, 9, 13]. For the automorphism groups of Cayley graphs hav-
ing connection with interconnection networks, there are also some interest-
ing work. For example, Feng [2] proved that for any minimal generating set
S of transpositions of the symmetric group S, of degree n, the Cayley graph
Cay(S,, S) is normal, that is, Aut(Cay(Sn, S)) = R(Sr) % Aut(S,, S). Note
that this family of graphs contained the well-known bubble-sort graph,
modified bubble-sort graph and star graph. The author [14] characterized
the full automorphisin group of the alternating group graph. For more re-
sults on the applications of Cayley graphs to interconnection networks, we
refer the reader to {5, 10, 15).
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In this article, we completely determined the full automorphism group
of AN,,. The following is the main result.

Theorem 1.1 The full automorphism group Aut(AN,) of AN,, is isomor-
phic to R(A,) x Aut(A,,T). Furthermore,

Aut(An, T) = (a((1 2))) x (¢((4 5)),0((4 6)),--- ,0((4 n))) = S2 x Sp3,
where o(g) is the automorphism of A, induced by the conjugacy action of
g forg e S,.

Remark As a consequence of Theorem 1.1, AN,, is a normal Cayley graph
which is neither arc-transitive nor edge-transitive.

2 Proof of Theorem 1.1

Let A = Aut(AN,,) and let A, be the stabilizer of the identity element e
of A, in A. For any 4 < ¢ < j < n, by an easy computation, we have the
following;:

(123)(12)(34)=(243),(132)(12)(34)=(1i3),

(12)34)(123)=(134),12)(3i)(132)=(234), (2)
(12)(34)(12)(8j)=(3147),(12)(35)12)31)=(3j1).

We now prove three claims.

Claim 1 There are no 4-cycles in AN,,.

By the vertex-transitivity of AN, it suffices to show that there is no
4-cycle in AN, passing through e. For any vertex u € V(AN,), denote by
N(u) the neighborhood of u in AN,. By Eq. (2),

N((123))
N((1 3 2))
N((12)@34)

{e,(132)(135)]4<j<n}
{e.(123),(235)[4<j<n}
{e,(2i3),(1i3),(3j4)|j#i,4<j<n}d<i<n).

From this it is seen that for any two elements in T, they have exactly one
common neighbor, that is, e. Consequently, there is no 4-cycle passing
through e.

Claim 2 For any g,h € T — {(1 2 3),(1 3 2)}, there is a unique 6-cycle in
AN, passing through e, g, h, that is, (e, g, hg, ghg = hgh, gh, h, €).

Assume that ¢ = (1 2)(3 k), h = (1 2)(3 ¢) with k # £ and 4 <
k.t < n. By Eq. (2), gh # hg. An easy computation gives ghg = hgh =
(1 2)(k ¢). This implies that (e,g,hg,ghg = hgh,gh, h,e) is a 6-cycle.

303



Let C := (e,9,919,92919 = hahih,hih, h,e) be an arbitrary 6-cycle in X
passing through e, g, h, where g1, go, k1, ho € T. Then g2 # hy, g2g1 # e,
hohy # e, g1 # g, h1 # h. Since gag1g = hahyh, one has gag1 = hahy (3 £ k).

Suppose hy % h. Then hy = (1 2 3), (1 3 2) or (1 2)(3 s) for some
4 <s<n,s#4L Assume hy = (1 23). Then hy # (132). If hy = hy
then hahy = (1 3 2), and then gog; = hoh1(3 £ k) = (1 £ k 3 2). This is
impossible by Eq. (2). Let hy = (1 2)(3 t) for some 4 <t < n,t # £. By
Eq. (2), hohy = (2 t 3). Then gogy = hoh1(3 £ k) is equal to (2t £ k 3) for
t # kor to (2 3)(k £) for t = k. Again, by Eq. (2), this can not happen.
Similarly, ho # (1 3 2). Assume hy = (1 2)(3 s) for some 4 < s < n,s # L.
Then hahy = (1 3 5),(2 3 s) or (3 st) for some 4 <t < n,t # 5,4 If
s = k, then gag1 would be equal to one of the following: (1 3 s)(3 £ k) =
(1€k),(23s)30k)y=(2¢€k)and 3st)(328k)=(kt£) Thisis
impossible by Eq. (2). If s # k, then gog; would be equal to one of the
following: (13 s)(32k) =(1£k35),(23s8)(32k)=(2¢k3s)and
(3st)(32k)=(3s)(k&) (fort=k)or(3stlk)(forts# k). This is also
impossible by Eq. (2). Thus, hy = h.

