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Abstract

A generalized weighted digraph G = (V, E) is a digraph with
n vertices and m arcs without loops and multiarcs, where each arc
is assigned with the weight that is a non-negative and symmetric
matrix of same order of p. In this paper, we give a sharp upper
bound for the spectral radius of generalized weighted digraphs (see
Theorem 2.7), which generalizes some other results on the spectral
radius of weighted digraphs in [4], [11] and [16].
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1 Introduction

Let G = (V, E) be a digraph, without loops and multiarcs, with vertex
set V = {v1,vs,...,0n}. If each arc (v;,v;) € E, where v; is the initial
vertex and v; the terminal vertex, has been assigned w;;, a non-negative
and symmetric matrix of order p, as the weight on this arc, then G is
called generalized weighted digraph (short for GW D-graph). The adjacency
matrix A(G) = (ai;) of a GWD-graph G is a block matrix, where the
matrix block a;; of order p is defined by

[ wi o if (v, ) € E;
Gij = { 0 otherwise. (1)
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Clearly, A(G) is indeed a non-negative matrix of order np and has a positive
number as its largest eigenvalue by Perron-Furobinius theorem. Let p(G)
denote the largest eigenvalue of A(G) which is also called the spectral radius
of the GW D-graph G. Let N*(v;) be the out-neighbor set of v; in G and
denote by wf = Y w;; the the sum of the i-block row of A(G)
v;EN+(v;)

corresponding to vertex v;. Clearly, w; is also non-negative symmetric
matrix of order p and denote by p(w]) the spectral radius of w}. If V can
be decomposed into disjoint union of two nonempty sets V; and V5 such
that p(w;) is a constant for every vertex v; € V; and p(w;‘ ) is a constant for
every vertex v; € Vs, then G will be called a generalized weight-semiregular
bipartite digraph (for SRB-GW D-graph). If p(w}t) is a constant for every
v € V, then G will be called a generalized weight-regular digraph (short
for R-GW D-graph). A GW D-graph G can be viewed as weighted digraph
(short for W D-graph) if w;; is a positive number for (v;,v;) € E, and a
W D-graph G is a commonly digraph if w;; =1 for (v;,v;) € E. A GWD-
graph G can be viewed as weighted graph (short for W-graph) if A(G) is
symmetric, and a W-graph is a commonly graph if w;; = 1 for (v;,v;) € E.
The terminology not defined here can be found in ([1]-[2]).

The bounds for the spectral radius of graphs and digraphs have been
investigated to a great extent ( to see [4]-[9], [10]-(14] for references), but
there are a few of results for the weighted graphs and digraphs (to see
(15]-[18] for references ).

Let G be a connected graph with vertex set V(G) = {v1,v2,...,vn} and
d; be the degree of vertex v;, where i = 1,2,...,n. Abraham Berman and
Xiao-Dong Zhang in [4] gave a bound of spectral radius for graphs:

p(G) < 5{1335{\/ did;}. (2)

Equality holds if and only if G is a regular or bipartite semiregular graph.
(2) is generalized below for directed graph D by Lingsheng Shi in [11]:

min{,/dFd} : (vi,v;) € E(D)} < p(D)
< max{,/dfd} : (vi,v;) € E(D)}.
3)
Either of the equalities holds if and only if D is out-regular or out-semiregular
graph. (2) is also generalized for weighted graph G by Kinkar Ch.Das in
(16) in the following theorem:

Theorem 1.1 ([16]). Let G be a weighted graph which is simple, connected
and let p be the largest eigenvalue (in modulus) of G, so that |p| is the
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spectral radius of G. Then

lol < max{ > o) Y prlwie)} 4)

k:k~i kik~j

where the edge weights w;; are positive definite matrices having the same
order, py(w;;) is the largest eigenvalue of wij. Equality holds if and only if
the followings hold:

(i) G is a weight-regular graph or G is a weight-semiregular bipartite graph;

ii) all the wij have a common eigenvector corresponding to the largest
3
eigenvalue py(w;;).

When the edge weights w;; are positive numbers, (4) becomes (5) (in
Corollary 2.5 in [16])

< iWs;.
p(G) < max \fiis; ()
where w; = Y wik is the sum of the weights of the edges incident to

. kik~i
vertex 1.

