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Abstract

It has been shown by Bennett et al. in 1998 that a holey Schréder
design with n holes of size 2 and one hole of size u, i.e., of type
2"u!, exists if 1 < u < 4 and n > u+ 1 with the exception of
(n,u) € {(2,1),(3,1),(3,2)}, or u > 16 and n > [5u/4] + 14. In this
paper, we extend this result by showing that, for 1 < u < 16, a holey
Schréder design of type 2™u! exists if and only if n > u + 1, with
the exception of (n,u) € {(2,1),(3,1),(3,2)} and with the possible
exception of (n,u) € {(7,5),(7,6),(11,9),(11,10)}. For general u,
we prove that there exists an HSD(2"u!) for all u > 17 and n >
[5u/4] + 4. Moreover, if u > 35, then an HSD(2"u') exists for all
n > [5u/4] + 1; if u > 95, then an HSD(2"u!) exists for all n >
[5u/4] — 2. We also improve a well-known result on the existence of
holey Schréder designs of type h™ by removing the remaining possible
exception of type 69.

1 Introduction

In algebra, every Latin square is equivalent to a quasigroup (Q,*) where
*: Q% Q@ — Q is defined by the Latin square. The order of the quasigroup
is |Q|. If (Q, *) satisfies xxx =z and (z*y)* (y*xz) =z forall z,y € Q, it
is called an idempotent Schrider quasigroup. Two quasigroups (Q,*) and
(Q,-) are orthogonal to each other if |[{(z*xy,z-vy) : z,y € Q} = Q2.
(@, *) is self-orthogonal if (Q, *) is orthogonal to its transpose.

Idempotent Schréder quasigroups, or ISQs, are associated with other
combinatorial configurations such as a class of edge-colored block designs
with block size 4, triple tournaments and self-orthogonal Latin squares
with the Weisner property (see [8], {2], [12] and [13]). A pair of orthogonal
Latin squares, say (Q, *) and (Q,-), are said to have the Weisner property if
z*y = zand z-y = w whenever zxw =z and z-w = y for all z,y, 2,w € Q.
Let (Q,-) be the transpose of (@, *), i.e., z-w = wx z. If (Q, *) is an ISQ,
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then from zxw =z and z-w =y, wehave z*y = (z*xw) * (w* 2) = 2.
Similarly, we also have = - y = w. The following theorem gives a complete
solution of the existence of ISQ.

Theorem 1.1 ([8], [5]) An idempotent Schrider quasigroup of order v
ezists if and only if v=0,1 (mod 4) and v # 5,9.

An ISQ(v) is equivalent to an edge-colored design CBD(Gg;v] which
is investigated in [8]. An edge-colored design CBD[Gs;v| on a v-set Q is
a partition of the colored edges of a triplicate complete graph 3K, each
K, receives one color for its edges from three different colors, into blocks
(a,b,¢c,d), each containing edges {a,b}, {c,d} colored with color 1, edges
{a,c}, {b,d} with color 2, and edges {a,d}, {b,c} with color 3. If we define
a binary operation () asa-b=c¢,b-a=d,c-d=a and d-c =b from the
block (a,b,c,d) and define z -z = z for every z € Q, an ISQ(v) is obtained
on set Q. On the other hand, suppose Q is an ISQ. If a-b=¢, b-a =d,
then we must have c-d=(a-b)-(b-a)=aandd-c=(b-a):(a-b) =b.
So the block (a, b, ¢, d) is determined and a CBD[Gg; v] can be obtained in
this way.

The concept of edge-colored design can be generalized to that of holey
Schréder design which is a triple (X, H, B) satisfying the following proper-
ties:

1. H is a partition of X into subsets called holes,

2. B is a family of 4-tuples of X (called blocks) such that a hole and a
block contain at most one common point,

3. the pairs of points in a block (a, b, ¢, d) are colored as {a, b} and {c,d}
with color 1, {a,c} and {b,d} with color 2, and {a,d} and {b,c} with
color 3,

4. every pair of points from distinct holes occurs in three blocks with
different colors.

The type of the HSD is the multiset {|H| : H € H} which is denoted by
an exponential notation: s7's3?---s* means we have n; occurrences of

si=|H|in {|H|: H € H}.

Each HSD is equivalent to a holey ISQ, called frame Schrider quasigroup
(FSQ), which is equivalent to a frame self-orthogonal Latin square (FSOLS)
with the Weisner property [13]. For the existence of FSOLS of type 2"u!,
we have the following theorem [15].
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Theorem 1.2 There erists FSOLS(2™u!) if and only if n > 1 + u and
u>2, orn>4andu=0,1.

For HSDs, however, it is found that the type 232! does not exist by
exhaustive computer search. This means that some types of FSOLS cannot
have the Weisner property.

Another class of designs related to HSDs is group divisible design (GDD).
A GDD is a 4-tuple (X, G, B, \) which satisfies the following properties:

1. G is a partition of X into subsets called groups,

2. B is a family of subsets of X (called blocks) such that a group and a
block contain at most one common point,

3. every pair of points from distinct groups occurs in exactly A blocks.

The type of the GDD is the multiset {|G| : G € G} and we will also use
an “exponential” notation for the type of GDD. We also use the notation
GDD(K, M; ) to denote the GDD when its block sizes belong to K and
group sizes belong to M. In particular, a GDD({k}, {2,u},1), where there
is only one group of size u, is denoted by k-GDD of type 2"ul.

Theorem 1.3 [9, 10] There ezists a 4-GDD of type 2™u! for each n > 6,
n =0 (mod 3) and u = 2 (mod 3) with 2 < u < n -1, except for (n,u) =
(6,5) and possibly excepting (n,u) € {(21,17), (33,23),(33,29), (39, 35),
(57,44)}.

If M = {1}, then the GDD becomes a pairwise balanced design (PBD)
(14]. If K = {k},M = {n} and the type is n*, then the GDD becomes a
transversal design, TD(k,n). The following results are well known (see (1]
and [4], for example).

Theorem 1.4 (a) There exists a TD(4,m) for any positive integer m, m &
{2,6}.

(b) There ezists a TD(5,m) for every positive integer m ¢ {2, 3,6,10}.

(c) There exists a TD(6,m) for m > 5 and m ¢ {6, 10,14, 18, 22},

(d) There exists a TD(7,m) form > 7 and m ¢ {10, 14, 15, 18, 20, 22, 26,
30, 34, 38, 46, 60}.

It is well known that the existence of a TD(k,n) is equivalent to the
existence of k —2 MOLS(n). It is easy to see that if we erase the colors in
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the blocks, the HSD becomes a GDD with block size 4 and A = 3. But the
converse may be not true. It is proved in (7] that a 4GDD with A = 3 and
of type h* exists if and only if h2u(u — 1) = 0 (mod 4).

Theorem 1.5 [3] An HSD(h*) exists if and only if h2u(u—1) = 0 (mod 4)
with the exception of (h,u) € {(1,5),(1,9),(2,4)} and the possible excep-
tion of (h,u) = (6,4).

In this paper, we improve the above theorem by removing the only
possible exception. In the appendix of this paper, we provide for the first
time an HSD(64) in the form of a quasigroup. Thus, we have the following
theorem.

Theorem 1.6 An HSD(h*) ezists if and only if h*u(u — 1) = 0 (mod 4)
with the ezception of (h,u) € {(1,5),(1,9),(2,4)}.

The following results are obtained in [4]:

Theorem 1.7 (a) For 1 < u < 4, an HSD(2"u!) ezists if and only if
n > u+ 1 with the exception of (n,u) € {(2,1),(3,1),(3,2)}.

(b) There exists an HSD(2"ul) for 1 < u < 64 and n > 85.

(¢) There exists an HSD(2™u!) for u > 16 and n > [5u/4] + 14.

There are two gaps left out by the above theorem regarding the existence
of HSD(2"u!): (1) 5 <u <15andn < 85 and (2) u > 16 and u+1 <
n < [5u/4] + 13. In this paper, for (1) we establish the existence of HSDs
of type 2"u! for 5 < u < 16 and every n > u + 1. For (2), we improve the

existing result by increasing the range of n by at least 10 values for each u.
The main result of this paper is the following theorem.

Theorem 1.8 (a) For5 <u <16, an HSD(2™u?) exists if and only if n >
u+ 1, with the possible exception of (n,u) € {(7,5),(7,6),(11,9),(11,10)}.

(b) For u > 17, an HSD(2"u!) exists if n > [5u/4] + 4. Moreover, if
u > 35, then an HSD(2"u') ezists for all n > [5u/4] + 1; if u > 95, then
an HSD(2™u!) ezists for all n > [5u/4] — 2.

2 Construction Tools

To construct HSDs directly, sometimes we use starter blocks. Suppose the
block set B of an HSD is closed under the action of some Abelian group G,
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then we are able to list only part of the blocks (starter or base blocks) which
determines the structure of the HSD. We can also attach some infinite points
to an Abelian group G. When the group acts on the blocks, the infinite
points remain fixed. Formally, let B be the block set of an HSD over the
point set S = GU X, where (G, +) is a group, X is a set of infinite points,
GNX = . The addition (+) is extended over X as follows: g4+ =z+g =1z
for any g € G and z € X. A set A C B is called starter blocks of B if A
is a minimum subset of B satisfying the property that for any a € A and
any g € G, a+ g € B, and for any b € B, there exist a € Aand g € G
such that b = a + g, where a + g = (a; + g,a2 + g,a3 + g,a4 + g) when
a = (a1,a2,a3,a4). In the following example z1, x, ..., are infinite points.

Example 2.1 An HSD(285')
points: Z1g U {zy,12,...,T5}
holes: {{i,i+8}:0<i<7}U{z1,22,..,75}

starter blocks: (0,1,2,zs), (0,2,4,z4), (0,3,15,6), (0,10,7,x2),
(0,11,6,21), (0,12,5, z3).

In this example, the entire set of blocks is developed from the starter
blocks by adding a € Z,g to the starter blocks.

To check the starter blocks, we need only calculate whether the differ-
ences +(z — y) from all pairs {z,y} with color i in the starter blocks are
precisely G\ S for 1 < i < 3, where S is the set of the differences of the
holes. For the above example, for color 1, the set of differences from the
six blocks is {£1, £2, +3, £9, £10, +11, +12}, which is exactly Z;¢ \ {0, 8}.
This is also true for colors 2 and 3.

We have pointed out in the previous section that there is an equivalence
between an FSQ and an HSD. That is, for all distinct a,b,¢,d € Q, axb = e,
bxa=d, cxd=a,d*c=>in the FSQ if and only if (a,b,c,d) is a block
of the HSD. So we are free to use either form. In fact, all the designs found
by computer in this paper are in the form of Schréder quasigroups. To
allow the existence of starter blocks with a group G, for quasigroup (Q, *),
we require that Q@ = GU X and for all 2,9,z € Q, z*y = z if and only
f(z+9)*(y+g) = (2+g) for any g € G [16, 17]. Since HSDs have a
more compact form than quasigroups, we will present them as HSDs in this
paper.

