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Abstract

The purpose of this note is the study of the hypergroups associ-
ated with binary relations. New types of matrices, called i-very good
and regular reversible matrices, are introduced in order to give some
properties of the Rosenberg hypergroups related to them. A program
written in M AT LAB computes the number of these hypergroups up
to isomorphism.
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1 Introduction

Various combinatorial aspects of hypergroup theory have been investigated
till now, principally in connection with ordered sets [4; 20; 21], graphs [31]
and hypergraphs (8], lattices [24; 25], binary and n-ary relations [4; 9; 10;
11; 14; 16; 15; 18; 33; 35], and so on. '

Several algorithms have been created to compute the number of finite
hyperstructures having certain properties. This research has been initiated
by Migliorato [29] who has determined the structure of all non-isomorphic
hypergroups of order 3 and of total regular abelian hypergroupoids. Bayon
and Lygeros have dedicated many papers to the computation of the number
of finite hypergroups or H,-groups [1; 2; 3|.
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Further, after the introduction of some hypergroups associated with a
binary relation by Rosenberg [33] and Corsini [10], other programs written
in C# or Mathematica or MS Visual Basic have been presented by Spartalis
and Mamaloukas [34], Massouros and Tsitouras [26; 27], Cristea et al. [13]
in order to calculate the number of non-isomorphic hypergroups determined
by a binary relation.

This paper deals with regular reversible hypergroups associated with
binary relations in the sense of Rosenberg [33] and called here regular re-
versible Rosenberg hypergroups. The regular hypergroups have been intro-
duced at the beginning of the history of hypergroup theory by Dresher and
Ore [19]. Later on, Corsini [5; 6] have determined other properties of them,
in particular he characterized their heart and introduced the notions of
weak hyperring and weak hypermodule based on the definition of a regular
hypergroup.

After some basic notions concerning hypergroups and collected in the
second section, we study the regular reversible Rosenberg hypergroups using
the representation of binary relations by Boolean matrices. In the last
part of this work, we present an algorithm based on the results obtained
in Section 3, that enumerates the non isomorphic finite regular reversible
Rosenberg hypergroups. Moreover the program computes how many of the
Rosenberg hypergroups are i-Rosenberg hypergroup (i.e. their associated
matrix is idempotent and very good). The paper ends with some concluding
remarks.

2 Preliminaries

Let us briefly recall some basic notions and results about hypergroups; for
a comprehensive overview of this subject, the reader is refereed to [7; 12].

For a nonempty set H, we denote by P*(H) the set of all nonempty
subsets of H.

Definition 2.1. A nonempty set H, endowed with a mapping, called hy-
peroperation, o : H? — P*(H) is named hypergroupoid. A hypergroupoid
which verifies the following conditions:

(i) (xoy)oz==zo0(yoz), for all z,y,z € H (the associativity)
(ii) zo H = H = Hog, for all z € H (the reproduction aziom)

is called hypergroup. In particular, an associative hypergroupoid is called a
semihypergroup and a hypergroupoid that verifies the reproduction axiom
is called a quasihypergroup.

If A and B are nonempty subsets of H, then Ao B = Ua ob.

a€A
beB
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Definition 2.2. Let (H,o) be a hypergroupoid.

(i) An element e € H is called an identity or unit if
r€eozNzoe,

for every z € H. The set of all identities of H is denoted by E(H).

(ii) An element z' € H is called an inverse of x € H if there exists
e € E(H) such that

eczox’' Nz oz,

Definition 2.3. (i) A hypergroup (H, o) is regular if it has at least one
identity and each element has at least one inverse.

(ii) A regular hypergroup (H, o) is called reversible if, for any (z,y) € H?,
it satisfies the following conditions:
(1) if y € aox, then there exists an inverse a’ of a, such that z € a’oy;
(2) if y € zoa, then there exists an inverse a” of a, such that = € yoa”.

Example 2.4. Every commutative hypergroup provided with an identity is
regular.

Example 2.5. The following hypergroup is regular, but not reversible.

H| a b c d
a| a b [ed| d
bl b |ab|ecd|cd
c| ¢ |cd] ab]| ab
dlcd|ecd]| ab] ab

Example 2.6. The following hypergroup is regular and reversible.