By the same argument in the ahove paragraph, one may conclude that
g2 = g. Then gg,g = hh,h, and hence g, = (hg)~*hy(hg). If hy = (1 2 3)
or (1 3 2) then gy = (1 2 ¢) or (1 ¢ 2), which is contrary to the fact
that g; € T. If by = (1 2)(3 s) for some s # k and 4 < s < n, then
g1 = (1 2)(£ s) ¢ T, a contradiction. Thus, k) = g, and hence g, = k. It
follows that C = (e, g, hg, ghg = hgh, gh, h, €) is the unique 6-cycle in AN,
passing through e, g, h, as claimed.

Claim 3 Forany g€ {(123),(132)} and he T—{(123),(1 3 2)}, there
is a unique 6-cycle in X passing through e, g, h, that is, (e, g, hg,ghg =
hg=1h,g~1h,h,e).

Without loss of generality, assume g = (1 2 3) and h = (1 2)(3 7) with
4 < i< n. Itis easy to check that (e, g, hg,ghg = hg~ h,g 'h,h,e) is a
6-cycle. By an easy computation, one may obtain that the set of vertices
at distance 2 from g is

0= {(12)3s)]4<sj<n}u
{(12),(15)(23),(23¢),(3ts)|t#854<ts<n}

Also, the set of vertices at distance 2 from h is
Ai= {(123),(132),(12)3j) |j#i,4<j<n}u
{(1i322),(152),(12i38),(124),(122373),
(12i32),(12)(0),(12)(3t8i)|LA4t#4t£L4<Et<n}.

Let C be an arbitrary 6-cycle passing through e, g, h. Then in C there is a
vertex, say u, at distance 3 from e. Clearly, u € © N A. The only possible
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case is u = (1 2 7). By Claimn 1, there are no 4-cycles in AN,,. It follows
that C must be (e, g, hg, ghg = hg~'h,g~'h, h,e), as claimed.

Now we are ready to complete the proof. Let A? be the kernel of A, act-
ingonT. Then A./A; < Sp—1. Take g € T. If g = (1 2 3), then by Claim 3,
for any h = (1 2)(3 ¢) with 4 < i < n, (e,g,hg,ghg = hg~'h,g"'h,h,e) is
the unique 6-cycle in X passing through e, g, h. Since A? fixes e, g and A, it
also fixes each vertex in this 6-cycle. In particular, A? fixes hg = (1 3 i) and
g7 'h = (14 3). Clearly, A fixes (1 3 2) because (1 3 2) € T. So, A? fixes
each neighbor of g = (1 2 3). If g = (1 3 2), by the same argument as above,
A; fixes each neighbor of g and also fixes g~'h = (21 3). If g = (1 2)(3 1)
for some 4 < i < n, then by Claim 2, for any h = (1 2)(3 j) with j # i,
(e,9,hg,ghg = hgh,gh, h,e) is the unique 6-cycle in AN,, passing through
e,g,h. Since A; fixes e, g, h, it must fixes hg = (3 j i). Remember that A}
also fixes (1 4 3) and (2 i 3). Now we know that A? also fixes each neighbor
of g = (1 2)(3 i). By the connectivity and the vertex-transitivity of AN,,
A; fixes all vertices of ANy, and so A} = 1. Since (e, (1 2 3),(1 3 2),e) is
the unique triangle in subgraph induced by {e}UT, one has A. < Sy X Sp_3.

For any g € S,, let o(g) denote the automorphism of A, induced by
the conjugacy action of g. It is easy to check that o((4 i))(5 < i < n) and
o((1 2)) are in Aut(An,T). Furthermore, by the elementary group theory,

(0((1 2))) x (0((4 5)),0((4 6)),-- ,0((4 n))) 2 S x Sp_s.
This forces that
AUt(AnaT) = (0‘((1 2))) X (0’((4 5))s0((4 5))7 e ,0’((4 n))),
and hence A = R(A,) x Aut(A,,T). (]
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