The above idea of starter blocks can be also generalized: Instead of
adding 1 to each point of the starter blocks, we may add k, where k > 1, to
develop the block set; we refer to this as the +k method. In this case, for
a set A to be starter blocks, we require that for any a € A and any g € G,
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a + kg € B. For quasigroups, we require that for all z,y,z € Q, z*xy = 2
if and only if (z + kg) * (y + kg) = (2 + kg) for any g € G [16, 17].

Example 2.2 An HSD(2°5!)
points: Zy2 U {z,y, z,v,w}
holes: {{i,i+6}:0<1i<5}U{z,y,2,v,w}

starter blocks: (0,3,1,r),(0,7,3,w), (0,8,4,v),(0,9,10, z),(0,10,2,y),
(1’ 01 11’ y)’ (1) 37 8’ z)’ (1’ 51 4’ x), (1’ 8’ 5)"‘”)1 (1’ 11, 6’ v)’ (2’ 0’ 5’ z)’
(2,1,10,w), (2,5,3,v), (2,9,1,¥), (2,10,7,z),(3,2,4,w), (3,4,6,z),
3,6,1,v), (3,10,11, 2),(3,11,8,y).

By adding 4 (mod 12) to the 20 starter blocks, we obtain a set of 60
blocks.

Next, we state several recursive constructions of HSDs, which are com-
monly used in other block designs [4]. The following construction comes
from the weighting construction of GDDs [14].

Construction 2.3 (Weighting) Suppose (X,H,B) is a GDD with A = 1
and let w : X — Z+U{0}. Suppose there exist HSDs of type {w(z) : x € B}
for every B € B. Then there ezists an HSD of type {3 .y w(z) : H € H}.

Lemma.2.4 There erists an HSD(2™u!) for each n > 6, n = 0 (mod 3)
and v = 2 (mod 3) with 2 < u < n -1, except for (n,u) = (6,5) and
possibly excepting (n,u) € {(21,17),(33,23), (33,29), (39, 35), (57,44)}.

Proof From Theorem 1.3, there exist 4-GDDs of the same type. So we
can give all points of this GDD weight one to get the desired HSD(2"u!).
O

Using Theorem 1.4(a), if we give every point of an HSD weight m and
input TD(4,m) to each block of the HSD, we can obtain the following
construction.

Construction 2.5 Suppose there exists an HSD(hT*h3? - - - hi*), then there
exists an HSD((mh,)™ (mha)"? - - - (mhy)™*), where m # 2,6.

The next construction may be called “filling in holes”. It is used com-
monly in constructing designs.
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Construction 2.6 Suppose there ezist an HSD of type {s; : 1 < i < k}
and HSDs of type { hy; : 1 < j < ni} U {a}, where 377, hy; = s; and
1< i< k-1, then there exists an HSD of type {hi;:1<j<n;,1<i<
k—1} U {sx + a}.

The next construction comes from [8].

Construction 2.7 Suppose there exists an FSOLS(hT'h3?---hp*), then
there exists an HSD((4h1)™ (4hg)™2 - - (4ht)™).

Lemma 2.8 If there exists an HSD(2™k?), there exists an HSD(23™(2m +
k)1,

Proof Because there exists an HSD(2™k!), m > 4. By Theorem 1.6, there
exists an HSD((2m)*). We adjoin & points to this HSD((2m)*), and fill
three holes of size 2m with an HSD(2™k!), leaving one hole of size 2m + k.
The result is the desired HSD(23™(2m + k)?). m]

The following lemma is an extension of Lemma 6.1 in [4].

Lemma 2.9 For m > 4, u # 0 (mod 4), and u < 4m, there ezists an
HSD(24™u!).

Proof From Theorem 1.2, there exists an FSOLS(2™s!) for m > 4 and
0 < s < m—1. Applying Construction 2.7 to this FSOLS, we obtain an
HSD of type 8™(4s)!. Adjoin k = 1,2,3 points to this HSD and fill the
holes of size 8 with an HSD(2k!), we obtain an HSD of type 2™ (4s + k)1,
where m>4,0<s<m—-1and1<k<3. ]

Lemma 2.10 If an HSD(2™s) exists, then an HSD(25™t1) exists for 5s <
t<5s+4.

Proof Applying Construction 2.5 (with m = 5) to the HSD(2™s!), we
obtain an HSD of type 10™(5s)!. To this HSD we adjoin ¢ points, where
0 <t < 4, and fill the holes of size 10 with an HSD(2%t!), we obtain an
HSD(25™ (55 + £)1). O

Lemma 2.11 If there ezists a TD(5,m), then there exists an HSD((2m)%s?),
where m < s < 3m.
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Proof Give weight 2 to each point of first four groups of a TD(5, m). Give
weight 1, 2 or 3 to the points of the fifth group. Since there exist HSDs of
type 24t!, t = 1,2,3 from Theorem 1.7(a), we obtain the desired HSD by
Lemma 2.3. a

Lemma 2.12 ([4], Lemma 6.2) If there ezists a TD(6,m), then there ezist:
(a) HSD(2'™+ksl) for k =0,1,5,6,...,m and m < s < 3m.
(b) HSD(24™+ks!) for k =0,4,5,6,..,m and m+1< s < 3m + 3.
(c) HSD((2m)*(2k)'s!), where 0 <k <m and m < s < 3m.

Note that the HSD in (c) of the above lemma was constructed implicitly
in the proof of (a) in [4].

Lemma 2.13 If there exist o TD(6,m), an HSD(2™t'), and an HSD(2¥t!),
where 4 < k < m, then there exists an HSD(24™+*sl) form +t < s <
3m+t.

Proof Take the HSD((2m)*(2k) «!) from Lemma 2.12(c), where 0 < k <
m and m < u < 3m, we first adjoin ¢ points, to the HSD((2m)*(2k)!u!) and
then fill the holes of sizes 2m and 2k with an HSD(2™t!) and an HSD(2*t!),
we obtain an HSD(24™+*(u + t)!) where m +t <u+t <3m +t. 0

Lemma 2.14 ([4], Lemma 6.3) If there ezists a TD(7,m), then there exist
(a) HSD(25™+*s!) for k =0,1,5,6,....,m and 0 < s < 4m.
(b) HSD(25™+*s1) for k = 4,5,...,m and 1 < s <4m +3.
(c) HSD((2m)5(2k)1s!t) for0 <k <m and 0 < s < 4m.

Note that the HSD in (c) of the above lemma was constructed implicitly
in the proof of (a) in [4].

Lemma 2.15 If there exist a TD(7,m), an HSD(2™t!), and an HSD(2*t!),
where 4 < k < m, then there erists HSD(25™tks!) fort < s <dm +t.

Proof We adjoin ¢ points to the HSD((2m)®(2k) u!) from Lemma 2.14(c),
where 0 < u < 4m, and fill the holes of sizes 2m and 2k with an HSD(2™t!)
and an HSD(2*t!), we obtain an HSD(25™+¥(u +t)!), where t < u +1t <
dm + 1. ]
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3 HSD(2"u!) for some specific n

From the results in the previous section, we may show the following results.
Lemma 3.1 An HSD(2'7u!) ezists for 5 < u < 186.

Proof For 5 < u < 8 please see Appendix Al-A4. For 9 < u < 11, we first
get an HSD(8%10') by applying Lemma 2.11 with m = 4,u = 10. Adjoin
k points, where 1 < k < 3, to this HSD, and fill three holes of size 8 with
an HSD(2%k!) and the hole of size 10 with an HSD(25k!), we obtain an
HSD(2!2+5(8 + k)!) for 1 < k < 3. Besides an HSD(21714!) is given in [4],
for 12 < u < 16, please see Appendix A7 and AS.

Lemma 3.2 An HSD(2'3u!) exists for 5 <u < 17.

Proof For u = 5, 8, we apply Lemma 2.4. For u = 6, 7, please see Appendix
A2 and A3.

For 9 < u < 11, we first get an HSD(8412!) by applying Lemma 2.11
with m = 4,u = 12. Adjoin k points, where 1 < k < 3, to this HSD, and
fill three holes of size 8 with an HSD(24k!) and the hole of size 12 with an
HSD(26k), we obtain an HSD(2!2+5(8 + k)!) for 1 < k < 3.

For 12 < u < 17, we obtain an HSD(2"u!) by Lemma 2.8 with m = 6,
because an HSD(2%k!) exists for k =0, 1,2,3,4,5. o

Lemma 3.3 An HSD(2'%u!) erists for 5 < u < 16.

Proof For 5 < u < 10, please see Appendix A1-A6. For 11 < u < 13,
we first get an HSD(1048!) by applying Lemma 2.11 with m = 5,u = 8.
Adjoin k points, where 1 < k < 3, to the HSD, and fill three holes of size
10 with an HSD(25k!) and the hole of size 8 with an HSD(24k!), we obtain
an HSD(2'%(10 + k)*) for 1 < k < 3. For 14 < u < 16, please see Appendix
AS8. m]

Lemma 3.4 An HSD(2%'u!) ezists for 5 <u < 20.

Proof For 5 < u < 15, from Lemma 2.12(a) with m = 5,k = 1, we
have HSD(2"u!). For 16 < u < 18, we adjoin k points, where 2 < k < 4,
to an HSD(14%), and fill three holes of size 14 with an HSD(27k?) from
Theorem 1.7(a), leaving one hole of size 14 + k where 2 < k& < 4. For
u =19, please see Appendix A8. For u = 20, we apply Lemma 2.4. m]
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Lemma 3.5 An HSD(12%t!) ezists for 0 <t < 16.

Proof We start with a TD(5,4). In the first four groups of the TD we
give all the points weight 3. In the last group we give the points a weight
of 0, 1, 2, 3, or 4 for a total weight of t. We need HSDs of type (3%k!),
where 0 < k < 4. For k = 0,3, the designs are given in Theorem 1.6;
for k = 1,2, 4, they are given in Appendix A9. The resulting design is an
HSD(124¢1). o

Lemma 3.6 An HSD(2??u!) exzists for 5 < u < 16.

Proof For 5 < u < 8, please see Appendix Al-A4.

For u = 9, we generate an HSD(8%12!) from an HSD(2%3!) by Con-
struction 2.5 with m = 4. To this HSD we adjoin one point, fill four holes
of size 8 by an HSD(2%1!) and one hole of size 12 by an HSD(2°1?), we
obtain an HSD(222(8 + 1)).

For 10 < u < 14, we first get an HSD(10%14!) by applying Lemma 2.11
with m = 5,u = 14. Adjoin k points, where 0 < k < 4, to this HSD, and
fill three holes of size 10 with an HSD(2%k!) and the hole of size 14 with
an HSD(27k!), we obtain an HSD(222(10 + k)') for 0 < k < 4.

For u = 15, we take an HSD(12%8!) from Lemma 3.5. Adjoin three
points to this HSD, and fill three holes of size 12 with an HSD(2°3!) and
one hole of size 8 with an HSD(2%3!), we obtain an HSD(222(12 + 3)!).

Finally for u = 16, please see Appendix AS8. 0
Lemma 3.7 An HSD(2%3u!) ezists for 5 < u < 16.

Proof For 5 <u < 8, please see Appendix Al-A4.

For 9 < u < 11, we take the HSD(8%14!) from Appendix A9, ad-
join k points, 1 < k < 3, to the HSD, and fill four holes of size 8 with
an HSD(2%k!) and one hole of size 14 with an HSD(27k!), we obtain an
HSD(22%3(8 + k)1).