H € a; Qg as
€ €, a; €,ay | a2,a3 | az,as
a | &a €,a1 | az,a3 | az,as
az | a2,a3 | az,az | 6,4y €,a
as | az,asz | az,a3 | €,aq €, a)

Definition 2.7. Let (H,o) and (H’,0') be two hypergroups. A function
f+H — H'is called a homomorphism if it satisfies the condition: for any

z,y € H,
flzoy) C f(z) o f(y).
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f is a good homomorphismif, for any z,y € H, f(zoy) = f(z)o' f(y). We say
that the two hypergroups are isomorphic if there is a good homomorphism
between them which is also a bijection.

Till now, various hyperoperations have been defined using a binary rela-
tion p on a nonempty set H. We recall here that introduced by Rosenberg
(33].

Let p be a binary relation on a nonempty set H. The sets

D(p)={ze€ H|3y€ H:(z,9)€p},
R(p)={ye€ H|3re H:(z,y) € p}

are called the domain and the range of the relation p, respectively.
Rosenberg [33] has associated a partial hypergroupoid IH, = (H,o,)

with a binary relation p defined on a set H, in the following way: for any
z,y€ H,

zo,z={z€ H|(z,2) €p} and zo,y=z0,zUYy0,¥. (2.1)

Definition 2.8. {33] An element x € H is called outer element of p if there
exists h € H such that (h,z) ¢ p°.

Necessary and sufficient conditions have been determined for the par-
ticular hypergroupoid IH, such that it is a hypergroup. We recall them
here.

Theorem 2.9. (Proposition 2. [33]) IH, is e hypergroup if end only if
(i) p has full domain: D(p) = H,
(ii) p has full range: R(p) = H;
(i) pC p?;
(iv) If (a,x) € p? then (a,x) € p, whenever = is an outer element of p.

Corsini [9] has investigated when IH, is a regular reversible hypergroup,
obtaining the following resuits.

Theorem 2.10. (Theorem 1.3 (9]) If H, is a hypergroup, then
(i) p? is transitive.

(ii) If, moreover, p is symmetric, then p® is an equivalence relation on

We need the following notations.
Set P={zrecH|z¢zo,z}and K ={e€ H|P Ceo,e}, whereeis
an identity for H.
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Theorem 2.11. (Theorem 1.1 [9]) H, is regular if and only if K # 0.

Theorem 2.12. (Theorem 1.8 (9]) If K # 0 and p is symmetric, then IH,
is a regular reversible hypergroup.

3 Regular reversible Rosenberg hypergroups

In this section we discuss some properties of the regular reversible Rosen-
berg hypergroups necessary for the algorithm described in the next section.

To do so, we use the connection between the binary relations defined
on a nonempty set and the Boolean matrices. Every binary relation p on
a finite set H of cardinality n, may be represented by a Boolean matrix
M(p) and conversely, every Boolean matrix of order n defines on H a
binary relation. Indeed, let H = {a4,...,an}; a Boolean matrix of order n
is constructed in the following way: the element in the position (¢, 7) of the
matrix is 1, if (a;,a;) € p and it is 0 if (a;,a;) ¢ p and vice versa. Hence,
on every set with n elements, 2" partial hypergroupoids can be defined.
Furthermore, recall that in a Boolean algebra the following properties hold:
0+1=14+0=1+4+1=1,while0+0=0,and0:0=0-1=1-0=0,
1-1=1. If p is a binary relation on H, then M(p?) = M2(p). Other
properties of the Boolean matrices which represent binary relations may be
found in [34].

In what follows we use some notations we explain here. An n x 1 matrix
(one column and n rows) is called a column vector and for a given matrix
M = (ay), i,5 € {1,2,...,n}, M; is the column vector (a,;) and Mf is
the j-column vector of the matrix M(p?). In particular, (0) is the column
vector with all elements equal to 0, and (1) is the column vector with all
elements equal to 1. The transpose of a matrix M is the matrix M T, formed
by turning rows into columns and vice versa.

Definition 3.1. (See [13]) The matrix M(p) is called very good if and only
if IH, is a hypergroup.
We introduce the following notions.

