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Abstract

A vertex of a graph is said to be total domination critical if its
deletion decreases the total domination number. A graph is said to
be total domination vertex critical if all of its vertices except the
supporting vertices are total domination vertex critical. We show
that if G is a connected total domination vertex critical graph with
total domination number k > 4, then the diameter of G is at most

L2552

Key words and phrases. total domination vertex critical graph, total dom-

ination, diameter.
AMS 2010 Mathematics Subject Classification. 05C69.

1 Introduction

In this paper, we consider only finite, simple, undirected graphs with no

loops and no multiple edges.

*e-mail :michitaka.furuya@gmail.com

ARS COMBINATORIA 128(2016), pp. 349-371



Let G be a graph. We let V(G) and E(G) denote the vertex set and the
edge set of G, respectively. For v € V(G), we let dg(v), Ng(v), and Ng{v]
denote the degree of v, the open neighborhood of v, and the closed neigh-
borhood of v, respectively; thus dg(v) = |[Ne(v)| and Nglv] = Ng(v)u{v}.
The minimum degree of G is denoted by §(G). We let G denote the
complement of G. For v,u € V(G), we let dg(v,u) denote the distance
between v and u. For v € V(G) and a non-negative integer i, we let
N@w) = {u € V(G)ldg(v,u) = i}. For v € V(G), we define the
eccentricity eccg(v) of v in G by eccg(v) = max{dg(v, u)|u € V(G)}; thus
ecce(v) is the maximum integer ¢ for which Ng) (v) # 0. The diameter of
G is defined to be the maximum of eccg(v) as v ranges over V(G), and is
denoted by diam(G). A vertex is called an endvertez if it has degree one,
and a vertex is called a supporting vertez if it is adjacent to an endvertex.
We let S(G) denote the set of supporting vertices of G. For terms and
symbols not defined here, we refer the reader to [1].

Let G be a graph with no isolated vertex. For two subsets X,Y of
V(G), we say that X totally dominates Y (or X v;-dominates Y for short)
if Y € Uyex Ne(v). A subset of V(G) which totally dominates V(G) is
called a total dominating set of G. The minimum cardinality of a total
dominating set of G is called the total domination number of G, and is
denoted by v(G). We have v;(G) > 2 unless G is empty (note that we
discuss the total domination number of a graph only when the graph under
consideration has no isolated vertex). A total dominating set of G having
cardinality v;(G) is called a v;-set of G. A vertex v € V(G) — S§(G) is said
to be total domination critical (v,-ciritical) if (G — v) < 7.(G). We say
that G is total domination vertex critical (y.-critical) if every vertex of
G — S(G) is yi-critical in G. If G is vy,-critical and v,(G) = k, G is said
to be k-v;-critical. Various properties of «;-critical graphs were explored in
3, 4, 5].

Goddard et al. {2] proved the following result.

Theorem A Let k > 3 be an integer, and let G be a connected k-v,-critical
graph.
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(i) If k = 3, then the diameter of G is at most 3.
(ii) If4 < k < 8, then the diameter of G is at most 3577 .
(iii) Ifk > 9, then the diameter of G is at most 2k — 3.

They showed that the bound in Theorem A is best possible for each 3 <
k < 8 by constructing a k-v;-critical graph attaining the bound. They also
constructed a k-v,-critical graph with diameter % for each k = 2(mod 3),
and conjectured that for each k& > 4, every connected k-+;-critical graph has
diameter at most [is'lj. In this paper, we prove the following theorem,
which shows that the conjecture of Goddard et al. is true.

Theorem 1.1 Let k > 3 be an integer, and let G be a connected k-v;-
critical graph.

(i) If k = 3, then the diameter of G is at most 3.
(ii) If k > 4, then the diameter of G is at most |27

In Section 3, we show that the bound is best possible for all k > 4 by
constructing infinitely many k-y;-critical graphs with diameter [5’%—‘7] for
each fixed k. In our proof of Theorem 1.1, we make use of the following

lemma, which is proved in [2].

Lemma 1.2 Let k > 3 be an integer, and let G be a connected k-vy;-critical
graph with §(G) = 1. Then the diameter of G is at most k.

The following observation is useful for our arguments.

Observation 1.3 Let G be a ,-critical graph with §(G) > 2, and let
v € V(G). Then the following hold.

(i) (G —v) = %(G) — 1.

(ii) There exists a «y;-set which contains v.
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2 Proof of Theorem 1.1

Let k, G be as in Theorem 1.1, and let d denote the diameter of G. We may
assume that k > 4. By way of contradiction, suppose that d > 5—"3'—7(> 4).
By Lemma 1.2, 6(G) > 2. Let z € V(G) be a vertex with eccg(z) = d. Let
X; = Ng)(x) for each i > 0, and let U; = XoU---UX; for each j > 0. For
j>2,av-set S of G is called j-sufficient if |S NU;| > (35 + 10)/5.

Claim 2.1 For some j > 2, there exists a y;-set which Is j-sufficient.

Proof. Suppose that for all j > 2, no v.-set is j-sufficient. Take z; € X;,
and let S, be a v.-set of G — z;. Since S;, v.-dominates Uy — {z1},
|Sz, NUs| > 2. Let S = S, U {z}. Note that S is a ¥;-set of G. Since S
is not 3-sufficient, |S N U3| < (33 +10)/5 = 19/5 < 4. Since |SNUsz| >
|Sz, N Uz| + |{z}| = 3, this forces |SNUs| =3 and Sz, N X3 = 0.