For 12 < u < 16, we take an HSD(12410!) from Lemma 3.5. Adjoin k
points, where 0 < k < 4, to this HSD, and fill three holes of size 12 with
an HSD(2%%!) and the hole of size 10 with an HSD(2%k!), we obtain an
HSD(223(12 4 k)!) for 0 < k < 4. 0

Lemma 3.8 An HSD(2%%u!) exists for 0 < u < 18.
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Proof For 0 < u < 14, we first apply Lemma 2.12(c) with m = 5 and
s = 12 to get an HSD(10%(2k)'12!), where 0 < k < 5. Adjoin ¢ points,
where 0 < ¢ < 4, to this HSD, and fill the holes of sizes 10 and 12 with an
HSD(2%t!) and an HSD(28¢!), respectively. The result is an HSD(226(2k +
t)!), where 0 < 2k 4t < 14.

For 14 < u < 18, we first get an HSD(14*10!) by applying Lemma 2.11
with m = 7,4 = 10. Adjoin & points, where 0 < k < 4, to this HSD, and
fill three holes of size 14 with an HSD(27k!) and the hole of size 10 with
an HSD(2%k!), we obtain an HSD(226(14 + k)!) for 0 < k < 4. m]

Lemma 3.9 An HSD(2%"u!) exists for 0 < u < 26.

Proof For 0 < u < 14, we first apply Lemma 2.12(c) with m = 5 and
s = 14 to get an HSD(10%(2k)!14!), where 0 < k < 5, then adjoin ¢
points, where 0 < ¢t < 4, to this HSD, and fill the holes of sizes 10 and
14 with an HSD(2%!) and an HSD(27t!), respectively. The result is an
HSD(2%7(2k + t)*), where 0 < 2k +t < 14.

For 14 < u < 18, we first get an HSD(14412!) by applying Lemma 2.11
with m = 7,u = 12. Adjoin k points, where 0 < k < 4, to this HSD, and
fill three holes of size 14 with an HSD(27k!) and the hole of size 12 with
an HSD(2%k'), we obtain an HSD(2%7(14 + k)!) for 0 < k < 4.

For 18 < u < 26, we start with an HSD(18%), adjoin k points to this
HSD, and fill in the first three holes of size 18, where 0 < k < 8, with an
HSD(2%!). The resulting design is an HSD of type 227(18 + k)!, where
18 <18 4+ k < 26, and this completes the proof of the lemma. m]

Lemma 3.10 An HSD(2%°u!) exists for 5 < u < 21.

Proof For u =5, we take an HSD(22317!) from Appendix A8 and fill the
hole of size 17 with an HSD(265'). For u = 6, please see Appendix A2. For
7 < u £ 21, we can get the designs from Lemma 2.12(a) with m = 7 and
k=1. O

Lemma 3.11 An HSD(23'u!) ezists for 5 < u < 21.

Proof For u = 5, we can get an HSD(2%%17!) from Lemma 2.10 with
m =5, s = 3 and ¢t = 17. Fill the hole of 17 with an HSD(265'), we have
an HSD(23!51).

For 6 < u < 18, we form a {6, 7}-GDD of type 67 by deleting one block
from a TD(7,7). In the first five groups of this GDD, we give all of the
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points weight 2. In the fifth group, we give one point of weight 2 and the
other points weight 0. In the last group we give the points a weight of 1, 2,
or 3 for a total weight of u where 6 < u < 18. Since there are HSDs of types
2" for n = 5,6,7 and 2"k! for n = 4,5,6 and k = 1,2, 3 by Theorem 1.7(a),
we get an HSD of type 125214! for 6 < u < 18. To this HSD we fill the
holes of size 12 with an HSD(2°) and obtain an HSD(23!w!) for 6 < u < 18.

For 7 < u < 21, we use a TD(8,7): In the first four groups of the
TD(8,7) we give all of the points a weight of two. In the fifth, sixth and
seventh groups, we give one point weight two and the other points weight
zero. In the last group, we give the points a weight of 1, 2, or 3, for a
total weight of u. Since we have HSDs of types 27k! for n = 4,5,6,7 and
k =1,2,3, we get an HSD of type 1423u! for 7 < u < 21. By filling in the
holes of size 14 with an HSD(27), the resulting design is an HSD(23'«!) for
7<u<2l. i}

Lemma 3.12 An HSD(237u!) exists for 0 < u < 28.

Proof We will use a TD(8,7): In the first five groups of the TD(8,7) we
give all of the points a weight of two. In the sixth and seventh groups, we
give one point weight two and the other points weight zero. In the last
group, we give the points a weight of 0, 1, 2, 3, or 4, for a total weight of
u. Since we have HSDs of types 2"k! for n = 5,6,7 and 0 < k < 4, we get
an HSD of type 14522u! for 0 < u < 28. By filling in the holes of size 14
with an HSD(27), the resulting design is an HSD(237u!) for 0 <u < 28. O

4 HSD(2"u!) for 5<u <16

Lemma 4.1 An HSD(2"u!) ezists for 5 <u <16 andu+1 < n < 25,
ezxcept possibly (n,u) € {(7,5),(7,6),(11,9),(11,10)}.

Proof For n = 6 and u = 5, please see Example 2.2. For n = 8 and
5 < u <7, please see Example 2.1 and Appendix A2 and A3.

Now let us consider 9 < n < 15. For n = 9,12,15, u < n and u =
5,8,11,14, we apply Lemma 2.4. For n = 12 and 9 < u < 11, we obtain
an HSD(2"u!) by Lemma 2.8 with m = 4, because an HSD(2%k!) exists
for k = 1,2,3. For n = 15 and 10 < u < 14, we obtain an HSD(2"u!) by
Lemma 2.8 with m = 5, because an HSD(25k!) exists for k = 0,1,2,3,4.
Besides an HSD(2"11!) for n = 13, 14 can be found in (4], the other designs
for 9 < n < 15 are given in Appendix A1-A8, except n =11 and u =9, 10.
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For n = 16,24, 5 < u < 15, u < n, and u # 8,12, by Lemma 2.9, we
have an HSD(2"u!). For n = 16 and u = 8,12, let t = u — 2, we obtain
first an HSD(8*¢!) by Lemma 2.11 with m = 4 and u = ¢. To this HSD, we
adjoin 2 points and fill the holes of size 8 with an HSD(242!), to obtain an
HSD(2'%u!) for u = 8,12. For n = 24 and u = 8,12, 16, we get them from
Lemma 2.12(b) with m =5,k = 4.

The cases of n = 17,18,19,21, 22,23 are covered by Lemmas 3.1, 3.2,
3.3, 3.4, 3.6, 3.7, respectively.

For n = 20,25 and 5 < u < 19, we can get an HSD(2"u!) from

Lemma 2.10 with m = 4,5, 1 <s<3and t =u. a
Lemma 4.2 An HSD(2"u!) ezists for 5 <u <18 and 26 < n < 32.

Proof For n = 26,27,29, and 31, we have Lemmas 3.8, 3.9, 3.10, and 3.11
to cover these cases, respectively.

For n = 28,32 and u # 8,12,16, the designs are provided by Lemma
2.9 with m = 7,8. For n = 28,32 and u = 8,12, 16, we can get them from
Lemma 2.12(a) with m = 7,8 and k = 0.

For n = 30 we apply Lemma 2.10 with m =6,1<s<4,and t =u. O
Lemma 4.3 An HSD(2"u!) exists for 5 < u < 24 and 33 < n < 40.

Proof For n = 33,34 and u = 5,6, we obtain at first an HSD(225¢!)
by Lemma 2.10 with m = 5, s = 4, and t = u + 16, u + 18. Fill an
HSD(2%u!) and an HSD(2%!) into the holes of sizes v + 16 and u + 18,
we obtain an HSD(2%3u!) and an HSD(234u!), respectively. For n = 33,34
and 7 < u < 24, an HSD(2"u!) exists by Lemma 2.12(b) with m = 7 and
k=35,86.

For n = 35, 36,40, the designs come from Lemma 2.14(a) with m =
7,k =0,1,5. For n = 37, the designs are provided by Lemma 3.12.

For n = 38 and 5 < u < 7, we first apply Lemma 2.10 with m = 6,
s =4, and t = u + 16, to get an HSD(2¥(u + 16)!). Fill the hole of
size u 4+ 16 by an HSD(28u!), we obtain an HSD(238u!). For n = 38 and
8 < u < 24, we have an HSD(2"u!) by Lemma 2.12(a) with m = 8 and
k=6.

Finally for n = 39, apply Lemma 2.14(b) with m =7, k = 4. a

Lemma 4.4 An HSD(2"u') exists for 5 < u < 30 and 41 < n < 49.
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Proof For n =41,42,44 and 1 < u < 31, an HSD(2"u!) exists by Lemma
2.14(b) withm =7 and k =6,7,and m =8 and k = 4.

For n = 43 and 5 < u < 7, there exists an HSD(23%(u + 16)* by Lemma
2.10 withm = 7,0 < s < 6, and t = u+16. Fill an HSD(2%u!) into the holes
of size u+ 16, we obtain an HSD(243u!). For n = 43 and u = 8, because we
have an HSD(287!), by Construction 2.5, we have an HSD(8828!). Add two
points to this design and fill an HSD(242!) into the holes of size 8 and an
HSD(2!18!) into the hole of size 28, we obtain an HSD(24%8!). For n =43
and u = 9, an HSD(2"u!) exists by Lemma 2.12(a) withm =9 and k =7.
For n = 43 and 10 < » < 30, an HSD(2"u!) exists by Lemma 2.12(b) with
m=9and k=7.

For n = 45,46,47,48 and 1 < u < 35, the designs come from Lemma
2.14(b) with m = Sandk 5,6,7,8.

For n = 49 and 0 < u < 32, because an HSD(27¢!) exists for 0 <t < 4,
we get an HSD(147(7t)!) from Construction 2.5 with m = 7. Add k points
to this design, 0 < k < 4, and fill an HSD(27k!) into the holes of size 14,
we obtain an HSD(249(7t + k)!) for 0 < 7t + k < 32. m]

Lemma 4.5 An HSD(2™u!) erists for 5 < u < 39 and 50 < n < 66.

Proof For 50 < n < 54 and 5 < u < 39, we apply Lemma 2.14(b) with
m=9and 5< k<9 Forn=5556and 5 < u < 44, we apply Lemma
2.14(a) with m =11 and k= 0,1.

For n = 57,58 and 5 < u < 11, by Lemma 2.14(a) with m = 9 and
k = 0,1, there exist HSD(2*(u + 24)!) for s = 45,46 and 5 < » < 11. Fill
in the hole of size u + 24 with an HSD(2'?u!), we obtain an HSD(2°+12y1)
for s = 45,46. For n = 57,58 and 12 < u < 39, an HSD(2"u!) exists from
Lemma 2.12(b) with m = 12 and k =9, 10.

For 59 < n < 66 and 5 < u < 47, an HSD(2"u!) exists by by Lemma
2.14(b) with m = 11, 4 < k < 11. O

Lemma 4.6 An HSD(2"u}) ezists for 5 < u < 51 and 67 < n < 84.