Definition 3.2. A Rosenberg hypergroup IH, is called i-Rosenberg hyper-
group if and only if M(p) is an idempotent very good matrix (i.e. M(p)? =
M(p)).

Definition 3.3. (i) A very good matrix M(p) is called i-very good if and
only if IH, is an i-Rosenberg hypergroup.

(ii) A very good matrix M(p) is called regular if and only if H, is a
regular hypergroup.
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(iii) A regular matrix M(p) is called reversible if and only if IH, is a regular
reversible hypergroup.

Example 3.4. The matriz M = (aij), with a;; = 1, for any i,j €
{1,2,...,n}, is a very good matriz and the corresponding hypergroup is
the total hypergroup which is a regular reversible Rosenberg hypergroup.

Example 3.5. We consider on H = {z,y, z} the binary relation
p = {(z,2),(z,9), (¥, %), (2,9), (2, 2)}.

The associated Rosenberg hypergroupoid H, is represented by the following
table

H, | = Y z
z |zy|zy| H
y lzy|l =z | H
z H| H |yz

We notice that E(H) = {z,z} and i(a) = H, for any a € H and thus H,
is a regular reversible hypergroup.
On the other hand, the associated Boolean matriz is

1 1 0
M(p)=(1 0 0)
0 1 1

which is therefore a reversible matriz, but it is not a i-very good one.
Example 3.6. Let p be the following binary relation on H = {z,y, 2}:
p = {(x, x)’ (xi y)’ (y’ x), (y’ y)’ (zi z)'

Then the corresponding matriz

1 1 0
M(p)=(l 1 o)
0 0 1

is an idempotent matriz. The associated Rosenberg hypergroupoid with the
following table

Hy | z [ y | =2
z |z,y|zy|H
y [zy|zy|H
z H| H|:z

is a regular reversible hypergroup, thus M(p) is a i-very good matriz.
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Theorem 3.7. (Theorem 4.2 [13]) A matrix M = M(p) is a very good
matriz if and only if, for any j, with 1 < j < n, the following assertions
hold:

(i) MT #(0);
(i) M; #(0);
(iii) o M2 # (1), then M; = M2.

As an immediate consequence of Theorem 3.7 we obtain the following
characterization of an idempotent very good matrix.

Proposition 3.8. An idempotent matriz M = M(p) (i.e. M2 =M) is a
very good matriz if and only if, for any j, with 1 < j < n, the following
assertions hold:

(i) MF # (0);
(ii) M; # (0).

It is important to know when two Rosenberg hypergroups are isomor-
phic. A necessary and sufficient condition is given by the following result.

Theorem 3.9. (See [13]) Let H = {ay,...,a,} be a finite set, p and p’ be
two binary relations on H and M(p) = (ti;), M(p') = (ti;) be their associ-
ated matrices. The hypergroups H, and H, are isomorphic if and only if
ti; = t;(i)a(j), for o @ permutation of the set {1,2,...,n}.

The next theorem constructs a new idempotent very good matrix ob-
tained from other two idempotent very good matrices.

Theorem 3.10. Let M = (tij)nxn, M’ = (ti;)mxm be two idempotent very

T
good matrices. Then M & M’ = (mi;)kxk, where k =n+m, and

t‘iji Zf 1 S n, .7 S n
mij; = t;ji if n<i, n< J
0 elsewhere

is an idempotent very good matriz.

. . M O
Proof. Since M @ M’ = ( o M
that all entries are zero, we have (M & M')2 = M2@ M2 = M & M'.
Moreover, (M @ M’); # (0) # (Mo M ');r and hence, by Proposition 3.8,
it follows that M & M’ is an idempotent very good matrix. O

) , where O and O’ are matrices
kxk

Now we check when a very good matrix is regular.
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Theorem 3.11. Let M(p) = (tij)nxn be a very good matriz. Then M(p)
is regqular if and only if there exists k, 1 < k < n, such that, for all i,
1 €1 < n, we have t§; < ti;, where ;= 0 if and only if t;; = 1.