Take 4 € X4, and let S;, be a y,-set G — z4. Since Sz, 7;-dominates
Ur, |Sz, NUz| > 2. Take z3 € X3 N Ng(z4), and let S’ = Sz, U {z3}. Note
that S’ is a -y,-set of G. Since S’ is not 3-sufficient, [’ N Us| < 19/5. Since
|8 NUs| > |Sz, NUs| + [{z3}| = 3, this forces |S'NUs| =3, |Se, NUs| =2
and Sy, N X3 = 0. Since S is not 5-sufficient, |$'NUs| < (3-5+10)/5 =5,
and hence |S;, N (X4 U X5)| = |S'NUs| —|8'NUs| £4-3 =1 Now
if Sz, N X4 # O, then since S;, N X3 = @, the unique vertex in Sy, N X4
cannot be v,-dominated by S;,, a contradiction. Thus S;, N X, = 0.

Subclaim 2.1.1 The set (Sz, N Us) U (S — Us) is a total dominating set
of G.

Proof. Since S:, vi-dominates V(G) —{z4} and Sz, N X4 = B, each vertex
in U; is adjacent to a vertex in Sz, N Us. Since S ;-dominates V(G) and
SN Xz =0, each vertex in V(G) — Us is adjacent to a vertex in S — Us.

Hence the desired conclusion holds. [

We have |(Sz, NU3) U (S —Us)| = |Sz, NUs| +|S - Us| =2+ (k-3) =
k — 1. This together with Subclaim 2.1.1 contradicts the assumption that
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7:(G) = k, which completes the proof of Claim 2.1. 0O

Having Claim 2.1 in mind, let m > 2 denote the maximum integer
such that there exists an m-sufficient v,-set. Let S; be an m-sufficient
ye-set. Then |S; NUp| > (3m + 10)/5, and we also have |S; N Upyi| <
(3(m + 1) + 10)/5 by the maximality of m. Since d > (5k — 7)/3 and

k> 1851 NUp| > (3m + 10)/5, it follows that d > m + 2.

Claim 2.2 S;N X4 = 0.

Proof. Since |S;| > (3m+10)/5 and |{S1NUnqq| < (3m+13)/5, it follows
that |S1N Xt1| = |S1NUmt1| = [S1NUnR] < (3m+13)/5— (3m+10)/5 =
3/5, which implies SN Xy =0 O

Recall that d > m+2. If |S;N(Xm+2UXmi3)| = 2, then |S1NUpys| >
[S1NUp|4+2 > (3m+10)/5+2 > (3(m+3) +10)/5, which contradicts the
maximality of m. Thus |S; N (Xmt2 U Xm43)| < 1. Since S; v:-dominates
X2 and S;N Xy =0, SN (Xms2UXmaa) # 0. 15,1 Xmyz # 0, then
51 does not v;-dominate the vertex in S; N X,, 2, a contradiction. Thus
51N X2 =0, and hence |S) N Xonq3| = 1. Write S1 N Xpy3 = {Wmas}
Since S1 N X1 = S1N Xpya = B, winys is adjacent to every vertex in
Xmy2- Since S y;-dominates Wmys, [S1N X3 =1 and $; N Xpnyo = 0,
81N Xmta # 0. In particular, d > m + 4.

Let S5 be a y;-set of G —wy43. Note that S, is not a v;-set of G. Since
Wm+3 is adjacent to every vertex in Xm42, this implies S N Xpnqp = 0.

Claim 2.3 The set (Sa N Upyy2) U (S1 — Upnya) is a total dominating set
of G.

Proof. Since S ~y,-dominates V(G) — {wm+3}, each vertex in Upy; is
adjacent to a vertex in S; N Up42. Since S v,-dominates V(G) and S1 N
Xmi1 = 81N Xmyo = 0, each vertex in V(G) — Uy, is adjacent to a
vertex in 81 — Up,12. Hence the desired conclusion holds. 0O

If [Sy N Upny2| <181 NUpy2| — 1, then |(S2 N Upmy2) U(S) — Unmyz)| €
[S1NUp 42| +|S1 —=Ums2|—1 = k—1 which, in view of Claim 2.3, contradicts
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the assumption that +;(G) = k. Thus
|Sz N Um+2| > ISI n Um+2|. (2.1)

Suppose that | X,,,+3| > 2. Since Sy ye-dominates (X 43— {Wm+3})UXm44a
and SoNXpse =0, |Szn (Xm+3UXmia UXm+5)| > 2. Let wn4o € Xmo.
Then by (2.1), |(SoU{wm+2})NUmts| = |S10Upm42|+3 = (3m+10)/5+3 =
(3(m+5)+10)/5. Since SoU{wm42} is a ye-set of G, SoU{wm42} is (m+5)-
sufficient, which contradicts the maximality of m. Thus |X43] = 1. In
particular, w,,+3 is adjacent to every vertex in Xy, 4.

Take Wpmia € X4, and let Sz be a v;-set of G — wm4q. Note that
83N X3 = 0 and S3U{wm43} is a ye-set of G. Suppose that S3NXm42 #
0.

Claim 2.4 The set (S3 N Upy2) U (S2 — Unyt2) is a total dominating set
of G.