Proof For 67 < n < 78 and 5 < u < 51, an HSD(2"u!) exists by by
Lemma 2.14(b) with m =12 and 7< k <12,and m =13 and 8 < k < 13.

For n € {79,82,83} and 5 < u < 15, by Lemma 2.14(a) with m =
11 and k = 8, and m = 12 and k = 6,7, there exist HSD(2*(u + 32)!)
for s = 63,66,67. Fill in the hole of size u + 32 with HSD(2!%u!) in
HSD(2°(u+32)!), we obtain an HSD(2"u!) for n € {79,82,83}. Forn =179
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and 16 < u < 67, we apply Lemma 2.12(b) with m = 16 and k = 15. For
n = 82,83 and u = 16, we apply Lemma 2.12(c) with m = 18, k = 8 and
s = 2t, where t = 10,11, to obtain an HSD(36%16!s!). Fill the holes of
sizes 36 and 2¢ with an HSD of types 218, 2¢, respectively, we obtain an
HSD(272+t161) for ¢ = 10,11. For n = 82,83 and 17 < u < 54, we apply
Lemma 2.12(b) with m = 17 and k = 14, 15.

For 80 < n < 81 and 5 < u < 64, we apply Lemma 2.14(a) with m = 16
and k = 0,1. Finally for n = 84 and 5 < u < 67, we apply Lemma 2.14(b)
with m = 16, k = 4. m]

As a summary of Theorem 1.7 and Lemmas 4.1-4.6, we have the fol-
lowing result.

Theorem 4.7 An HSD(2"u!) exzists for 1 <u < 16 and anyn > u + 1,
except possibly (n,u) € {(7,5), (7,6), (11,9),(11,10)}.

5 HSD(2"u!) for general u

In [4], a general result for the existence of HSD(2"u!) for any u > 16 was
established with n > [5u/4] + 14. In this section, we will improve this
result by increasing the range of n. At first, we present two lemmas that
are needed later.

Lemma 5.1 An HSD(2"u') ezists for 5 < u < 20 and n € {21, 25,29, 33,
37,45, 59}

Proof The cases of n = 21,29,37 are covered by Lemmas 3.4, 3.10, and
3.12, respectively. The cases of n = 33,45,59 are covered by Lemmas 4.3,
4.4, and 4.5, respectively. For n = 25, we apply Lemma 2.10 with m = 5
and 1 < s < 4 because HSDs of type 2%s! exist for all 1 < s < 4. o

Lemma 5.2 An HSD(27u') erists for 0 < u < 62.

Proof For u < 16, the designs are provided by Theorem 4.7. For 17 <
u < 62, we obtain first an HSD(32%30'¢!) from Lemma 2.12(c) with m =
16,k = 15 and s = ¢, where 17 < ¢t < 48. Adjoin k points to this HSD,
where 0 < k& < 14, and fill the holes of sizes 32 and 30 with HSDs of types
21651, 215k1, respectively, we obtain an HSD(279(¢+k)!) for 17 < t+k < 62.
O
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Lemma 5.3 There exists an HSD(2"u?) for u > 17 and [5u/4] +4 < n <
44,

Proof Since u > 17, it must be the case that n > 26 because n > [5u/4] +
4. For the same reason, we have u < |4n/5|—3. Table 1 shows the existence
of an HSD(2"u!) for 26 < n < 44 and 17 < u < |4n/5] — 3. The required
HSDs of type (2¥t!) in Table 1 for the application of Lemmas 2.10, 2.13
and 2.15 are provided by Theorem 4.7.

n u Justification
26 17-18 | Lemma 3.8
27 17-26 | Lemma 3.9
28,29 | 17-21 | Lemma 2.12(a) with m =7 and k=0, 1
30 17-21 | Lemma 2.10 with m =6, s =3,4,and t = 17— 21
31 17-21 | Lemma 3.11
32,33 | 17-24 | Lemma 2.12(a) withm =8, k =0,1
34 17-26 | Lemma 2.13 withm=7,k=6,and 1 <t <5
35,36 | 17-28 | Lemma 2.14(a) withm =7,k =0,1
37,38 [ 17-28 | Lemma 2.13 with m =8, k=5,6,and 1 <t <k -1
39-41 | 17-31 | Lemma 2.15 with m =7, k=4,5,6,and 1 <t < k-1
42,44 | 17-32 | Lemma 2.13 withm =9,k =6,8,and 1 <t <k -1
43 17-31 | Lemma 2.13 withm =9, k=7, and 1 <t <k -3

Table 1: Existence proof of HSD(2"u!) for Lemma 5.3

Lemma 5.4 An HSD(2"u!) erists for45 < n < 87 and 17 < u < |4n/5] -
1.

Proof Let pu(n) = [4n/5] — 1.
For 45 < n < 48, u(48) = 37, we apply Lemma 2.15 with m =8, 5 <

k <8, and 1 <t <k —3 to obtain an HSD(2¥+4%u1) where 1 <u < k+29
and 5<k<8.

For 49 < n < 54, pu(54) = 42 and we use Lemma 2.15 with m =9, 4 <
k<9, and 1 <t < k-3 to obtain an HSD(2*+45u!) where 1 < u < k + 33
and4 < k<09.

For 55 < n < 56, u(56) = 43 and we apply Lemma 2.14(a) with m = 11
and k = 0,1 to obtain an HSD(2"u!) where 0 < u < 44.

For n = 57,58, u(58) = 45 and we apply Lemma 2.13 with m = 12,
k=09,10, and 0 < t < k — 1, to obtain an HSD(2*8+*y1), where k = 9,10
and 12 <u<35+k.
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For 59 < n < 66, u(66) = 51 and an HSD(2"u!) exists by Lemma 2.15
withm =11,4 <k <11 and 1 <¢ < k — 3. to obtain an HSD(2k+55,1)
where4 <k <1lland 1l <u<k+41.

For 67 < n < 72, p4(72) = 56 and an HSD(2"u!) exists by Lemma 2.15
withm =12, 7< k <12 and 1 <t < k — 3, to obtain an HSD(2++60,1)
where 7<k<12and 1 <u <k +45.

For 73 < n < 78, u(78) = 61 and an HSD(2"u!) exists by Lemma
2.14(b) with m = 13, 8 < k < 13 and 1 < t < k — 3, to obtain an
HSD(2*+¢5y1) where 8 <k <13 and 1 < u < k + 49.

For n = 79, the case is covered by Lemma 5.2. For n = 80, 81, u(81) =
63, we apply Lemma 2.14(a) with m = 16 and k = 0,1, to obtain an
HSD(2"u!) where 0 < u < 64.

For n = 82,83, 1(83) = 65 and we apply Lemma 2.13 with m = 17,k =
14,15, 1 < t < k — 1, to obtain an HSD(258+%41) where k = 14,15 and
17 <u < k+50.

For 84 < n < 87, u(87) = 68 and we apply Lemma 2.15 with m = 16,
4<k<71<t< k-3, to obtain an HSD(2*+8%y!) where 4 < k < 7,
1<u<k+61.

In the above proof, the required HSDs of type 2*t!, where 1 <t < k—3,
for the applications of Lemmas 2.13 and 2.15 come from Theorem 4.7. The
reason for letting ¢ < k — 3 instead of ¢ < k — 1 because we do not know
the existence of HSD(2"u!) for (n,u) = (7,5),(7,6), (11,9), (11, 10). m]

Lemma 5.5 An HSD(2"u!) exists for 88 <n < 116 and 17 < u < [4n/5].

Proof Let u(n) = [4n/5).

For 88 < n < 92, u(92) = 73, let n = 55 + k, where s = 16 and
8 < k < 12. Because an TD(7, 16) exists, using Lemma 2.15 with m = 16,
8 <k <12,1<t< k-3, weobtain an HSD(2"u!) for 1 < u < k+ 61 and
8<k<12

For 93 < n < 102, p(102) = 81, let n = 55 + &k, where s = 17 and
8 <k <17 using Lemma 2.15 withm =17,8<k<17,1<t<k-3, we
obtain an HSD(2"u!) for 1 < u <k +65and 8 < k < 17.

For 103 < n < 114, p(114) = 91, let n = 5s + k, where s = 19 and
8 <k <19. using Lemma 2.15 withm=19,8<k<19,1 <t <k -3, we
obtain an HSD(2"u!) for 1 <u < k+73 and 8 < k < 19.

For 115 < n < 116, u(116) = 92, we apply Lemma 2.14(a) with m = 23
and k£ = 0,1 to obtain an HSD(2"u!) for 1 < u < 92.
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The required HSDs of type 2¥t! for the application of Lemma 2.15 in
the above proof come from Theorem 4.7. a

Lemma 5.6 An HSD(2"u!) exists for n > 117 and 1 < u < |4n/5] + 2.

Proof Let n =55+ j, where 12 < j < 16. Since n > 117, we have s > 21.
If there exists a TD(7,s), then using Lemma 2.15 with m = s, k = j,
1<t < k-1, we obtain an HSD(2"u?!) for 1 < u < 4s + k — 1. Because
k=j=n—>5sand s > (n—16)/5, we have u < |4n/5] + 2. The required
HSDs of type 2*t! in the above proof come from Theorem 4.7.

For those s € M7 = {22, 26, 30, 34, 38,46, 60}, we do not have a TD(7, s).
However, since a TD(7,s — 1) exists, we may use Lemma 2.15 with m =
s—1,17<k <21,1 <t < k-1, where k = j+5, to obtain an HSD(2"u?)
for1 <u<4(s—1)+k—1=4s+j. Because j = n—5s and s > (n—21)/5,
u < |4n/5] + 3. The required HSDs of type 2¥¢! in the above proof come
from Lemma 5.1. o

Theorem 5.7 There exists an HSD(2"u!) for u > 17 and n > [5u/4] +4.

Proof Since u > 17, it must be the case that n > 26 because n > [5u/4] +
4. For 26 < n < 44, the theorem holds by Lemma 5.3. For the case of n >
45, the theorem holds by Lemmas 5.4, 5.5, and 5.6, because u < |4n/5] —3
implies n > [5u/4] + 4. o

Actually, Lemmas 4.6, 5.5 and 5.6 can be used to prove a stronger result
when u > 35.

Theorem 5.8 There erists an HSD(2"u!) if u > 35 and n > [5u/4] +1
oru >95 and n > [5u/4] —2.

Proof When u > 35, n > [5u/4] + 1 > 45, so Lemmas 4.6, 5.5, and 5.6
apply. From v < |[4n/5] — 1 we obtain n > [5u/4] + 1. When uv > 95,
n > [5u/4] — 2 > 117, so Lemma 5.6 applies. From u < |4n/5] + 2 we
obtain n > [5u/4] — 2. o

6 Conclusions

We have investigated the existence of HSD(2"u!) for 5 < u < 16. We
also improved the general result for u > 17 by decreasing the lower bound
of n from [5u/4] + 14 to [5u/4] + 4. Most recursive constructions used
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in this paper are standard in combinatorial designs and many of the direct
constructions of HSDs in this paper are carried out by computer. The main
result of this paper can be summarized in the following theorem:

Theorem 6.1 (a) For 1 < u < 16, an HSD(2™ul) erists if and only if
n 2 u+ 1 with the exception of (n,u) € {(2,1),(3,1),(3,2)}, and with the
possible exception of (n,u) € {(7,5),(7,6), (11,9),(11,10)}.