Proof. Using Theorem 2.11 we prove that K # @ if and only if there exists
k, 1 < k < n such that, for all i, 1 < i < n, we have t§; < tx;. To this
end we have t;; = 0 if and only if a; ¢ a; 0, a;. Also tx; =1 if and only if
ak € a; op a;. Now let a; € P and ax € K thus a; ¢ ai o, ax equivalently
with ¢x; = 0 and therefore

K#0& 3k,1<k<n suchthat Vi,1<i<n, t§ <tx.
O

Let’s see now another idempotent very good matrix constructed with
two idempotent very good matrices.

Theorem 3.12. Let M = (tij)nxn, M' = (t};)mxm be two idempotent very
good matrices. Then M B M’ = (my;)kxk, where k =n+m, and
tija ‘Lf i S n, ] S n
mi; = tigy z:f?<z’ T.L<j
1, i i<n, j>n
0 fn<i j<n

is an idempotent very good matriz. Moreover, if M is regular then M B M’
is regular, too.

. (M U
Proof. SmceMEM—(O M

all entries equal to zero and U is a n x m matrix that all entries are one.
We have (M BM')2 = M2BM™? = MBM'. Also (M B M'); # (0) #
(M B M")T, hence M B M’ is an idempotent very good matrix.

Suppose M is regular, so

dk,1 <k <m suchthat Vi, 1 <i<m, t < itg.

) , where O is a m x n matrix with
kxk

Since m;; = 1, for every ¢ < n, and j > n we have m§; < my;, hence
M B M’ is regular too. (e}

Theorem 3.13. A regular matriz M = M(p) is reversible if M = MT.

Proof. Tt easy to see that M = M7 if and only if p is symmetric. Now by
Theorem 2.10 our assertion holds. O

Since we are interested in obtaining all non isomorphic regular reversible
Rosenberg hypergroups, we introduce the following concept.

Definition 3.14. We call that two matrices are isomorphic if the Rosen-
berg hypergroups obtained by them are isomorphic.
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4 Application: the number of regular reversible
Rosenberg hypergroups

Let n € {2,3,4}. In order to calculate the number of n x n i-very good,
regular and reversible matrices we formulate the following program, written
in MATLAB. It is based on some procedures that return matrices that ver-
ify the requested conditions of Proposition 3.8 and Theorems 3.7, 3.11 and
3.13. First we create in B1 all very good matrices and then we create all
very good matrices up to isomorphism in B2; after that, in B3 and B4 we
check the i-very good matrices and i-very good matrices up to isomorphism
and finally, in B5 and B6, we verify the conditions of Theorems 3.11 and
3.13. At the end of every procedure we list the output file for the 2 x 2
matrices.

In the following code the matrices B3 and B4 generate all i-very good
matrices and i-very good matrices up to isomorphism, respectively.

A(:,:,1)=zeros(n);

B1(:,,1)=A;
ml=];
for u=1:n

for v=1:n

[11,12, 13]=size(A);
for w=1:13
A 134 w)=A(,:,w);
A(u,v,13+w)=1;
s1=0;
for e=1:n

if (norm(A(:,e,134+w))==0)||(norm(A(e,:13+w))==0)
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sl=sl+1;
break
end
end
if s1==0
A2=A(:,:,13+W)*A(:,:,134w);
for r=1:n
for s=1:n
if A2(r,s);1
A2(r,8)=1;
end
end
end
b=1;
s2(1)=0;
for e=1:n
if norm(A2(:,e)-ones(n,1)) =0
s2(b)=e;
b=b+1;
end

end
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if s2(1) =0
f=0;
for a=1:length(s2)
if norm(A2(:,52(a))-A(:,52(2),13+w))==0
f=f+1;
end
end
if f==length(s2)
B1(:,;,m1)=A(:,:,13+w);
ml=ml+1;
end
else
B1(:,;:,m1)=A(:,:;,13+w);
ml=ml+1;
end
clear(’s2’)
end
end
end
end 0/0for u
p=zeros(1,n);

for i=1:n
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p(i)=i;
end
per=perms(p);
pm(:,:,length(per))=zeros(n);
0/0 The "pm” matrices generate all of the permutation matrices.
B2=B1;
Bh=B2;
k=1;
while k> 0
(11,12, 13])=size(B2);
if k==I3
break
end
for g=1:length(per)
for i=1:n
for j=1:n
pm(i,j,q)=B2(per(q.i),per(q,j)k);
end
end
end0/0q

s=0;
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for r=k+1:13
for q=1:length(per)
if norm(B2(:,:,r)-pm(:,:,q))==0
Bh(:r-s)=] |
s=s+1;
break
end
end0/0q
end0/Ofor r
k=k+1;
B2=Bh;
end0/0for k
m2=l3;

