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Abstract. By computer-assisted approaches and inductive arguments, two
curious sums of triple multiplication of binomial coefficients are established
in the present paper. The two curious sums arise in proving Melham's
conjecture on odd power sums of Fibonacci numbers, which was confirmed
by Xie, Yang and the present author. However, being different from their’s
technical way, the method used in the paper is more elementary.
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1 Introduction

We always denote respectively by N and N* the sets of natural number-
s {0,1,2,---} and positive integral numbers {1,2,3,---} throughout the
paper.

The two curious sums in the paper are defined as follows,

j=s
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and

i . A2m+1\[/j+s\(n+z(2j+1)—-1
. =§: 2(_ 1y
(1.2)
where s, m,n€ Nand z € R.

Before giving our main results, it is maybe interesting to recall some
background concerning the above two curious sums (1.1) and (1.2). As a
matter of fact, they came from the proof in our paper (8], in which gave a
solution to a conjecture due to Melham [2, Conjecture 2.1]. Precisely, it is
the following conjecture:

Conjecture 1.1 Let m > 1 be a positive integer. Then the sum
n
LiLaLs - Lams1 ) Fop*? (1.3)
et

can be expressed as (Fany1 — 1)?Pom—1(Fant1), where Pom_y(x) is a poly-
nomial of degree 2m — 1 with integer coefficients and here F,, denote the
nth Fibonacci number which satisfies the following recurrence relation

Fo=Fa_1+ F,_3, forn2>2,

with the initial values Fy =0 and Fy = 1, and L, is the nth Lucas number
satisfies the same recurrence relation as Fy, but with the initial values Lo =
2and L = 1.

Actually, Melham posed his conjectures in 1998, and afterwards many au-
thors made inroads into some of the challenges it poses. The interested
reader can see the following references [4, 5, 6, 7] for more details. Recent-
ly, Xie and Yang and the author of the present paper [8] completely solved
the conjecture 1.1. During attacking the Conjecture 1.1, we encountered
the key summations (1.1) and (1.2), which were proved technically by using
the following well-known combinatorial identity

k lk
> (-1)+d (j)j" =0, forn<k.

=0

However, in this paper we give an elementary proof of the two sums
(1.1) and (1.2) by using computer algebra methods (3, 9] and inductive
argument, which is distinguished from the technical way in [8].

The main results of the present paper is the following theorem and
corollary.
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Theorem 1.2 Given nonnegative integers m and s with m > s, and for
alln € [0,m — s — 1] , we have F(s,m,n) =0.

As an application of the theorem, we have the following corollary,

Corollary 1.3 Given nonnegative integers m and s for which m > s, for
alxeR andn=0,1,2,--- ,m—s—1, we have G(s,m,n;z) =0, i.e., it
is independent of real number z.

Remark 1.4 As we will see that Theorem 1.2 is the key point in the paper,
and Corollary 1.8 can be derived from it.

The rest of the paper is organized as follows. We first give some prelimi-
naries in the second section, and then the corresponding proofs of Theorem
1.2 and Corollary 1.3 are put forward in the third section.

2 Preliminaries

For the sake of convenience, in the sequel F(s,m,n) and G(s,m,n;z) al-
ways represents the summation formulaes (1.1) and (1.2), respectively.

Note that it is hard to compute directly the summation formula (1.1)
by mathematical softwares since the summand in the summation formula
is not a hypergeometric term with respect to 7 in general. Therefore, it is
naturally to think that we can get the value of F(s,m,n) if we can find a
proper recurrence of F'(s,m,n) and its basic values. Fortunately, we find
them! So, in this section, we first compute its basic value F'(s, m, 0) by using
Zeilberger’s creative telescoping method [9] and then give a recurrence of
F(s,m,n).

Lemma 2.1 Given nonnegative integer m, and for all s = 0,1,--- ,m —
1, we have F(s,m,0) =0, i.e.,
m

S (-1(1 +24) (2:_4“31) (j 2*; S) = 0. 2.1)

j=s
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Proof. Let
fi(_l)j(l +27) (2,Tjjl) (j;ss)

= (-1)° nf(—l)j(l +2j+ 28)( ml ) (j -;-528)

3=0 m=s=J
L . ) 2n+2s+1\/j+2s
—1 -_— s - J .
(-1) ,-E:o( 1) (1+2_7+2s)( n—j )( 9s )

Since the summand

(-1Y(1 425 +29) <2n e 1) (j -;25)

n-j

is hypergeometric, we can compute the recurrence relation of the following
form by creative telescoping method,

A = 1P+ 2529 (2N (15,

where

h(7)

_(n+2s+1+5)5(=1Y* (2n+ 25+ 1) (5 +2s
- n n—j 2s )

and A; is an operator for difference with respect to the indeterminant j of
the summand.