In this paper, we will give a generation of Theorem 1.1 for digraphs,
from which we obtain the results stated in (2),(3),(4) and (5).

2 Lemmas and results

Lemma 2.1. Let B be a real symmetric n x n matriz with p(B) as its
largest eigenvalue. Then for any x € R™(x # 0),y € R™*(y # 0), the
spectral radius p(B) satisfies,

IxT By| < p(B)VxTx\/yTy.

Equality holds if and only if x is an eigenvector of B corresponding to p(B)
and y = ax for some o € R.

Let G be a GW D-graph with adjacency matrix A(G) defined in (1).
Then A(G) is a non-negative matrix, and by famous Perron-Frobinius the-
orem has a positive number p as its largest eigenvalue which corresponds
the Perron-vector x = (xT,x{, ...,xT)T where x; > 0 is a column vector in
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RP corresponding the vertex v; of G, that is,

X1 a1 a2 ' Qn X1
az1 Q2 - Q2n
X X
AG)| 2| = o 2

Xn Gnl @n2 *** GOnn Xn (6)
X1
X2

= p

Xn

Thus (6) can be represented according s-th block row as

Z AgkXp = Z WXk = PXs. (7)

1<k<n vk EN+(v,)
By multiplying xT to (7) we obtain,

Z xTwaxy = pxTx,. (8)
v EN+(v,)

Let (v,,v;) be an arc of G. From (8) and Lemma 2.1 we have two equalities
bellow:

Y xTweexy
v EN+(v,) T
Z |x w8kxk| (9)

vk EN+(v,)

> plwsk)v/XT %5/ XE Xk

v EN*(v,)

> Xg wuXi
v €N+(ve)

> |xTwaxi|
weNT (ve) (10)

p(wu)\/x,1 Xt /x, Xi.

ueN +(0e)
First we give the bound of spectral radius of the GW D-graph.

pxTx,

AN

IA

pxTx,

IA

IN

Lemma 2.2. Let G be a connected GW D-graph with adjacency matriz
A(G) defined in (1), let p be the spectral radius of G. Then

ax { [ S plww) D plwi)} (11)

("""’)EE Wk EN*(v:) vk €N+ (v))



Proof. Let x = (x,x¥,--- ,xT)T be an the eigenvector corresponding to
the spectral radius p of G, where A(G)x = px is shown in (6) and x # 0 is
non-negative and p > 0 by the Perron-Frobinius theorem.

First let @ = 1r<11ax {xfxr} > 0 (since x # 0). We now chose x;,, the

vector component of x, such that xT »Xio = a and there exists v;, € N+ (v.o)

satis 1n x = x X > max X; X whenever X;
fy g XjoXdo GN“'(U‘O){ k k} W EN+(u; {l l} xa i

a. Clearly, (v;,, , 'vjo) is an arc of G and the correspondmg vector components
X;, and x;, are called the mazimum relevant components of x and will insist
throughout this paper. Taking s = 4o in (9) and by Lemma 2.1 we obtain,

T
PXEXi, = Y X WigkXk
v €N+ (vig)
< > IXTwirxkl
VkEN+(uio)

/T (12)
P(Wiok) 1/XT Xio A/ XT X
vkeN"‘ (‘Uto )

< VX /XTx5, S pwiek)
v €N+ (vig)

IA

Similarly, taking ¢ = jo in (10) we obtain,

PX; xJo = P xTwJ'olxl
vy EN+(vj)
< Y Ixfwixil
weN*(v;,)
13
< 2 P(w:iol)v xg;x.‘iov xlTxl (13)
yEN+(v;)
< xT xJoV xiToxio Z p(wjol)'

uE€N*(vjy)

We claim that Xjo # 0, since otherwise x; = 0 for all k with v e N*(v;,)
by the choice of jj. Then from the first equity of (12), we get ,ox,ox,o =0,

and so p = 0 since xF o Xio # 0, which is impossible. Thus, by multiplying
the two sides of (12) and (13), we get

Yo mwir) Y. prlwi)

v EN*(v4) v eEN+(vj,)

which leads to (11) since (vj,,v;,) is an arc of G. a

Corollary 2.3. Under the assumption of Lemma 2.2, if (11) is an equity,
then (12) and (13) are equities.