Proof. Since S3 y;-dominates V(G) — {wm4+4} and Sz N X3 = 0, each
vertex in Uy, 42 is adjacent to a vertex in S3NUp,42. Since SaNXpmy2 # 0,
Xm+3 = {Wmyes} and wmys is adjacent to every vertex in X2, this
implies that S3 N Uy, 42 v;-dominates Up,13. Since Sy y;-dominates V(G) —
{wm+3}, each vertex in V(G) — Up43 is adjacent to a vertex in Sp — Upy2.

Hence the desired conclusion holds. O

If |S3 N Upngz| = |S1 N Uny2| + 1, then [(S3 U {wmais}) N Unys] >
|S1 N Upga| +2 = (3m +10)/5 + 2 > (3(m + 3) + 10)/5, which contradicts
the maximality of m. Thus |S3 N Upnta| < |S1 N Uns2|. By (2.1), |S2 —
Uns2l = (k=1) — [So N Upy2| < (k—1) = |S1 N Upny2|- Consequently
[(S3NUm42)U(S2 = Ums2)| £ 151 NUms2| +((k—1) = [S1NUmy2|) = k-1
which, in view of Claim 2.4, contradicts the assumption that v,(G) = k.
Thus S3 N Xppye = 0.

Since S3 y;-dominates X,43 and S3N X2 = S3 N Xppys = 0, Sa N
Xmaa 70 and [S3 N (Xm4a U Xmys)| > 2.

Claim 2.5 The set (Sa N Upni2) U (S1 — Uny2) is a total dominating set
of G.
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Proof. Since S3 y,-dominates V(G) — {wm+4}, each vertex in Up,4g is
adjacent to a vertex in S3 N U, 42. Since Si ~e-dominates V(G) and S; N
Xm+1 = S1 N Xpmyo = B, each vertex in V(G) — U,y is adjacent to a
vertex in 8y — Uy 42. Hence the desired conclusion holds. O

If |S3 N Upya| 2 |S1 N Upyal, then |(S3 U {wmys}) NUngs| = [S1 N
Unsal +3 > (3m +10)/5 + 3 = (3(m + 5) + 10)/5, which contradicts
the maximality of m. Thus |S3 N Upnya| < |S1 N Upyz| — 1. Therefore
|(S30Um+2) U (Sl — Um+2)| < |Sl M Um+2| + |Sl —Um+2| —1 = k-1 which,
in view of Claim 2.5, contradicts the assumption that v(G) = k.

This completes the proof of Theorem 1.1. 0O

3 Examples

In this section, we prove a theorem concerning the construction of +;-critical
graphs (Theorem 3.8), and then use the theorem to construct examples
which show the sharpness of the bound in Theorem 1.1.

In our construction, we make use of the coalescence of graphs. Let A;
and A3 be graphs. Fori = 1,2, let z; be a vertex of A;. Under this notation,
we let (A; @ A)(x1, x5 : z) denote the graph obtained from A; and A; by
identifying z; and z3 into a vertex labelled z. We call (4; o A3)(z1, 22 : )
the coalescence of A; and As via z; and z,. We first give some properties
of the total domination number of the coalescence of graphs.

Lemma 3.1 For each i = 1,2, let A; be a graph with 6(A;) > 2, and z;
be a vertex of A;. Let G = (A o A2)(z1,22: 2).

(1) If z; is ye-critical in A; for some i € {1,2}, then v,(G) < (A1) +
7e(A2) — 1.

(ii) We have 7(G) 2 (A1) + % (4z) — 2. Further, if %(G) = 7e(A1) +
v:(A2) — 2, then v, (A; — Na,[z:]) = 7(A;) — 2 for some i € {1,2}.

(iii) If v:(G) = (A1) + 7(A2) — 1 and both A; and A, are ~,-critical,
then G Is ~y;-critical.
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Proof.

(i) Let S; be a +-set of A; — z;, and let S3_; be a v,-set of As_;. If

(if)

(iii)

T3—i € S3_i, let § = ((S1 U S2) — {z3-i}) U {z}; if z3—; & S3-i, let
S = S; US5. Then S is a total dominating set of G. We also have
IS] = |Si| + [S3-i] = Ye(Ai = zi) + 7e(Az—i) < (A1) + n(A2) — L.
Hence 1:(G) < 1e(A1) + 7e(A42) — 1.