Therefore,

i(—l)"(l +25 +25) (2" :ES;- 1) (j -;823)

=0

=Y [h( +1) = h(j)]

j=0
= h(n +1) — h(0)
=0.
As desired. |

The following lemma is important for us to proceed the inductive argu-
ment. Additionally, it is worthy to mention that we first found, by using
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the method in (3], the recurrence (2.3) but not the following recursion (2.2).
Actually, when replacing (—1)? for (~z)? in the summand of the summa-
tion formula F(s, m, n; z), which is defined in Lemma 2.2, we obtained the
following recursion (2.2) unexpectedly.

Lemma 2.2 Let
LA 2m+1\ [j+s
e} = 2n+l¢ g
F(s,m,n;z) J§=$(2.7+1) (—=) < )( 9s )

m-—j
Then for any given nonnegative integers m and s with m > s, and n €
N, F(s,m,n;x) satisfies the following recurrence:
F(s,m,n+1;z) = (8+245+16s>)F(s+1,m,n; z) + (1 +25)*F(s, m, n; z).
(2.2)
Proof. Consider the coefficient of z7 and note that
(z7)F(s,m,n + 1;z) — [27)(8 + 24s + 16s*)F(s + 1, m, n; z) — [#7]|F(s,m,n; z)

= ey () e () -a e (U ) -

J
J+s+1
8(1+ s)(1 +2s)( 25 + 2 )]
_ (1Y (25 + 1)1+ s)! (2m + 1\ [(25 +1)% — (1 + 25)2 ,
T (G-s—DN2s) m-j i—s —4G+s+D)
=0.
Hence, the recurrence (2.2) holds and thus we complete the proof. |

As a corollary of the Lemma 2.2, we have

Corollary 2.3 For any given nonnegative integers m and s with m >
s, and n € N, F(s,m,n) satisfies the recurrence:

F(s,m,n+1) = (8+24s+165%)F(s+1,m,n) +(1+25)*F(s,m,n). (2.3)

With the above preliminaries in hand, we are now in a position to prove
Theorem 1.2 and Corollary 1.3.

3 Proofs of Theorem 1.2 and Corollary 1.3

Proof of Theorem 1.2.  'We prove the theorem in two steps.
The first step is to prove F(s,m,n) =0 forn < m —s—1. By Lemma 2.1,
we have F(s,m,0) = 0 for given m > s, as desired.
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By Corollary 2.3 and Lemma 2.1, it follows that F(s,m,1) =0if m >
s+1. This is equivalent to F(s,m,1) =0if m—s—1=m—(s+1) > 1=n.
So it is valid for n = 1.

Suppose that F(s,m,k) = 0 for £k < m — s — 1. We next prove that
F(s,m,k+1) =0 for k+1 < m—s—1. By Corollary 2.3, F(s,m,k+1) =
(8 +24s + 16s%)F(s + 1,m, k). By inductive hypothesis, F(s,m,k+1) =0
since F(s+1,m,k) =0if m—(s+1)—1=m—s—2 > k. In other words,
F(s,m,k+1) =0if k+1 < m — s — 1. By inductive argument, we have
done the first step.

The second step is to show that F(s,m,n) # 0 if n = m — s, for given
m and s satisfying m > s. We confirm the fact by induction on m — s.

For m —s = 1, first note that F(s,s+1,1) = —8(—1)*(1+s)(1+2s)(3+
2s) # 0 since s > 0. Suppose that F(s,s+k,k) #0form —s =k > 2, we
need to prove it holds for m —s =k + 1.

Since we have known that F(s,m,m — s — 1) = 0 by the first step, and
hence F(s,s + k + 1, k) = 0, thus we have

F(s,s+k+1,k+1)

I

(8 + 24s + 16s%)F(s + 1,5 + k + 1,k)
+(1+ 45+ 4s%)F(s,s + k+1,k)

= (8+424s+16s%)F(s+1,s+k+1,k).
Since here m —s = (s + k+ 1) — (s + 1) = k, by inductive hypothesis

F(s+1,s+k+1,k) #0. Hence F(s,m,m —s) #0 fork+1=m —s. By
inductive argument, we complete the second step.

Based on the above two steps, we are done. |

Proof of Corollary 1.8. It is trivial for n = 0. Consider that the formula
G(s,m,n;z) can be expressed in the following way,

zH(x?)
(2n -1V
where H(z) = =7, (—1)(2j + ) (374 (3 TIici (= - o)

To show Corollary 1.3, it is equivalent to show H(z) = 0 for n =
1,2,--- ,m ~s—1and = € R. Note that

G(s,m,n;z) =

n-1
Hz)= ()" (=) > (kika-kno1on)®- F(s,my L+ 1),

1=0 kika, e kno11

where = 0,1,---n — 1 and the second sum in above formulae ranges over
all subsets {k1,ko,-+- ,kn—1—1} of {1,2,---,n—1} forall0<!<n-1.
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By Theoreml.2, F(s,m,l +1) =0for ! = 0,1,--- ,m — s — 2. There-
fore, H(z) =0if0<n—-1<m-—-s—2,ie,1l <n<m-s—1, as desired.
|

Consider that the summation formulae (1.1) should have a combinato-
rial interpretation, but we are unable to find one. So we leave it as an open
problem.

Problem 3.1 Is there a combinatorial interpretation of the sum (1.1)?
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