Proof. Otherwise, by multiplying the two sides of (12) and (13) we obtain

p< [ S plwier) D, pwid) Sp.

v ENF (viy) v EN*(vj,)

It is a contradiction. |

Lemma 2.4. Under the assumption of Lemma 2.2, if (11) is an equity
then we have

(a) xi, is @ common eigenvector corresponding to the largest eigenvalue of
Wik for all k with v€N*(vy,) and Xx =bx;, ( particularly, X;o=>bx;,
), where b>0 is a constant.

(b) For any v; € N*(vi,) and any v; € N*(v;), we have x; = X;,.

(€) p=b 3 plwiok) and p=b"1 ¥ p(wj) for v; € N*(do), where b
v €N+ (v;g) weEN+*(v;)
is defined in (a).

Proof. Since (11) is an equity, (12) and the (13) must be equity by Corollary
2.3. From the equity (12) we obtain the following for any x; with v €
N* (vio)’

x,?;wiokxk = |x¥;w,-okxk|

P(Wiok) 1/ XToXio \/ X X (14)

ipXio V X; xJop(wtok)

By Lemma 2.1, the second equity of (14) gives that xx = bj kX, and x;,
is the common eigenvectors of wi,x correspondmg to the largest eigenvalue
p(wigk). The last equity of (14) gives that xf xx = xT »Xjo» and hence for
(vig,v:) € E and (vs,,v;) € E we have

el
&N

T T 2
b,o, o Xio = X; Xi = X; X;j = b,ojx,ox,o,

which gives bZ2; = bfm Additionally, x[wi,kxi, > 0 since p(wigr) > 0,
and b;orx? o WiokXio = xTw,okxk = ]x w,,,kxk| > 0. Hence b;,r > 0 for any
v € Nt (v,o) It follows that bigi = b.OJ = b. Consequently, xx = bx;, for
all k with vx € N*(v;,) and (a) follows.

For any v; € N*(v;,), x; = bxi, = Xj, by (a). By replacing jo with j
in the equity (13), we have for all x; with v; € N*(v;),

xTwux) = |x]wjxi

plwit)y/x] ZJM (15)
= /xIx\/xExiplwin)-

]



By Lemma 2.1, the second equity of (15) gives that x; = c;;x; and x; is the
common eigenvectors of Wit correspondmg to the largest elgenva,lue p(w,,)
The last equity of (15) gives that x7 x; = x""x,0 We have c2 b?xExy, =

xT %, and so (c;;b)? = 1. Additionally, from the first equity of (15), we have
CXT WX = XJ wjiX; = |xTw;ix)| > 0. Note xTwjix; > 0 since p(w;i) > 0,
we have cj; > 0 and thus ¢y = b~!. Therefore, x; = b~!x; = b~1bx;, = x;,.
It follows (b).

From the equities (12) and (13) we have

[T /T .
x%o X;oXio\/ X0 Xd0 P (wiok ) ’
v €N + (vig

T [T (16)
PX; xJo = xgxio x};x.‘io Z (w.‘iol)-
weN+(vz0)
According to (a), x;, = bx;,, which put into (16) we obtain (c). O

Lemma 2.5. Under the assumption of Lemma 2.2, if (11) is an equity
then we have
(i) Let P = viyv;,v4y, ..., vs,. be a directed path in G. If0 <t < r is even
then X;, = X3, and p=b Y,  plws,); if t is odd then x;, = bx;,
vy EN*(vi,)
and p=b"1 Y p(wiy), whereb is defined in Lemma 2.4.

N+(v; . .
il) x;, isa common eié‘éﬁz)ector of w1 corresponding to the largest eigen-
0
value p(w;,1) for all1 <t <7 andl with v € N*(v;,).

Proof. Firstly we know that v;, corresponds x;, by the assumption. Then
(i) holds for ¢ = 0,1 by Lemma 2.4(a) and (c). Now let ¢t = 2, we have
known that x;, = x;, from Lemma 2.4(b), and next need to show that
p=b E p(wt'zl)'

neEN+(viy)

Let xTx, = xGN"'( {x x;}. Since (vi,,vg) € E and x;, = Xo, X2 Xq <

x};x,-o by the choice of .70 in the proof of Lemma 2.2. As similar as (12) we
have

pzlz, = > z2lwium
wENT (vi)
< Y lzhwim
v EN+ (viz)
< Y W)y /2L T /o 17
ENT (i) (17)
< ¥ plwi)y/zhzy 2]z,
vEN* (viy)
<