It suffices to show that 7:(G) = 4:(A1) + v (A2) — 2 and v.(A; -
Na,[zi]) = 7:(A;) — 2 for some 7 € {1,2} under the assumption that
7t(G) < 71(A1)+7:(A2)—2. Thus assume 7:(G) < ve(A41)+7e(A2)—2.
Let S be a 7,-set of G. Since S v;-dominates z, SN Ng(z) # 0. We
may assume that SN Ny, (z1) # 0. Suppose that ¢ S. Then
SN V(A,) is a total dominating set of A; and SNV (Az) is a total
dominating set of Ay — zo. Hence [S NV (4;)] 2 7:(A1) and |[SN
V(A2)| = 7(Aa — z2). Since removing a vertex can decrease the
total domination number at most by one, we get v,(G) = |S| =|SN
V(AL)[+|SNV (A2)| 2 7e(A1)+7(A2—z2) = 1:(A1)+7e(A2)—1. This
contradicts the assumption that v,(G) < v:(A41) + 1:(A2) — 2. Thus
z € S. Note that ((S —{z})NV(A4,))U{z,} is a total dominating set
Aj;, and hence |[((S—{z})NV (A1))U{z1}| = 1e(A1). If SNN4,(z2) #
@, then ((S — {z}) NV (Az2)) U {z2} is a total dominating set Az, and
hence |((S — {z}) N V(A2)) U {z2}| = 7:(A2), which implies that
2(G) =S| =|((S ~ {zh) NV (A1) U{z:}| +|((S — {z}) N V(42)) U
{z2}—1 > 7:(A41)+7:(A2)—1, a contradiction. Thus SNN4,(x2) = 0.
Consequently (S — {z}) N V(Ay) is a subset of V(A2) — Ng,[z2] and
vi-dominates V (Ag) — Na,[z2]. Since 7(G) < 71e(A1) +7:(A2) —2, we
now obtain y,(Az— Na, [z2]) < [(S—{z})NV(4z)] = |S|-1(S—{=})n
V(AD)U {1} € 7(G) - (A1) < (n(A1) +%(A2) — 2) — ve(A) =
v:(Az) — 2. Since we clearly have 1:(A2) < (A2 — Na,[z2]) +2, this
forces v;(A2 — Na, [z2]) = 7:(A2) —2 and 7,(G) = 7e(A1) +71e(A2) -2,

as desired.

Let v € V(G). We prove that v(G — v) < 1(G) — 1.
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Case 1: v=1z.

For each i, let S; be a 7,-set of A; — z;, Then S; U S, is a total
dominating set of G — z. We also have |S; U Sp| = |S1| +|S2| =
V(A1 — 21) + 7 (A2 — 22) < (A1) +71:(A2) — 2 = %(G) — 1. Hence
7(G —v) Sm(G) - 1.

Case 2: v # 1.

Without loss of generality, we may assume that v € V(A4;)—{z1}. Let
81 be a y;-set of A} — v, and let Sy be a y;-set of Ay —z5. If 2; € Sy,
let $ = (S1—{x1})USU{z};ifz; &€ S1,let S =S, US>. Then Sisa
total dominating set of G—v. We also have |S| < v,(A))+7:(A2)-2 =
v(G) — 1. Hence (G — v) < %(G) — 1, as desired. 0O

As a preparation for our construction, we describe the definition of the
graph Q constructed by Goddard et al. in [2].

For each i = 1,2 and j = 1,2, let PG:d) = g{t) (i) g(03) 1(0d) g 5
path of order 4. Let U = {u;,u,}. Let Ey = U‘.=1’2{uiz§i’l) |1 <14},
Ey = Uicof=i™"2 | (1) ¢ {(1,2),(2,9),(3,1),(4,3)}} and Bs =
{zz' | z € V(PM2), 2’ € V(P(22)}. Let Q be the graph defined by

v =(J (lJ vesyyyuu
i=1,2 j=1,2

and

EQ=( (U EP“M)u( ] E)

i=1,2 j=1,2 1<i<3
(see Figure 1). Note that Q —u; =~ Q — uz, Q — Ngfu1] ~ Q — Ng[ug]
and Q - ({w }UV(P1) UV(Pr2)) = Q — ({u2} U V(Py,1) UV (Py2)). By
inspection, we see that v, (Q[V (P@V)UV(P2?)]) = 2, and {z{*?,z{*?}
and {xgz’l),x:(f’l)} are the only y;-sets of Q[V(P2V) uV(P22)).

Lemma 3.2 ([2]) We have v,(Q) = 4 and diam(Q) = dg(u1,u2) = 5.

Lemma 3.3 (i) 7.(Q — No[w]) =3.

(i) There exists a ;-set of @ — Ng[ui1] which contains us.
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(iii) Every vertex of V(Q)—(Ng[ui]UV (P12)) is ye-critical in Q—Ng[u,].

Proof. 'We first prove (i) and (ii). Suppose that v¢(Q — Ng[u1]) = 2. Then
there exists a total dominating set S of Q — Ng[u,] with |S| = 2. Since
€CCQ-Ng[uy)(¥2) = 3, we see that [SNV(P2D)| = |§nV(PR2)| = 1.
This implies that S is a total dominating set of Q[V(PZV) u V(P22)],
which contradicts the fact that {xéz’z),:cgz’z)} and {:vgz’l),mgz'l)} are the
only v,-sets of QV(P@V)u V(P®2)]. Thus 7(Q — Ng[u1]) > 3. This
together with the fact that {ug,xgz’l),x?'g)} is a total dominating set of
Q — No[ui] yields (i) and (ii).

We next prove (iii). Let z € V(Q)— (Ng[u1]UV (P12))). We show that
z is y-critical in Q — Ng[u;]. Without loss of generality, we may assume
that x € {uz}U{:z:g»z'i) [1<i<2,1<3 <2} Ifz = uy, then {«{*?, P}
is a total dominating set of (Q — Ng[u1]) — z. Similarly {x?’”,x?'z’},
{:1:22‘1),:3,(12'2)}, {zgz.l)’xgz,z)} or {z?*”,m?’”} is a total dominating set of
(Q — Ng[u1]) — = according as z = :1:52’1), a:gz’l), zgz’z) or a:gz'z). Thus (iii)
is proved. O

For each ¢ = 1,2, let B; be a v.-critical graph with 6(B;) > 2, and
let b; € V(B;) be a vertex with v,(B; — N, [b;]) > 7,(B;) — 1 (the con-
struction of such graphs will be given later; see Propositions 3.9 through
3.16). Let @ > 0 be an integer. Let G be a graph isomorphic to By,
and let zéo) be the vertex of G corresponding to b; in B;. Let G(a+1)
be a graph isomorphic to Bj, and let Z{GH) be the vertex of G(3+1) cor-
responding to by in By. For each 1 < i < g, let G® be a graph iso-
morphic to @, and let zgi) and zz(,i) be the vertices of G(*) correspond-
ing to u; and ug, respectively. Let Z,(a) (B1;b1) be the graph obtained
by concatenating G G ... G by letting G and G(+D coalesce

via zg) and 2"V (we let () denote the vertex of Z)(By;b,) arising
from zg) and zgi'”) through their identification) for each 0 < i < a — 1.