(b) For w > 17, an HSD(2"u') ezists if n > [5u/4] + 4. Moreover, if
u > 35, then there exists an HSD(2"u!) for n > [5u/4] +1; if u > 95, then
there erists an HSD(2™u!) for n > [5u/4] — 2.

Proof (a) is a combination of Theorems 1.7 and 4.7. (b) is a combination
of Theorems 5.7 and 5.8. O

Besides the four possible exceptions in the part a) of the above theorem,
from the part (b) of the above theorem, it is clear that the existence problem
of HSD(2"u!) remains open for 17 < u < 34 and u+1 < n < [5u/4] +3, or
35<u<9Mandu+l <n<[5u/4],0oru>95and u+1l < n < [5u/d]-3.
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Appendix

An FSQ(6%)
*| 01 2 3 4 5 6 7 8 91011 12 13 14 156 16 17 18 19 20 21 22 23
0 l 20 22 18 7 17 13 11 21 23 10 19 4 1 2 816 14 5
1] 11 0 18 21 17 16 22 20 b 6 19 231214 9 3 2 8
21 118 4 23 19 0 7 20 22 12 21 9 313 610 15 16
3| 2 20 14 18 21 19 22 13 17 23 11 1 8 410 516 7
4] 14 9 23 15 21 3 5 18 20 22 11 1917 0 2 812 6
6§22 3 10 20 13 23 21 6 19 18 7 0 16§16 12 4 9 1
6 | 19 7 8 22 18 21 2 4 20 16 231013 514 1 11 17
712 19 17 311 18 8 22 21 15 23 9 2 6 514 012
8 | 18 22 16 19 4 3 112 23 0 20 21 101513 6 7 9
91 5 18 21 16 22 23 8 19 14 1 17 20 11 10 7 2 13 4
10 | 21 3 14 19 20 22 23 9 8 18 2 16 6121711 6 0
11 | 10 12 20 9 23 6 13 19 18 21 16 22 7 3 1 0 415
12 | 23 4 5 10 14 7 8 1 19 21 20 22 16 17 11 13 8 2
13 | 17 23 22 6 8 20 19 12 2 9 18 21 011 315 S5 14
14 ] 23 21 13 0 18 19 20 15 7 22 1 6 4 916 12 10 3
15 | 8 13 22 20 11 16 21 23 5 19 21814 7 417 110
161 5 21 19 23 2 0 18 3 14 20 22 12 6 815 9 17 11
17 1 19 6 21 12 22 20 10 23 16 15 4 18 9 1 0 7 313
18] 211 1 71513 5 912 4 3 617 8 0 10 14 16
19| 71512 817 010 2 111 6516 4 913 14 3 6
201 131410 2 3 41615 617 9 O 11112 5 8 7
211 81715 1 6 91412 416 01011 2 713 5 3
221 4 01611 2 1 7 5 914171510 6 3 8 12 13
23116 9 6 51112 1 810 214 713 3 417 15 0

In the following we list some HSDs which are used in the previous sec-
tions. Most of them are obtained by computer. In the following list, the
point set of an HSD(2"u!) consists of Z,,, and u infinite points which are
denoted by alphabet. For simplicity, we only list the starter blocks or the
corresponding Latin square. We also use the +k method to develop blocks,
which means that we add 2 or more (mod 2n) to each point of the starter
blocks to obtain all blocks.

Al HSD(2"5') for n < 23

n = 10 (+1 mod 20) :
(0,1,2,25),(0,2,4,14),(0‘4,19,11),(0,5,9,11),(0,6,3,14),(0,13,6,32),(0,l7,5,z3)

n =11 (+2 mod 22) :

(0,2,3,17),(0,4,1,16), (0,5, 18, 13), (0, 6, 16, z5), (0, 8, 7, z2), (0, 9, 2, 15), (0, 12,8, 1),

(0,15,9,5),(0,19,5, z4), (0,21, 19, z3), (1,

(1,17,5,21),(1,20,6,z4)
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n = 13 (+2 mod 26) :

(0,1,21,2), (0,2, 18, 14), (0,3, 19, 23), (0, 5, 17, 19), (0, 6,9, 21), (0, 8,2, z2),
(0,9,7,21), (0,10, 1,4), (0,11, 22, z5), (0, 12, 11, 23), (0, 15, 23,7), (0, 25, 16, z4),
(1,6,24, 1), (1,7, 22, 23), (1, 10, 11, z4), (1, 19, 23, z2), (1, 20, 25, z5)

n = 14 (+1 mod 28) :
(0,1,2,zs), (0,2,4, z4), (0, 4, 7,23), (0,5, 16, 22), (0, 8, 27, 18), (0, 10, 22, 7),
(0, 11,15, z2), (0, 21, 8, z3), (0, 25, 5, 23)

n =17 (+2 mod 34) :

(0,1, 10,23), (0,2,9,z31), (0, 3, 27, 12), (0, 7, 29, 20), (0, 8, 32, 31), (0, 10, 8, 30),

(0, 11,18, 3), (0, 14, 30, z4), (0, 16, 22, 19), (0, 21, 19, 5), (0, 23, 28, 21), (0, 25, 11, 15),
(0,28,7,zs), (0,29, 1, z2), (0, 30, 31, z3), (1, 3, 21,9), (1,7, 30, x3), (1, 11, 2, z5),
(1,19,20,z,),(1,27,31,z4), (1, 30, 22, z2)

n =19 (+2 mod 38) :

(0, 1,32, 12), (0,2, 12, 37), (0, 3, 30, 36), (0, 4, 25, 3), (0, 5, 18, 27), (0, 7, 23, 6),
(0.8,13, z5), (0,10, 14, z3), (0, 11,34, 18), (0, 13, 11,9), (0, 14, 22, 17), (0, 15, 7, 35),
(0,21,28, 1), (0, 26, 2, z4), (0, 27,33, 1), (0, 29, 17, 22), (0, 35, 21, 29), (0, 37,9, 23),
(11 5,10, I5)| (11 8,24, IQ), (1, 13,9, 33): (ly 16,29, 311), (1) 19,37, x4)

n =22 (+1 mod 44) :
(0,1,2,zs), (0, 2,4, z4), (0, 4, 27, 32), (0, 6, 21, 39), (0, 7, 24, 37), (0, 8, 26, 16), (0,9, 12, x2),
(0,11,15,z,), (0, 12, 37,9), (0, 14, 34, 13), (0, 15, 25, 6), (0, 17,6, 30), (0, 41,5, z3)

n = 23 (42 mod 46) :

(0,1,11,9),(0,2,1, 35), (0, 5, 8, 39), (0, 6,43, 13), (0, 7, 29, 11), (0, 8, 36, 7),

(0,9, 4, 25), (0, 10, 37, 29), (0, 11, 9, z3), (0, 12, 15, 1), (0, 13, 39, z1), (0, 14, 6, 31),

(0, 15,20, z4), (0, 16, 3, 14), (0, 18, 30, 4), (0, 19, 27, 40), (0, 22, 24, 17), (0, 37, 18, 15),
(0,42,12, z3), (0, 45, 31, z5), (1, 5, 33, 7), (1, 6, 26, 1), (1, 7, 11, 35), (1, 11, 27, z2),
(1, 18,42, z3),(1, 20,41, z4), (1,44, 34, z5)

A2 HSD(2"6!) for n <29

n =8 (+2 mod 16) :

(0,1, 3,z¢),(0,2,5,zs), (0,4, 10, 1), (0, 5,9, z4), (0, 6, 7, z2), (0, 7, 2, 13), (0, 13, 4, z3),
(ll 2, 4135)‘1 (ly 5,6, 35)1 (1: 8,15, 7-'3)1 (1: 11,0, 122), (lu 14,2, 34)1 (1- 15, suxl)

n =09 (+1 mod 18) :

(01 1,2, 36): (0, 2,4, 15)1 (01 4,8, 11)» (01 6,3, 13)! (01 7,1, xz)' (01 13,6, 1:3), (01 15,5, :!:4)

n = 10 (+2 mod 20) :

(0, 1,8, 3): (0, 2,19, 8)| (Ov 3,2, xl)’ (01 5,17, x3)v (01 7,9, 15)» (01 8,7, zG)u (0: 14, 16, x4)|
(0,186,1,zs), (0,19, 3, z2), (1, 3, 16, z5), (1,4, 10, z3), (1, 8,17, 1), (1,9, 15, z4),

(l’ 12,8, 32)1 (1, 17,6, IG)

n =11 (+1 mod 22) :

(0,1,2,xs), (0, 2,4, z5), (0,5, 10, 1), (0, 6, 3,13),(0, 7, 1, 15), (0, 9, 13, z2), (0, 18, 6, z3),
(0,19,5,z4)
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n =12 (+2 mod 24) :

(0,1,5,11), (0,2, 10,2), (0, 3, 20, 6), (0, 4, 17, 10), (0, 5, 15, g), (0, 8, 11, z3),
(0,9,1,x5),(0,11,9,5), (0, 13, 16, 15), (0, 18, 3, x1), (0, 19, 2, z4), (1, 3, 2, 71),
(1,4,6,z5), (1, 8,12, z¢), (1, 10, 5, z4), (1, 11, 17, z2), (1, 17, 18, z3)

n =13 (+1 mod 26) :
(0,1,2,=6), (0, 2,4, 25), (0, 6, 15, 22), (0, 8, 23, 7), (0, 9, 14, z2), (0,11,17, 3),
(0,21,7,21), (0, 22,6, x3), (0,23, 5, x4)

n =14 (+2 mod 28) :

(0,1,5,18), (0, 3,22,21),(0,4,7,27), (0,5, 25, zs), (0, 6, 17, z1), (0, 7, 16, 4),

(0,9, 8,z4), (0, 10, 15, 20), (0, 19, 2, 23), (0, 20, 27, z¢), (0, 25,9, z3), (0, 26, 24, z2),
(11 3,16, zs), (1, 5,8, $1), (l) 7,9, 19), (l| 12,0, 33)1 (1) 13,7, 1:2)' (11 16, 10, -’05),

(1’ 18, 3, z4)

n =15 (+1 mod 30) :
(0,1,2,z6), (0, 2, 4, z5), (0, 4, 8, z2), (0, 5, 19, 25), (0, 7, 16, 24), (0, 9, 12, x3),
(Ol 10,3, 17)9 (01 12, 1, 18)’ (0| 19! 9, 2:1)! (07 27,5, 34)

n =17 (+1 mod 34) :
(ol 1’ 2’ xs)? (01 2) 4’ 1‘5)) (Ol 4! 11’ 23)’ (0’ 5, 25' 12), (01 6) 317 16)! (01 87 13’ Iz)i
(0,9,12,z3), (0, 10, 14, 28), (0, 11, 26, 10), (0, 27,6, z1 ), (0, 31,5, z4)

n = 18 (+2 mod 36) :