DI COMIVESETRVE T
N+ (”ig)

ue



Note that x;, = x;,. By replacing x;, with x;, in (13) and combining (17)
we get,

p < > plwin) > plwigr)
v€N+(vy,) wEN*(viy)
< max { > plwi) X plwik)}
(viyv;)EE v EN*(v;) v EN+(v;)
Therefore,
1Y plwy=p= [ X plwn) [ D plwia):
wEN+(vi,) v EN+(vi;) v EN+(vi,)
Hence 5! Y plwiy) = Y. p(wi,), and so
€N+ (vi;) v EN*(viy)

p=b1 3 plwn)=b Y plwi)

v EN+(vy;) neEN*(v;,)

Furthermore, (17) must be an equity by the argument of Corollary 2.3.
Since x;, = Xj,, from the equity (17) we have

XX = x;I-(;x,-o = x;{x,-,, (18)
for all ; with v; € N*(v;,). Again the equity (17) implies that x; = byx;, =
bix;, by Lemma 2.1, where & > 0 similarly as in the proof of “bj,x > 0”
in Lemma 2.4(a). Thus (18) gives that b7x% x;, = b?x] x;,, and so b = b.
Hence x;, = x; = bx;, = Xj,.

Notice that x;, = x;, and now x;; = xj,. Regarding v;, as v;, and
repeating the above process, we will get (i) by induction.

At last, the corresponding (17) for any v;, is an equity from the proof

of (i), we claim that [xTwixi| = p(wi)y/XTxi, (/X7 x; for all x; with
v € N*(v;,) and so x;, (Xi, = Xi,, OF bX;,) is & common eigenvector of w;,;

corresponding to the largest eigenvalue p(w;,;) by Lemma 2.1. Thus (ii)
follows. O

Lemma 2.6. Under the assumption of Lemma 2.2, if x;, is a common

eigenvector of w;; corresponding to the largest eigenvalue p(wi;) for all1 <

i,j<n, thenp(wf)= & plwi), wherew} = 3 wi.
v;EN*(v) v; ENT(vi)

Proof. Suppose that p(w})y; = wlyi, where y; # 0. By Lemma 2.1 we
have
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ylowy: = yluly
< |yTwfyil
< X Iylwyyil
v;EN*(v;)
< Y pwy)ylys
v;EN*(v;)
Hence, p(w}) < ¥ p(wi;). On the other hand, we have wix;, =
v;EN+*(v;)
Y wiXio= Y p(wij)xiy, which implies that
v;EN*(v) v;EN*(vi)
pwi) 2 D plwig):
v;EN+(v;)
It follows our result. a

Now we come to the stage to prove our main result.

Theorem 2.7. Let G be a connected GW D-graph with adjacency matriz
A(G) defined in (1), and let p be the spectral radius of G. Then

p<  max { Yo plwir) Y plwm)} (19)
v;,v5)€ o ENF(v:) wEN+(v;)
Moreover, if G is strongly connected, equality holds if and only if the one

of the followi%?s are satisfied:
(1) G s a R-GW D-graph and w;; have a common eigenvector correspond-

ing to the largest eigenvalue p(w;;) for every arc (v;,v;) in G.
(ii) Gisa SRB—gWD-gmph amf wi;J have a common é%gén’uector corre-

sponding to the largest eigenvalue p(w;;) for every arc (v;,v;) in G.

Proof. (19) is proved in Lemma 2.2. Next we suppose that (19) is an equal-
ity. Then all inequalities in (12) and (13) must be equalities by Corollary
23. Let Vo = {v; € V | x; = X3, } and V; = {v; € V | x; = bx;,}, where
b > 0 is determined in Lemma 2.4. Since G is strongly connected, by Lem-
ma 2.5(i) V must be the disjoint union of Vy and V; ifb# 1,and V =V
if b= 1. Now we distinguish two cases bellow.

Case 1. b=1;
In this case, any x; = x;, forall 1 i <n,wehavep= 3  p(wy;)
v;EN+(v;)

by Lemma 2.5(i). Thus, by Lemma 2.6, p = p(w}) for any 1 < i < n and
so G is a R-GW D-graph.