Let Z3*)(By, Ba; b1, by) = (Z®)(B1;b1) @ G+D) (2§ 2{**+D . 2(@)). Note
that Z{®(By1;b1) = GO, Z{)(By, B; b1, bs) ~ (B » Ba)(by, bz : b) and
Z®)(By, Ba; by, by) =~ Z(®)(By, By; b, by).
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Lemma 3.4 There exists a total dominating set of Z§°)(Bl; by) of cardi-

nality v¢,(B1) + 3a which contains zéa).

Proof. By Observation 1.3(ii), there exists a y;-set S of G(® with 2 e
S(®). For each 1 < i < a, there exists a v,-set S&) of G — Ngiy [z§i)] with
2) € SO by Lemma 3.3(ii). Then S = ((Ugcica S) — {287 [0 < i <
a—-1hHuU {z(‘) |0 <i<a—1}is a total dorr;}n;ting set of Z{“)(Bl;bl).
We also have |S| = %(Go) + X1<ica 1(G? — Now [2{7]) = n(B1) + 3a
by Lemma 3.3(i). Hence S is a desired set. [

Lemma 3.5 (i) We have 'y,(Zfa)(Bl;bl)) = v(By) + 3a.

(ii) There exists a vy;-set of Z {a)(Bl; by) which contains z.‘(,“).

(iii) We have 7(Z{* (By; b)) — Ny o5 ) 2 7(B1) +3a - 1.

Proof. For each i, let Z(®H) = Zfi)(Bl;bl). We proceed by induction on
a. If a = 0, then we get the desired results by the choice of B; and
Observation 1.3. Thus we may assume that a > 1. Note that Z@) ~
(21 ¢ Q)(z4*~Y u; : z). By the induction assumption,

‘)‘g(Z(a—l) - NZ(a—l) [Zéa_l)]) Z "/t(Z(a_l)) -1. (31)

By Lemma 3.3, 7:(Q — No[u1]) 2 3 = 7(Q) — 1. Hence by (3.1) and
Lemma 3.1(ii), 7:(Z2(®) > 7,(Z2(~ ) +7,(Q) — 1. Consequently 7,(Z®)) >
(7(B1) + 3(a — 1)) + 4 — 1 = v(B1) + 3a by the induction assumption.
This together with Lemma 3.4 implies that (i) and (ii) hold. Note that
Z@) — Ny [24?)] = (2D (Q — No[ua)))(z{* ", u : z). We clearly have
Y((Q — Ng[ua]) — No[u1]) = 2 = 7(Q — Ngluz)) — 1 by Lemma 3.3(i).
Hence by (3.1), Lemmna 3.1(ii) and the induction assumption, (2 —
Nzw[287]) 2 %(ZC@V) +%(Q - Nolua)) =1 = %(B1) +3(a—1)+3-1 =
v¢(B1) + 3a — 1. This proves (iii). O

Lemma 3.6 We have v:(Z* (Bi, Ba; b1,b2)) > 7(B1) +7¢(B2) + 3a — 1.
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Proof. Let Z@ = Z{*)(By;b1). Recall that Z{*) (B, Ba; b1, by) = (2@ o
GEtD) ({2 2@)) ~ (Z() o By) (2§, by : ). By Lemma 3.5,
1(Z@ ~ Nz [257]) > 1(Z@)—1. By the choice of B, y(Ba— N, [b2]) >
7:(B2) — 1. Hence by Lemmas 3.1(ii) and 3.5, 7,(Z§°)(Bl,Bz;b1,bg)) >
Y(Z®) + v(B2) — 1 = v(B1) + 3a + 1(B2) — 1, as desired. O

Lemma 3.7 Let Z(® = Z{*)(B,, By; b1,b3). Then v(Z® —v) < v(By)+
¥¢(Bz) + 3a — 2 for every v € V(Z®).

Proof. Recall that Z{") (B, By;by,bs) = (B; ® By)(by, b : b). By Lem-
mas 3.1(i) and 3.6, v:(Z{”(B1, B2; b1,52)) = 7(B1) + 7¢(B2) — 1. Hence
Zéo) (Bi1, Bz; b1, by) is y,-critical by Lemma 3.1(iii). Consequently the lernma
holds for a = 0. Thus we may assume that a > 1.