B3(:,:,1)=zeros(n);

m3=1;
for r=1:13
s=0;
for k=1:n
for i=1:n

if 1<=B2(k,i,r)+B2(i,i,r)

s=s+1;
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end
end0/Ofor i
if s==n
B3(:,:,m3)=B2(:,:,r);
m3=m3+1;
break
end
end0/0for k
end0/0for r
B4(:,:,1)=zeros(n);
m4=1;
for i=1:m3-1
if norm(B3(:,:,i)-B3(:,:,i)’)==
B4(:,:,m4)=B3(:,:,i);
m4=m4+1;
end
end
The output files B3 and B4, for n = 2, contain the following 2 x 2
matrices, respectively:
1001,1101,1111,1110 and 1001,1111,1110.

In the following code the matrices B5 and B6 generate the regular ma-
trices and reversible matrices, respectively .

A(:,:,l)#zeros(n);
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ml=1;m3=1;

B1(:,:;,1)=A;
for u=1:n
for v=1:n

(11,12, 13]=size(A);
for w=1:13
A(: 134w)=A(:,:,w);
A(u,v,134+w)=1;
e 2k 3 ok ok ok s o o ok ok o ks ok sk ok ok sk o ok ok ok ok ke ke ofe o ok ok ok ok o ok ok %k
s1=0;
for e=1:n

if (norm(A(:,e,13+w))==0)||(norm(A(e,:,13+w))==0)

sl=sl+1;
break
end
end
if sl==

A2=A(:,: 134+ w)*A(:,:,134w);
for r=1:n
for s=1:n

if A2(r,s)i1
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A2(r,s)=1;
end
end
end
if norm(A(:,:,134+w)-A2)==0
B5(:,:,m1)=A(:,:,13+w);
ml=ml+1;
end
end0/0if s1=0
end0/0for w
end0/0for v
end0/0for u
p=zeros(1,n);
for i=1:n
p(i)=i;
end
per=perms(p);
pm(:,:,length(per))=zeros(n);
0/0 The "pm” matrices generate all of the permutation matrices.
B6=BS5;

Bh=B6;
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k=1;
while k>0
(11,12, 13]=size(B6);
if k==I3
break
end
for g=1:length(per)
for i=1:n
for j=1:n
pm(i,j,q)=B6(per(a,i),per(q.j) k);
end
end
end0/0q
s=0,
for r=k+1:13
for q=1:length(per)
if norm(B6(:,:,r)-pm(:,:,q))==0
Bh(:,:,r-s)=[);
s=s+1;
break

end
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end0/0q
end0/0Ofor r
k=k+1;
B6=Bh;
end0/0for k

m2=]3;

The output files B5 and B6, for n = 2, contain the following 2 x 2

matrices, respectively:

1001,1101,1111, 1011 and 1001,1111,1101.

5 Conclusions

In this paper, the class of all regular reversible hypergroups obtained from
a binary relation in the sense of Rosenberg and called regular reversible
Rosenberg hypergroups, has been investigated in order to determine the
non-isomorphic such hypergroups. Having applied a program written in
MATLAB, we have determined the number of these regular reversible
hypergroups. The results of this computation (for n = 2,3, or 4) are sum-

marized in the following table:

N= 2] 3 4
Number of very good matrices 6 | 149 | 9729
Number of very good matrices up to isomorphism | 4 | 33 | 501
Number of very good idempotent matrices 41 35 | 559
Number of very good idempotent matrices

up to isomorphism 3110 44
Number of regular matrices up to isomorphism 4| 30 | 400
Number of reversible matrices up to isomorphism | 3| 9 30
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