Case 2. b#1;

For v; € Vp, let (v;,v;) be any arc of G. Then x; = x;, and x; = bx;,
by Lemma 2.5(i), and so v; € V;. Thus V; is independent. For v; € V],
let (v;,v;) be any arc of G. Since G is strongly connected, there exists
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a shortest directed path P = v;, ---v; staring from v;, and ending at v;.
Since x; = bx;, by assumption, P contains exactly even number of vertices
by Lemma 2.5(1). Then P’ = P + v; = v, - v; is a directed path
having odd number of vertices and so v; € Vp by Lemma 2.5(i). If v; €
P = v;, ---v;, then there are even number of vertices in P before v; and
so v; € Vo. Thus V; is independent. Therefore, G is a bipartite digraph
with the partition (Vp,V;). Additionally, for v, € Vo we have x, = x;,

andso p(w})= 3  p(wsn) = pb~! by Lemma 2.6 and Lemma 2.5(i).
vaENYT (vs)
Similarly, we have p(wf) = Y.  p(ws) = pb for v, € V. Thus G is a
'UhEN"' (‘Ug)

SRB-GW D-graph.
Conversely, let x;, be a common eigenvector of w;; corresponding to the

largest eigenvalue p(w;;) for all 1 < 4,5 < n. Then p(w;) = Z p(w.,) by
1<

Lemma 2.6. First we suppose that G is a SRB-GW D-graph Wlth bipartite
V = U UW such that p(w;’) = a for v; € U and p(w]) = B for v; € W.
The following equation can be easily verified:

. X
( i': \ ( Xy \
\/07 x‘l(; =A o )
V2

Ve Vv )
U

( oo
0 oo 0 A k+1 ' CGln
0 0 a2 k41 "t QG2n
where A= 0 e 0 Gkk4+l "0 Qkn
a,k+1,1 crr Qr4lk 0 e 0
Gr+2,1 " Qk42,k 0 T 0
\ Qn,1 ‘e Qn k 0 vee 0 )

Thus /of is an eigenvalue of A(G), and so by (19)

412



p(G) < max { plwie) 3 plwik)}
(vi,05)€E "\[ y, e N+ (v)) vk EN+(v;)
= Vaf
< p(G)

which impli;s that (19) is an equity. At last, for R-GW D-graph G, we
can easily see that p(G) = p(w;) for any v; € V, and (19) is certainly an
equity. We complete this proof. a

If positive definite matrix w;; is positive number for (vi,v;) € E then
our generalized weighted digraph G will be the weighted digraph, and if
w;yj = 1 for (v;,v;) € E then our weighted digraph G will be the com-
monly digraph. In the first case, p(wij) = wi; for (vi,v;) € E and so

> plwik) = >N wi = w,f" ; in the latter case, p(w;;) = 1 for
v EN+(vg) v €N+ (v;)
(vi,v;) EEandso Y p(wi) = df (= d*(v)).
vk ENt(v;)

It immediately follows the results from Theorem 2.7.

Corollary 2.8. Let G = (V, E) be a commonly connected weighted digraph

in which the arc (v;,v;) weighted with positive numbers w;; and w;" =
3> wi, then,

vk €N+ (v;)

G) < Fuwt.
A( )—(ui?,ffes Wi w;
Moreover, if G is strongly connected, then equality holds if and only if G
is a weigh-regular (i.e., w} is a constant for v; € V) or G is a weigh-

semiregular bipartite digraph (i.e., G has a partition (U, W) such that w}
and w;." are constants for v; € U and v; € W).

Corollary 2.9 ([11]). Let G = (V, E) be a simple and connected digraph.
Then
< tdt.
p(G) < wnSee VY
where d} is the outdegree of vi. Moreover, if G is strongly connected,
then equality holds if and only if G is a out-regular digraph or G is a out-
semiregular bipartite digraph.

If the adjacency matrix A(G) of GW D-graph G defined in (1) is sym-
metric, then our generalized weighted digraph G can be viewed as weighted
graph, and if w;; = 1 for (v;,v;) € E then our weighted graph G will be the
commonly graph. In weighted graph, if the edge weights w;; are positive
definite matrices, then we know that p(w;;) > 0, and the results of Lemma
2.1 and Lemma 2.6 hold. Then the spectral radius of weighted graph G
is the largest eigenvalue (in modulus) of G. Consequently, we obtain the
results stated in (2), (4) and (5).
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