Case 1: v € (V(GD) — {z{"}) U {z@} or v € (V(Ge+D) — {z{**V}) U
(@)},

Without loss of generality, we may assume that v € (V(G©) — {zgo)}) U
{29}, If v # 2, let S) be a y-set of GO — v; if v = 20, Jet S
be a ye-set of GO — z{0. If 2{” € 8}, let Sp = (S} — {z{V}) U {zO};
if 29 ¢ So, let Sop = Sp. Let S) be a y-set of G — (Ngay [zél)] U
{z"}). By Lemma 3.3(i),(iii), |S1] = 2. For each 2 < i < a, there
exists a y,-set S; of G — NG(,-)[zg)] which contains z{i) by Lemma 3.3(ii).
By Observation 1.3(ii), there exists a y;-set S,4; of G(@*+1) which contains
2D, Then S = (Upgicass S)—{2 12 i < a+1})U{e® |1 <i < a)
is a total dominating set of Z(®) —v. We also have |S| = (7,(B;y) —= 1) +2+
Yocica 1 (G = New [257]) + 7:(Ba) = 1(B1) + %(Bz) + 3a — 2. Hence
(2 — v) < y(B1) +7(B2) + 32 — 2.

Case 2: v & (V(CO®) — {z{7}) U (V(G@+D) - {z{**V}) U (=9, 2},

Let 0 < ip < a—1 be the integer such that d ) (2(?, 200)) < d ) (2(9,v) <
dgia) (209, z(0+1)). Replacing the roles of G and G(e+1) by each other if
necessary, we may assume dz ) (v, 2{0)) < dzw (v, 200D, If y # 200) et
Sio+1 be a y-set of (GUo+Y) — Ngiigun [25°F]) — v; if v = 200) let S 41
be a v;-set of (G0t — Ngigi [zg°+1)]) - z{i°+1). By Lemma 3.3(i),(iii),
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1Siy41] = 2. If v # 200, then the eccentricity of z{°*" in (Gle+1) —

Ngooen [25°11]) — v is 3, and hence 2™V ¢ S 115 if v = 209, we
clearly have z{®*" ¢ 5, .. Thus 2(o*1) & S, ., in either case. For each
io +2 < i < a, there exists a y-set S; of G®) — Ng, [zgi)] which contains
zgi) by Lemma 3.3(ii). By Observation 1.3(ii), there exists a v-set So41 of

G+1 which contains z{**D,

Subcase 2.1: ip = 0.

Let So be a y,-set of G© — z{”. Then § = (Upcicass 5i) — {27 |2 <
i<a+1})U{z® |1 <i<a}is a total dominatir:g—set of Z(®) —y. We
also have || = (1:(B1) — 1) +2+ Tycsca 1(CP ~ Now [57]) +7(B2) =
Y¢(B1) 4 7:(B2) + 3a — 2. Hence 7:(Z(®) — v) < 7(B1) + 7(Bz2) + 3a — 2.

Subcase 2.2: 1 <ig<a-—1.

By Observation 1.3(ii), there exists a y-set So of G(® which con-
tains zgo). For each 1 < i < ig — 1, there exists a 7;-set S; of G —
Nga [zfi)] which contains zgi) by Lemma 3.3(ii). Let S;, be a ~y;-set of
(G — Ngqoy [289)]) — 259, By Lemma 3.3(iii), |Si,] = 2. Then S =
(Uogicast Si— ({287 10 < i <io—1}U{z{) |io+2 < i S a+1}))U{z? |
0<i<ig—1lorip+1<i< a}is a total dominating set of Z(® — v,
We also have [S| = v(B1) + Licicio—1 7(GY = Ngw ) +2+2+
Yirt2ciza {(GY — Now [287]) + %(B2) = (B1) + %(B2) + 3a — 2.
Hence—%_(Z(“) —v) < Y(B1) + ve(B2) +3a — 2, as desired. O

By Observation 1.3(i) and Lemmas 3.6 and 3.7, we get the following

theorein.

Theorem 3.8 Let a > 0 be an integer. For each i = 1,2, let B; be
a connected ~,-critical graph with §(B;) > 2, and let b; € V(B;) be a
vertex with v(B; — N, [b]) > v(B;) — 1. Then Z{*(By, Ba; by, bs) is &
(7:(B1) +7e(B2) + 3a — 1)-v,-critical graph with diameter max{eccp, (b1) +
eccp,(b2) + 5a, diam(By ), diam(B2)}.

In the remainder of this section, we construct candidates for B; and
B,, and apply Theorem 3.8 to them. We first construct 3-v,-critical graphs
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with diameter 3. Let m > 2 be an integer and, for i = 1,2, let C® =
R 22 2" be a cycle of order 5m. For each 1 < j <5, let X“) =
{a} “) [ I = J(mod 5)} and X{? = {z{? | | = 2j — 1(mod 5)}. Note that
X(2) = {z® |1 = 1(mod 5)}, X‘” = {z? |1 = 3(mod 5)}, X{? = {z{? |
= 5(mod 5)}, X(z) = {z; ® | 1 = 2(mod 5)} and X = {:vl(z) |l =
4(mod 5)}. Let Y = {y1,y2}. Let By = Uy;c5(U;uilze’ [z € xM 2 e
XP}) and Bz = U, o{wiz | z € V(CD)). Let G, be the graph defined

by

V(Gyr) = V(ICYyuvEePyuy

and
E(Gn) = E(CT) U E(C@)U E, U E,.

The graph G, is depicted in Figure 2. In the figure, two solid lines indicate
that for each ¢ = 1,2, all edges hetween y; and C® are present; dotted lines
indicate that no edge between the two sets joined by a dotted line is present,
and all other edges between C(D) and C® are present; dashed lines indicate
that for each i = 1,2, all edges inside C® are present except for a perfect
matching between the two sets joined by a dashed line.