(0,1,6,33),(0,2,23,9), (0, 3, 33, 29), (0,4, 19, z4), (0, 7, 27, 8), (0, 8, 21, 22),
(0,9,5,30),(0,12,2,23),(0, 13, 8, 25), (0, 14, 17, 2), (0, 20, 32, z2), (0, 23, 13, x3),
(0,26,10,zs), (0,29,1,7),(0, 30, 31,z), (0, 31, 20, zg), (0, 33,9, 17), (1, 3, 12, z4),
(1,12,8,23),(1,17,34, z1),(1, 25, 3, z2), (1, 27, 29, z5), (1, 32, 31, zg)

n =19 (+1 mod 38) :
(0,1,2,xs), (0,2,4,zs), (0,4, 22,27), (0, 6,31, 15), (0, 8, 13, z2), (0, 9, 12, z3),
(0,10,32,9), (0, 11, 17, 31), (0, 12, 8, 26), (0, 13, 3, 24), (0, 31, 10, 1), (0, 35, 5, z4)

n =22 (+2 mod 44) :

(0,1,33,4), (0, 2,32, 23), (0,5, 10, z¢), (0,6, 4, 34), (0, 7, 25, 41), (0, 8, 2, 28),
(0,9,6,1),(0,11,7, 18), (0, 12, 3,43), (0, 13,29, 31), (0,15, 5, z5), (0, 16, 35, 11),
(0,20,9,21), (0, 21,23, 5), (0, 23, 15, 29), (0, 25, 19, 27), (0. 27, 13, z2), (0, 31, 14,7),
(0) 34,27, 1:3), (0’ 40, 8, 1:4), (ol 43, 18,11): (11 4,28, 15)1 (lv 7,31, 34)9 (1: 11,2, z3),
(1,26, 34, x2), (1, 28, 41, zg),(1,42,13,z1)

n = 23 (+1 mod 46) :

(0,1,5,2), (0,2, 3,z3), (0,4, 21,43), (0, 6, 34, 21), (0, 8, 28, 19), (0, 10, 2, 14),

(0, 11,26, 41), (0, 14, 24,6), (0, 16, 27, z4), (0, 17, 10, 30), (0, 19, 6, z6), (0, 25, 37, z5),
(0,39,17,z2), (0,41,32, ;)

n = 29 (+1 mod 58) :

(0,2,57,6), (0,3,23,12), (0, 4,17, 40), (0, 5, 15,47), (0, 6, 21, 1), (0, 8, 40, 27),
(0,9,44,34), (0, 12, 8,25), (0, 14, 31, 16), (0, 16, 46, 19), (0, 18, 32, 8), (0, 19, 24, z3),
(0, 25,47, z¢), (0, 28, 7, z4), (0, 36, 38, z5), (0, 37, 28, z3), (0, 57,6, 1)
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A3 HSD(2"7!) for n < 23

n =28 (+1 mod 16) :
(0,1,2, 7), (0, 2, 4,6), (0,3, 6, z4), (0,9, 3, z2), (0, 10, 15, z1), (0, 11, 7, z3), (0, 12,5, z5)

n =9 (+2 mod 18) :

(0,5,1,2), (0,6, 5,26), (0, 10, 11, 24), (0, 11,6, z2), (0, 13,15, z5), (0, 14,4, z1),
(0. 15, 8, z7), (0, 16, 2, z3), (1, 0, 6, z5), (1, 7,17, z3), (1, 11,5,21), (1,12, 7, 27),
(1,15.12, z4), (1, 16,9, z2), (1, 17,2, z6)

n =10 (+1 mod 20) :
(0,1,2,27), (0,2, 4, zs), (0,6, 1,14), (0,8, 11, 1), (0,9, 13, 23), (0, 15, 6, 74), (0, 16, 3, z2),
(0,17,5,zs)

n =11 (+2 mod 22) :

(0,3,1, zs), (0,6, 16, 8), (0,7, 14, z2), (0,9, 4, z¢), (0, 10, 12, z1), (0, 15,3, 7),

(0,18, 15, z4), (0, 19, 5,13), (0, 20, 21, z7), (0, 21, 17, za), (1,0, 21, z6), (1, 3,19, z1),
(1,6,10,zs), (1, 10,16, z3), (1, 13,4, z4), (1, 17, 14, 27), (1, 18, 13, z2)

n =12 (+1 mod 24) :
(0,5,15,8), (0,8, 19,9), (0, 13,7, z2), (0, 15, 10, z3), (0, 18, 11,z1), (0, 20, 16, z4),
(0,21, 18, z5), (0, 22, 20, z¢), (0, 23, 22, z7)

n =13 (+2 mod 26) :

(0,1,25,21), (0, 2, 12, 11), (0, 3, 2, 14), (0, 4, 21, z4), (0, 5, 23, z1), (0, 6, 4, z2), (0, 7, 19, 25),
(0,8,17,27), (0, 11, 18, z¢), (0, 16, 20, z5), (0, 17, 10, 5), (0, 23, 1, z3), (1, 8, 11, z¢),

(1,11, 22, 24), (1, 12, 20, z3), (1, 13, 16, 27), (1, 18, 24, z1), (1, 19, 3, 22), (1, 25, 5, z5)

n =14 (+1 mod 28) :
(09 1,26, 2)1 (0| 2,21, 24)| (01 7,19, 11)! (Ov 12,25, 35)’ (Ov 15,23, zﬁ)v (01 17,10, 1‘1),
(0, 18,12, 3), (0, 19, 20, 24), (0, 22, 17, 27), (0, 23, 13, z3)

n =15 (+2 mod 30) :

(0’ 1‘ 37 $7), (0’ 2, 5' zs)' (0, 3’ 2’ zs)’ (0‘ 5, 14’ zl), (0, 7, 13' 19)’ (07 8' 19’ 26)‘
(0,9,23,13), (0, 10, 7, z3), (0, 11, 24, 12), (0, 14,8, 25), (0, 19, 1,10), (0, 24, 10, z2),
(09 25,17,9), (0’ 26, 4, 34)’ (1, 2,4, 37); (11 3, 10, 13), (11 4, 9,.’!.‘5), (lv 5,6, z6),

(1v 17,21, z4), (ll 18,25,z,), (1,19, 29, z2)

n =17 (+2 mod 34) :

(0,2,1,29), (0,3, 5, 12), (0, 5, 31, 13), (0, 7, 10, 9), (0, 8, 28, 10), (0, 9, 4, 28),

(01 12, 3:'7:6)’ (Ov 13,20, .’E?), (0, 14,22, 3)) (0,21, 33, ‘7:5)9 (Ox 25,19, 34)! (01 28, 29, z2))
(0,29, 18, z3), (0, 30, 26, z1), (0, 31, 21, 7), (1,0, 23, z3), (1, 3, 21,31), (1,9, 24, z2),
(1,12, 28, z5), (1, 13, 26, z6). (1, 16, 31, z7), (1, 24, 22, z4), (1,31, 17, z1)

n =18 (+1 mod 36) :
{0,1,14,24), (0,2, 7,27), (0, 4, 2, z2), (0, 5,6,21),(0,7,27,19),(0, 11, 3, 15),
(0, 13, 16, 32), (0, 14, 21, 6), (0, 19, 10, z¢), (0, 27, 1, z3), (0, 30,5, z4), (0, 33, 11, z5)

n =19 (+2 mod 38) :

{0,1,15,z4), (0,2, 17,32), (0, 4,9, z3), (0, 5, 26, z2), (0, 6, 20, 28}, (0, 7, 24, 13), (1, 2, 4, z4),
(0,9, 29, 35), (0, 10, 6, 20), (0, 12, 5, 23), (0, 16, 3,1), (0, 17, 1, 5}, (0, 20, 4, x7),

(0, 21, 33, 37), (0, 25, 27, 11), (0, 29, 2, =6), (0, 31, 21, 29), (0, 33, 25, x1), (0, 35, 31, 7),
(1,13,19,z7), (1, 24, 32, z5), (1, 26, 35, 22), (1, 28, 2, 1), (1, 29, 26, z3), (1, 36, 31, z6)
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n =22 (+1 mod 44) :

(0,1,21,3), (0, 2,39, zg), (0, 3, 4, 19), (0, 4, 12, zs), (0,5, 36, 12), (0, 6, 34, 9), (0, 7, 1, z2),
(0,9,11,34), (0, 11, 26, 40), (0, 12, 38, 21), (0, 13, 24, z4), (0, 16, 30, z1), (0, 34, 17, z3),
(0,36,31,z7)

n = 23 (+2 mod 46) :

(0,1,19,12), (0, 2, 29, 33), (0, 3, 8, 39), (0, 5, 34, 13), (0,6,13,5),(0,9,17,44),

(0,10, 21,1),(0, 11, 15, 24),(0,12,43,21),(0, 13, 10, 37), (0, 14, 20,9), (0, 16, 32, 14),
(0, 20, 24, Il)a (0, 21,1, I3)| (01 22,5, 18)’ (0' 38, 27,34): (0’ 39, 40, 32)1 (01 41, 25, x7),
(0,42, 16, z6), (0, 43, 18, zs), (1,2,40,z7), (1, 3, 35, z¢), (1,7,41,23), (1,11, 5, 37),
(1,13, 44, z4), (1,17, 15, z1), (1,18, 8,z3),(1, 30, 3,25),(1, 32,29, z2)

A4 HSD(2"8!) for n < 23

n =10 (+4 mod 20) :

(0’ 19 2, IG)' (0’ 3’ 16, xs)’ (0’ 4’ 3’ 22)’ (0' 8, 14, 13)’ (0, g| 1’ z7)’ (0’ 11‘ 7, w4),

(0,13, 15, 16), (0,17, 12, zg), (0, 18,13, 1), (1, 2, 5, 22), (1, 3, 14, 10),(1,6,12, x¢),
(1,7,6,21),(1,13,16,z3), (1, 14,10, zs), (1, 15, 18, zg), (1, 16, 7, z7), (1, 17,13, z4),
(2: 0,1, 28). (21 3,11, 36): (2| 5,3, 35); (2: 8,186, wl)s (2! 13,6, 32): (21 14,19, 1‘3),
(2,16,14,4),(2,19,4,27),(3,5,19,21),(3,7, 4, x2), (3,8, 1, z5), (3, 10, 18, z7),
(3,14,12,4), (3, 15,9, z3), (3, 16, 5, z6), (3, 18, 11, z5)

n =11 (+1 mod 22) :
(0,1,2,zg),(0,2,4,z7), (0,3,6,z6), (0,6, 1, 14), (0, 8, 12, x1),(0, 10, 3, 23), (0, 15,9, x2),
(0,17,7,z5), (0, 18,5, z4)

n =13 (+1 mod 26) :
(0’ 1, 21 38)’ (0’ 2,4, 37), (0’ 3,6, xs)’ (ol 7,25, 16)) (0, 8,15, 5)| (01 11,5, x2)’ (01 12,16, x3):
(0, 20, 8,z4), (0,21, 12,z;), (0, 22, 7, z5)