Proposition 3.9 Let m > 2 be an integer. Then G,, is 3-y;-critical, and
eccg,, (y1) = diam(G,,) = 3.

Proof. By the construction of G, eccg,, (y1) = diam(G,,,) = de, (y1,¥2) =
3.

First we prove that v:(G,,) = 3. Since {xil),zgl),xlz)} is a total dom-
inating set of Gy, 7:(Gm) < 3. Suppose that 7,(Gy,) = 2, and let S be
a ye-set. Since dg,,(y1,¥2) = 3 and § v,-dominates Y, | N V(CW)| =
ISNV(CP)] = 1. Write SN V(CD) = {z{1} and SN V(C?) = (=},
Let j{ and jj be integers with :c(l) € X M and :z:(z) € X ) By the defi-
nition of S, x(l) (2) € E(G.), and hence J1 # 5. If j5 = j{ — 1(1nod 5)
or j, = ji + l(mod 5), then one of the vertices in NC(;;(azg)) is not ~y-
dominated by S; if j3 = 7§ — 2(mod 5) or j3 = j; + 2(mod 5), then one of
the vertices in Nc(g)( z¢? )) is not ;-dominated by S. Consequently S is not
a total dominating set of Gom, which is a contradiction. Thus v;(G,,) = 3.

363



.
- 1
. l.’ — -
. "J‘Il
M 0 g v
. . B . .
T -
3 )
. . R
, I
' ~ ’
S .
. » 0~ 2
« ) . . .
. . .
M 4 - . .
. . . . .
. .
. N . . s
. . A
. » ~ " .
. 0 N . ",
. .~ .
. . .o [y
L] S
g v
. K RN .
: I.l.'.l
. l" Ir'olu'
. lll

Cc®

c)

Figure 2: Graph G

364



Next we prove that (G, —v) = 2 for any v € V(G,,). Let v € V(Gyp).

Case 1: veY.
Write v = y;. Then {:cga_i), :c‘(f_i)} is a total dominating set of G, — ;.
Hence (G, — v) = 2.

Case 2: v € (V(C)u V(C@)).

Let ¢ € {1,2} and j € {1,---,5} be integers with v € X;i). Let
v € Nowy(v) and v € X J(.s’i). Then {v',v"} is a total dominating set of
Gy — v. Hence (G, — v) = 2.

Therefore G, is a 3-y;-critical graph. O

Proposition 3.10 Let m > 2 be an integer. Then v,(Gm — Ng,, [v1]) >

Proof. We have v,(G,, — Ng,.[vy1]) 22=%(Gn)-1. O

Next we construct 4-v;-critical graphs with diameter 4. Let m > 2 be
an integer. For each 1 < i < 3, let X; = {:1:;',) |1<j<21<1<m}
Let Y = {y1,92). Let Ey = Uy ofzwi | 2 € X}, By = Uiy {25050 |
(G.) # (1)), Ba = Uicyofatizf) | 1 <1< m) and By = {2725, |
l#1U'}. Let Hy, be the graph defined by

V(Hn) =(J X)uy
1<i<3

and

EHn,)= |J E:

1<i<4

(see Figure 3).

Proposition 3.11 Let m > 2 be an integer. Then H,, is 4-y,-critical, and
eccy, (1) = diam(H,,) = 4.

Proof. By the construction of Hy,, eccy,, (1) = diam(H,,) = dy,, (v1,v2) =
4.
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First we prove that v,(H) = 4. Since {zﬁli,mﬁ,xﬁ,xﬂ} is a total

dominating set of H,,, ¥:(Hx) < 4. Suppose that v,(H,,) < 3, and let
S be a y;-set. Recall that dy,, (y1,¥2) = 4. Since S 7;-dominates Y, we
have SN X, # 0 and SN X, # 0. Since |S| < 3, there exists a vertex
in § which v;-dominates both a vertex in SN X; and a vertex in SN X5,
and hence |S N x1| SN Xs| = SN Xs| = 1. Write SN X; = {z{}}
and SN X3 = {.7; 5 ,,} Since :c(, v 7¢-dommates :z:( ) (1,) f,;), € E(Hp),
and hence (j,1) # (5/,1'). If 9é !, then :zj,,,, is not 'yt-domma’ced by S, a
contradiction. Thus ! = !/, and hence j* = 3 — j. By the same argument,
we get SN Xy = {a:(z)} This implies that :cﬁ) is not y;-dominated by S,
a contradiction. Thus v,(Hp,) = 4.

Next we prove that v, (Hy, —v) < 3forany v € V(H,,). Let v € V(H,,).

Case l: veY.
Write v = y;. Then {m(3 9 a:gag,:cg’%} is a total dominating set of
H,.. — y;. Hence v,(Hpm — v) < 3.

Case 2: v e X; U X,.

Write v = a:(i) Let ' € {1, -- ,m} {l}. Then {z(ltg,,xf'_]t,), T )} isa
total dommatmg set of H,,, — :7: . Hence v:(H,, —v) < 3.
Case 3: v € Xj3.

Write v = zﬁ) Then {x;?, 52,),:::&3_)] 1} is a total dominating set of
H, - x;.‘?,). Hence v,(Hn —v) < 3, asdesired. O

Proposition 3.12 Let m > 2 be an integer. Then v(Hmm — Ny, [y1]) >
7t(Hm) -

Proof. Suppose that v,(Hm — Ny, (n1]) = 2. Let S be a v,-set of H,, —
Ny,.[y1]. Since S v:-dominates yz, SN X3 # 0. Since there is no vertex
in X, which is adjacent to every vertex in X3, we see that S C X, U Xj.
Since each vertex in X3 v;-dorminates only one vertex in X3, it follows that
SN X3 = SN X3 =1. Write S = {:cﬁ),:r(?)l,} By the definition of S,

2728, € E(Hmn — Ny, [v1]), and hence (5,1) # (/,1'). If | # I', then

5,2?,, is not ~,-dominated by S, a contradiction. Thus ! = !’ and hence
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j' =3 — j. However, xﬁ) is not y;-dominated by S, a contradiction. Thus

Ye(Hm — Nu,,. [11]) 23 =v(Hn)—1. O

We construct one more family of candidates L,, for B; and Bs. The
construction of the graph L., is based on the following graph R defined in
(2).

Let C = 518253545 be a cycle of order 4, and let U = {a1, az, u1, u2,v}.
For each i = 1,2, let P = tg)tgi)tgi)tgi) be a path of order 4. Let E; =
Uier2{sitS) | 3 # 3, B2 = {#t' | ¢t € V(PD),t' € V(PD)}, By =
Uimio{aiz | © € {si,53,8,88,t80,887,67}}, By = Uicyofwiz | z €
V(P UV (PP)u{a;}} and Es = {vs | s € V(C)}. Let R be the graph
defined by

V(R) =V(C)uV(PMYuVv(P®)uU

and

E(R)=E(C)UE(PWYUEP®)u( | ] E)

1<i<5

(see Figure 4).

Proposition 3.13 ([2]) The graph R is 3-y,-critical, and eccp(u;) = diam(R) =
dr(u1,v) =3.

Proposition 3.14 We have v;(R — Ngp[u1]) = 7(R) — 1.

Proof. We have v,(R — Ng[u1]) >22=n(R)-1. O
Let L, = (R e Gp)(u1,y1 : ).

Proposition 3.15 Let m > 2 be an integer. Then L,, is 5-y;-critical, and
eccr,, (v) = diam(L,) = 6.

Proof. 1t is easy to see that eccr, (v) = diam(Ln) = di,. (v,y2) = 6.
By Lemma 3.1(i),(ii) and Propositions 3.9, 3.10, 3.13 and 3.14, v;(Lm) =
Ye(R) + 7(Gm) — 1 = 5. Hence Ly, is 5-y;-critical by Lemma 3.1(iii) and
Propositions 3.9 and 3.13. O
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Figure 4: Graph R
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Proposition 3.16 Let m > 2 be an integer. Then v,(L,m — Ny, [v]) >
Ye(Lm) — 1.

Proof. Since the distance between y; and uy in L, — Ny, [v] is 5, there
is no total dominating set of L,, — N [v] having cardinality at most 3.
Hence ¥¢(Lm — Ni,.[v]) 24 =%(Lm)—-1. O

We are now ready to construct examples which show the sharpness of
the bound in Theorem 1.1.

For m > 2 and @ > 0, let Z{)(m) = Z{ (G, Gmiv1,01), Z§3(m) =
2 (Gm, Hemiy1, 1) and ZE(m) = 257 (Gom, Lim; 11, v).

Proposition 3.17 Let m > 2 and a > 0 be integers.

(i) Thegraph Zé“l) (m) is a (3a+5)-v;-critical graph with diameter [WJ .

(ii) The graph Z:gaz) (m) is a (3a+6)-v;-critical graph with diameter [ﬂz‘“;—wj
(iii) The graph Z%)(m) is a (3a+7)-y,-critical graph with diameter | $GetnT
Proof.

(i) By Theorem 3.8 and Propositions 3.9 and 3.10, Zéal) (m) is a (3a +5)-
v¢-critical graph with diameter 5a + 6 = [M;—)-'—ZJ

(ii) By Theoremn 3.8 and Propositions 3.9, 3.10, 3.11 and 3.12, Z(a)( )
is a (8a + 6)-v;-critical graph with diameter 5a + 7 = [MJ

(iii) By Theorem 3.8 and Propositions 3.9, 3.10, 3.15 and 3.16, Zég)(m)
is a (3a + 7)-y.-critical graph with diameter 5a + 9 = [Muj
a

Proposition 3.18 Let k > 3 be an integer. Then there exist infinitely
many connected graphs G such that G is k-v.-critical and such that G has
diameter 3 if k = 3, and has diameter |35 | if k > 4.
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Proof. Note that Propositions 3.9, 3.11 and 3.17 hold for all integers
m > 2. Therefore if k = 3, then graphs G,, are desired graphs by Propo-
sition 3.9. If k = 4, then graphs H,, are desired graphs Proposition 3.11.
Thus we may assume that k > 5. If £ = 2(mod 3), then letting k = 3a + 5
(a > 0), we see that graphs Zg“l) (m) are desired graphs Proposition 3.17(i);
if & = O(mod 3), then letting k = 3a + 6 (a > 0), we see that graphs
Z§°2) (m) are desired graphs by Proposition 3.17(ii); if k¥ = 1(mod 3), then
letting k = 3a + 7 (a > 0), we see that graphs Z:g“:,) (m) are desired graphs

" by Proposition 3.17(iii). 0O
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