= 14 (+2 mod 28) :
(0| 2,5, 17)’ (0: 4,12, x2)9 (0: 6,27, z7)1 (01 7,3, $3)v (07 8,20, 10)1 (01 9,1, 38)1
(0,11,13,15), (0,13, 19, z¢), (0, 16, 21, z5), (0, 17,6, 27), (0, 19, 24, 1), (0, 25, 18, z4),
(0,27,17,25),(1,0,22, z6), (1,5,17, z2), (1,6,4,z3), (1, 7, 6, z5), (1, 11, 20, z7),
(1,14,18, 2g), (1, 24,9, z4), (1, 26,7, 21)

n =17 (+1 mod 34) :
(0,1,2,28),(0,2,4,27), (0, 3,6,z6), (0,7, 31, 15), (0,8, 20, 29), (0, 10, 1, 21), (0, 11, 19, 6),
(0,12,16,z4), (0, 15, 22, z1), (0, 28, 10, z2), (0, 29,9, z3), (0, 30, 7, z5),

n =19 (+1 mod 38) :
{0,1,2,28),(0,2,4,z7), (0, 3,6,z6), (0,6, 11, z2), (0, 8, 17, 32), (0, 9, 22, 12), (0, 11,1, 23),
(0,12,30,17), (0, 14, 18, z4), (0,17, 10, 30), (0, 31,15, z1), (0, 33,9, z3), (0, 34, 7, z5)

n =22 (+2 mod 44) :

(0,1,42,6), (0,2, 29, z3), (0, 3,9, 33), (0, 4, 21, 30), (0, 11, 10, 31), (0, 12, 31, 36),
(0,13,17, z2), (0, 14, 13, 39), (0, 15, 7,9), (0, 16, 28, 10), (0, 17, 1, 26), (0, 23, 11, 24),
(0,24,37, z6), (0, 27,3, 11), (0, 29, 32, 25), (0, 33,40, 1), (0, 34, 41, z7), (0, 38, 36, z3),
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(0,41, 23, z4), (0, 43, 14, zs), (1,7, 30, z6), (1, 11, 13, z3), (1, 13, 3,31), (1,20, 11, z1),
(1,31, 26, zs), (1, 36, 40, z2), (1, 38,9, 25), (1,40, 12, z4), (1,41, 18, z7)

n = 23 (+1 mod 46) :

(0, 1,2, zs), (0, 2,4, z7), (0, 3, 6, z6), (0, 5, 25, 32), (0, 6, 33,9), (0, 8, 24, 39), (0,9, 37, 21),
(0,10, 20, 1), (0, 11, 17, z3), (0, 12, 16, z4), (0, 13, 18, z2), (0, 14, 38, 13), (0, 17,5,31),
(0,18, 35,8), (0, 42,7, z5)

A5 HSD(2"9!) for n < 19

n =10 (+4 mod 20) :

(0! 2: 31 xG)’ (0’ 3,7, 15)1 (0, 4, 11132)) (Ov 5, 18; I7); (01 8v 4»3:4)’ (0, 9’ 6; zl):

(0, 13, 8, zg), (0, 14, 5, z3), (0, 15,1, zg), (1,0,9, zs), (1,3,12, z1), (1,4,10, z¢),
(1,6,4,z9),(1,7,8,23),(1, 10,19, z7), (1, 13,5,z4), (1,17, 2, 22), (1, 19, 7, z8),
(2,1,5, z¢),(2,4,19,29),(2,5,7, z3),(2,9,8, zs), (2, 14,0, z2), (2,15,17,z7),
(2,16,9, z1), (2,18, 10, z8), (2, 19, 6,z4), (3, 2,7, z4), (3,4, 2, 23), (3, 7, 1, z2),

(3! 9,10, 3:9), (3) 11,8, zs)l (3v 12,9, xs)a (3’ 14,11, 31), (3: 16,4, 37)1 (31 18, 14, $5),

n =13 (+2 mod 26) :

(0,1,6,z2), (0, 2,17, 5), (0, 3, 23, 24), (0, 7, 21, z7), (0, 8, 22, z3), (0, 10, 11,17),
(0,11,9, z1), (0, 12, 16, 24), (0, 20, 14, zo), (0, 21, 18, zs), (0, 22, 15, zs), (0, 23, 24, z6),
(1,3,7,z4),(1,8,0,2z%),(1, 10,17, z2), (1, 11, 2,z5), (1, 12, 23, z¢), (1, 18, 8, 1),
(1,19,3,z3), (1,22, 19, zs), (1, 23, 15, zo)

n =14 (+1 mod 28) :
(0,1, 2, z9), (0, 2,4, zs), (0, 3, 6, 27), (0, 6, 13, z1), (0, 7,23, 6), (0, 8, 3, 18), (0, 12, 16, z4),
(0,18,9,z3), (0,19, 11, z3), (0, 23, 8, z5), (0, 24, 7, z¢)

n =15 (+2 mod 30) :

(0,2,5,12),(0, 4, 2,27), (0, 5,14, z4), (0, 6,1, z0), (0, 8, 21, z¢), (0, 9, 8, x8),

(0,10, 29, 17), (0, 12, 26, z2), (0, 14, 24, z7), (0, 17,12, 9), (0, 19, 13, z3), (0, 21,9, z1),
(0,29, 25,x5),(1,0,29,x8), (1, 3,5,27),(1,5,25,17), (1,7, 15, x2), (1, 15, 4, z9),
(1,18,12, z3), (1,20, 28, z1), (1, 21, 14, z6), (1, 24, 20, ), (1, 28, 21, z4)

n =19 (+2 mod 38) :

(0,3,7,10), (0,4, 30,8), (0, 5,12, z¢), (0, 7, 22, z3), (0, 8, 24, z7), (0, 9, 2, 29),

(0, 10, 27, 33), (0, 11, 10, x5), (0, 13, 5, 14), (0, 15,17, 18), (0, 17, 29, 15), (0, 20, 25, z3),
(0,23,33,2), (0,24, 20, z4), (0, 26, 32, z9), (0, 32, 3, z8), (0, 33,9, 11), (0, 36, 11, z2),
(1,0,27,2¢), (1,9, 31,z4), (1, 14, 11, x3), (1, 18,5, zs), (1, 21,0, 1), (1, 23, 24, x2),
(1,27,33,x9), (1,29, 26, z8), (1, 35,15, z7)

A6 HSD(2"10!) for n < 19

n =13 (+1 mod 26) :
(0,1, 18, z2), (0,2,4,22),(0,3,2,z9), (0,4, 1, zs), (0,7, 23, 23), (0, 14, 7, 24), (0, 15,9, Ts),
(0, 16, 11, 30), (0, 17, 5, z¢), (0, 20, 12, x3), (0, 21, 10, z7)
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n =14 (42 mod 28) :

(0,3,1,z8),(0,8,12,z4), (0,9, 22, z1), (0, 10, 2, 18), (0, 15, 25, 9), (0, 19, 3, 11),
(0,21,4,z5), (0, 22, 15, 33), (0, 23, 18, z9), (0, 24, 21, x7), (0,25, 17, z2), (0, 26, 27, yo),
(0, 27,23, 3"6)1 (lv 0,27, 19)) (19 3, 25,14), (l, 12, 24|36)y (lv 16, 22, 1‘2). (1) 18, 20, 38)!
(1,19,16,z3), (1, 22,13, 1), (1, 23,10, z7), (1, 24, 19, z5), (1, 25, 18, yo)

n =19 (+1 mod 38):

(0,1,7,z3), (0,3,32,12), (0, 5,4, z6), (0,6, 14, 7), (0,9, 12, z3), (0, 10, 20, 5),

(0, 12,8, 22), (0, 16, 27, o), (0, 17, 35, ), (0, 25, 2, z1), (0, 27, 25, x5), (0, 30, 16, z4),
(0, 34,17, z7), (0, 36,23, zg)

AT HSD(2"12!) for n < 17

n = 13 (+1 mod 26) :
(0,1, 2,y2), (0,2,4, 1), (0, 3,6, 0), (0,4, 8, z9), (0,5, 10, zsg), (0, 14,21, xy),
(0,15,7,24),(0,16,1,23), (0, 17, 3, z2), (0, 18, 12, z¢), (0, 19,9, z5), (0, 20, 11, z7)

n = 14 (+4 mod 28) :

(0,1, 8,z4),(0,2,27, 28), (0, 3,19, 2), (0,6, 16, z9), (0, 12, 11, 23), (0, 13, 24, y2),
(0,15,9,z2), (0,18, 3,x7), (0, 19, 23, z6), (0, 20, 5, =5), (0, 22, 25, 1), (0, 23, 18, o),
(0’ 24,6, yl): (0, 26,13, $1)» (11 2,14, zZ)v (19 4,8, zs), (1’ 7,5, 37)1 (lv 8,3, z4)1
(1,12,23,21),(1,17,13,29), (1, 18,9,v1), (1, 20, 12, yo), (1, 21, 19, zs), (1, 22,0, zg),
(1,23,2, m3)l (11 24,27, y2)! (21 5,13, 33)’ (2! 6,26, z5), (21 7,0, yl)l (2: 10,5, y0)9

(21 11,21, x4)v (2’ 15, 14, 38)1 (2) 17,8, 21)’ (2v 18, 25, 92), (27 20,4, 37)1 (21 21,22, :ts),
(2» 25, 20, 32), (2a 27: 7, x9)v (3’ 1,11, yO)) (3: 2, 24» x3)1 (31 4,19, 1‘2), (31 5, 27v n )a
(3,7,16,z5), (3,10, 14, z4), (3, 11, 22, y2), (3, 13, 25, zg), (3, 15, 6, 1), (3, 20, 18,x9),
(3,21,10,z7), (3,24, 21, z¢)

n =17 (+1 mod 34) :

(0,11,31,18), (0, 14,29, 13), (0, 19,9, z3), (0, 22, 11, z2), (0, 24, 15, z4), (0, 25, 13, 1),
(0,26, 18, zs), (0, 27, 20, z¢), (0, 28, 22, 27), (0, 29, 24, z3), (0, 30, 26, xg), (0, 31, 28, yo),
(0, 32,30, )v (0: 33,32, y2)

A8 Miscellaneous HSD(2"u!)

n=14,u = 13 (+4 mod 28) :

(01 1,24, 15), (01 2,20, yZ)t (O) 4,21, yo)v (0’ 6,5, yl)) (Ov 8,10, .1.‘1), (Ov 9,15, y3),
(0,13,9,27), (0,15, 16, zg), (0, 16, 3, z4), (0, 17, 25, z3), (0, 23, 13, z3), (0, 26, 11, zs),
(01 271 23119)a (11 21 3y x5)| (1) 4, 26! 17)1 (1| 5) 27) yl): (ls 8! 99 IB)) (1) 131 61 :4)a
(1,14,18,z9),(1,18,2, vo), (1,21,12,z3),(1,22,5, z6), (1,23, 11,z),(1,24,0, z2),
(1, 26,17, y3)v (1’ 27,7, y2)r (2y 3, 229yl)v (2) 6, 14, 1'3)' (21 8,21, yz)r (2’ 11,8, I7)’
(2,12,0,z9), (2, 18,11, .’Cz), (2,19,17, 1‘5), (2, 20,26, x6), (2,21, 24, zg), (2, 22,9,z1),
(2,23,12,24), (2,25, 15, yo), (2,27,4,y3), (3,0,7,z3),(3,1,26, y2), (3, 11,6, z2),
(3,12,10,z5), (3,13,11, zg), (3, 15,24, yo), (3, 18,13, x4), (3,20, 12, 1 ), (3,21, 9, z0),
(3,24, 14,y3), (3,25,4, z1), (3, 26, 15, x7), (3, 27,2, z)

399



n=17u =13 (+2 mod 34) :

(0,1,14, y2), (0,2, 4, 28), (0, 3, 28, x3), (0,4,5,27),(0,5,7, }IO): (0,6,19, z9),
(0,9,18,z,),(0, 12,22, zg), (0, 13, 29, z7),(0, 15, 25,41), (0, 18, 21, =), (0, 20, 2, zs5),
(0, 25,10, y3), (0, 26, 11, z2), (0, 33, 3,24),(1,4,11,y2), (1,6,26,z4),(1,8,7,x3),

(ly 9,4, 39), (11 11,31, 13)9 (11 12,9, y3)) (lv 14,2, yo)v (11 15,21, 38)’ (1,16, 8’17)’
(1,24,20,11),(1,28,17,x1), (1,29,0,26),(1, 31,23, xs), (1, 33,22, z2)

n=17,u =15 (+2 mod 34) :

(0, 2,32, y3)1 (0) 4,3, 36)) (Ox 7,30, yl)’ (O’ 8, 20, 3/2), (Ov 9,18, 94)’ (Oy 10, 28, 17)1

(01 11,10, ys), (0, 13, 1,1:4), (01 14,8, 29)1 (Ol 15,22, yo): (01 16,13, 5)1 (Ov 21,5, 35)1
(0,22,7,z1),(0,27,31, z8), (0, 28, 15, x2), (0, 29, 27, z3), (1, 0, 15, 0), (1, 2,9, 1),

(1? 3,31, y3)’ (lv 4,2, 33)1 (1, 7,17, 1'7)) (1) 10, 33, y5)1 (11 11, 25’y2)1 (ly 12,7, y4)1
(1,15,6,z1), (1,16, 26, z8), (1, 17, 14, z6), (1, 23, 10, z2), (1, 30, 16, z5), (1, 31, 23, za),
(1,32, 24, z4)

n =17 u = 16 (+2 mod 34) :

(0,2,25,ys), (01 3,8,z2),(0,4,6,1),(0, 5,23, z),(0,6,20,21),(0,7,4, va),

(0’ 8,18, y4)\ (01 10, 3, .'37), (Oy 12,24, yo)y (0) 14,29, y?), (0) 15,2, ye)r (01 16,13, 15),
(0,21, 27, 23), (0, 23, 21, z4), (0, 29, 5, z6), (0, 33, 12, z8), (1, 0,33, z8), (1,4, 9, x2),

(11 5,25, y4)| (1| 8, 16, x3)a (1, 9, 2,$7), (11 10,21, y3): (1, 11, 26,?/2)! (1' 13,5, yl)a
(1,16,0,z4),(1,17,29, y0), (1,21, 17, 21), (1, 22, 23, y6), (1, 24, 28, z¢), (1, 26, 20, zg),
(1,29,4,5),(1,33,24, y5)

n=19,u =14 (+1 mod 38) :

(09 1,7, 18)1 (ox 5,15, 25)1 (0) 6,28, .’t7), (01 7,22, 16)1 (01 8,33, yl)y (0) 9,18, y3)v
(0,12, 8,z2), (0, 13, 6, y0), 0, 14, 3, z4), (0, 15, 1, 17), (0, 17, 14, z9), (0, 20, 25, z1),
(0,28, 27,z3), (0, 34, 26, y2), (0, 35,9, ya), (0, 36, 34, zg)

n=19,u =15 (+2 mod 38) :

(0’ 1‘ 17’ 7), (0‘ 2, 14‘ Il)’ (0' 3, 3OI I6)' (0, 4' 27' 12)' (0, 6’ 28’ 10), (0| 8' 12’ yl)'
(0,9,37,21), (0, 10, 23, 2g), (0, 11, 18, y2), (0, 13, 7, z9), (0, 22, 36, z7), (0, 24, 33, y4),
(0, 25, 22, y3), (0, 26, 15, yo), (0, 29, 32, z3), (0, 31, 11, ys), (0, 33, 35, z4), (0, 35, 21, z5),
(11 2,8, 39)1 (lv 5,9, yl)r (1) 9,10, .173), (1) 12,37, y2)’ (1- 15,0, y4)’ (1’ 16, 34, 14)’
(1,18,35,y3),(1, 19, 14, z2), (1, 22, 23, zg), (1, 24, 19, x3), (1, 27, 36, ¥0), (1, 32, 30, z5),
(1, 33, 25, zl)n (11 34, 26, ys)) (11 37,11, 17)

n=19,% =16 (+1 mod 38) :

(0,1,27,11), (0, 3,20, z3), (0, 6, 12, 22), (0, 8, 3, ys5), (0, 10, 25, o), (0, 15, 37, z¢),

(01 17,15,z )i (00 18,9, y3)1 (Ov 24,31, yl)’ (0» 25,17, 14), (O, 26, 30, 35)1 (0: 27,2, QT),
(0, 29,5, xs), (0,31, 34, y4), (0, 33, 32, z9), (0, 34, 24, y2), (0, 36, 16, y6)

n=21,u=19 (+2 mod 42) :

(0,2,24,z,1), (0,3, 38, y2), (0,4, 41, ¥0), (0, 5, 9, z7), (0, 8, 20, z2), (0, 9, 3, y3),

(0,10, 19, yo), (0, 11, 39, 4), (0, 14, 12, 36), (0, 15, 13, z3), (0, 22, 33, 35), (0, 23, 1, 3),
(01 24,14, 36)) (01 26, 15, ys), (01 29,10, yl)’ (Ol 30,27, $4), (0- 31,16, 97)1 (01 33,6, y4)1
(0| 36,2, z5)) (O! 37,8, 39)’ (1| 0,6, 33)1 (1' 2,26, Z7), (lv 3, 13, 1‘2). (1) 4v 21, '.'lz)‘
(1,7,15,z6), (1,9, 18,ys), (1, 11,35, 21), (1, 13,8, z4), (1, 15, 12, 30), (1, 16, 41, ya),
(1,18,32,3), (1,19, 7, z5), (1, 23, 39, ys), (L, 24, 17, 1), (1, 26,25, z9), (1, 27, 14, ys),
(lv 30,11, y7)v (11 36, 20, 1‘8)» (11 39, 38, yg)



n=22,u =16 (+2 mod 44) :

(0, 1,10, 3:3)1 (01 4,15, 43)$ (0) 5,19, y2)1 (0| 6,32, 15)) (Os 7,1, yl)’ (0, 8,41, y4)» (01 9,4, 36)|
(0,15,2,y6), (0, 19, 3, y3), (0, 20,43,9), (0, 21, 14, z4), (0, 23, 5, zg), (1, 42, 19, y¢)

(0, 25, 27, =), (0, 26, 21, z5), (0, 28, 16, x2), (0, 30, 26, x5}, (0, 31, 6, z1), (0, 34, 37, z7),

(0, 37,20, y5), (0,42, 36, yo0), (1, 2, 33, z4), (1,3, 39, 33), (1, 4, 38, z9), (1, 6, 20, ¥3),

(1, 9,16,z7),(1,10,37,z1), (1, 12,41, z3), (1,13, 17,z2), (1, 15, 14, z5), (1, 16, 32, v2),

(11 19,43, yo), (11 21,11, xs)) (1, 28, 25, ys)v (1’ 32,34, 38)1 (11 34,10, yl)v (ly 41,22, y4):

n =23,u =17 (+2 mod 46) :

(ol 2,29, 24)» (0, 3,31, 39)7 (Ov 10,3, y3)| (0, 11,19, 32)1 (01 121 33' 3), (01 14, 39, y7)|

(0, 15, 18, 19), (0, 16, 10, z4), (0,17, 1,y2), (0,21, 35, ze), (0,22, 6, z2), (0, 26, 30, 5),
(0,27, 32, 15), (0,28, 2, 1‘7), (0,37,28, xs), (0, 38, 20, v1),(0, 39,42, ys),(0,40,7,21),
(0! 41,5, y5): (0, 42,43, y4)) (01 43,12, 3/0): (0’ 45,8, 33)’ (17 0,11, 33), (11 5,9, 15))
(1,9,26,y7), (1,12,17,zs), (1, 15, 21, z2), (1, 16, 33, ¥s), (1,22, 30, yG): (1,23,45, z7),
(1,27, 20,y3), (1, 28, 38, z9), (1, 29, 41, y1), (1, 34, 32, zg), (1, 35,36,z1),(1,37,2,v4),
(1, 38, 25, yo), (11 40, 6, y?): (11 45,19, 24)

A9 Miscellaneous HSD(h"u')
Here we present HSD(h™u?!) for (h,n,u) = (3,4,1), (3,4,2),(3,4,4), (8,5, 14).

h=3,n=4,u=1 (46 mod 12)

(0,2,7,9),(0,3,9,6),(0,5,3,2),(0, 6,11,5), (0, 7,6,1), (0,9, 10, 1), (0, 10,5, 3),
(0,11,1,10),(1,0,11,21), (1,2, 4,3), (1,4,10,7),(1,7,8,2), (1, 11,2, 4), (2,5, 11,8),
(2,7,0,21),(2,9,8,3),(3,9,4,10), (3,10,1,z1), (4,5, 2, z1), (4, 11, 10,5), (5,8, 3, 1)

h=3,n=4,u=2 (+6 mod 12)

(0,1,6,7),(0,2,5,3), (0, 3,10, z2), (0, 5,7, 10), (0,6, 11,5), (0, 7,9, ), (0,9, 3, 6),
(1,2,0,22),(1,3,2,4),(1,7,8,2),(1,8,10,z1), (1,10,4,7),(2, 3, 8,9), (2, 5, 11,8),
(2,9,0,21),(2,11,9,x2),(3,4,5,21), (3,9, 10,4), (3,10, 1, z2), (4, 5, 10, 11), (4, 6, 5, x2),
(4,11,2,21),(5,6,7,21),(5,7,2, x2)

h=3,n=4,u=4 (+4 mod 12)

(0’ 2’ 3, z2)’ (0’ 3’ g’ zs)’ (O, 6’ 5' zl)’ (01 7, 10’ x‘)’ (0’ 11‘ 1' 6), (1, 0‘ 3’ z4), (1’ 3, 10‘ zz)'
(1’41 6,;3)‘ (1’ 8’ 7) z1)' (2I 1’ 3! I3), (21 3’ 8, zl)’ (2, 4’ 17 z2)’ (2’ 5’ 0, z4)' (31 5| 4’ 22)’
(3,6,8,23),(3,9,6,z1),(3,10,5,z4)

h=8,n=25u=14 (+1 mod 40) :

(0,3,24,37),(0,7,29,y3), (0, 8,4, y2), (0, 11, 19, x1), (0, 12, 26, xs), (0, 14, 12, x3),
(0,17,1,31),(0,19,7,z5), (0, 22,9, z9), (0, 24, 13, x3), (0, 31, 22, z7), (0, 34, 17, z4),
(0,36,2,y4), (0, 38, 37, y0), (0, 39, 32, z¢)



