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Abstract. The paper considers two-dimensional linear codes with
sub-block structure in RT-spaces [2-5,7] whose error location tech-
niques are described in terms of various sub-blocks. Upper and lower-
bounds are given for the number of check digits required with any
error locating code in RT-spaces.
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1. Introduction

Wolf and Elspass [9] introduced the concept of error location for
codes in Hamming spaces and devised codes that could locate a single
corrupted sub-block containing a given number of random errors. Rosen-
bloom and Tsfassman (7] initiated the concept of RT-metric (or m-metric)
array codes which are subset/subspaces of the linear space of all m by s
matrices Matmxs(Fy) with entries from a finite field F, endowed with a
non-Hamming metric known as RT-metric (or m-metric). Also, we know
that RT-metric (also known as p-metric) is stronger than Hamming metric
([1, 8]). Motivated by the idea to have error location technique in codes
equipped with the RT-metric, we formulate the concept of error locating
codes in RT-spaces and obtain lower and upper bounds on the parameters
of RT-metric array codes for the location of corrupted sub-block.

Here is a model of an information transmission for which error location
technique in RT-metric array coding is useful. Suppose that a sender trans-
mits messages each being an s-tuple of m-tuples of g-ary symbols, transmit-
ted over m parallel channels. Here the codeword is of length n = ms con-
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sisting of m sub-blocks of length “s” each. There is an interfering noise in a
channel which creates errors with in a particular sub-block corresponding to
that channel. In ordinary decision feedback systems using error detection
technique, the receiver tests each block of received digits of length n = ms
for the presence of errors. If errors are detected, the receiver requests the
retransmission of the entire corrupted block of ms digits and this process is
repeated for each incoming block and thereby resulting in a low data rate
transmission. This is more so when channel noise is such as to produce a
fairly uniform density of errors in each received block confined to a partic-
ular sub-block. The use of error locating codes can soften this problem by
identifying the corrupted sub-block with in a block and instead of requesting
for retransmission of the entire block of ms digits, now the receiver requests
for the retransmission of only corrupted “s” digits thereby increasing the
rate of transmission and making the transmission more economical. By a
corrupted sub-block we shall always mean a sub-block containing errors of
RT-weight e or less (1 < e < s).

2. Definitions and notations

Let F, be a finite field of g elements. Let Mat,xs(F,) denote the
linear space of all m x s matrices with entries from Fy. An RT-metric array
code is a subset of Matmxs(F,) and a linear RT-metric array code is an
F, linear subspace of Matmxs(Fq). We identify the space Matmxs(Fq)
with the space F7™° by writing every matrix in M atmxs(Fy) as an ms-
tuple by writing the first row of the matrix followed by second row and
so on. Similarly, every vector in F"* can be represented as an m by s
matrix in Mat.xs(F,) by separating the co-ordinates of the vector into m
groups of s-coordinates. The ms-tuple is called a block and each group of
s-elements starting from the first element in an ms-tuple is called a sub-
block. Thus there are m sub-blocks each of length “s” in a block. Also,
columns of the generator matrix G and parity check matrix H of a linear
RT-metric array code V' are grouped into m sub-blocks of s columns each.
Therefore, the generator matrix G and the parity check matrix H of a linear
RT-metric array code V are represented as G = [G1,G2,:--,Gm], H =
[H1,Ha,- -+, Hy) where G; and H; are the i*® sub-block (1 < i < m) of the
generator and parity check matrix respectively of the code V and are given
by

Gi = [Gi1,Gi2, "+, Gis),

and
H; = [Hiy, Hig,- -+, Hig),

where each G;;(1 <i<m,1 < j < s)isakx1 column vector and each
H;j(1<i<m,1<j<s)isan(ms—k)x 1 column vector.
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The weight and metric defined by Rosenbloom and Tsfassman (7] on
the space Mat,,«s(F4) are as follows :

Let X € Matx(F,) with

T1
x=| 7
Tm
then column weight (or weight) of X is given by

m— max {i|zx=0 foranyk<i} if X #0
wt.(X)

0 if X=0.

This definition of wt. can be extended to m x s matrices in the space
Matn,xs(Fy) as

wtc(A) = D _wt(4;)
j=1

where A = [A1, Az, -+, As] € Matmxs(Fg) and A; denotes the jt* column
of A. Then wt, satisfies 0 < wit.(A4) < n(= ms) and determines a metric
on Matmyxs(Fg) if we set d(A, A') = wt.(A— A') ¥ A, A’ € Matmx,(F,).
We call this metric as column-metric. Note that for m = 1, it is just the
usual Hamming metric.

There is an alternative equivalent way of defining the weight of an
m X s matrix using the weight of its rows.

Let Y € Mat;ys(F,) with Y = (y1,2,--,¥s). Define row weight (or
weight) of Y as

max { ¢ | y; # 0} ifY#0
wtelY) 0 if Y=0
if Y=0.

Extending the definitions of wt, to the class of m x s matrices as
m
wtp(A) = D wts(R:)
i=1

R,
where A = R2 € Mat,xs(Fg) and R; denotes the it* row of A. Then

R, :
wt, satisfies 0 < wt,(A) < n(=ms) V A € Mat,x,(F,) and determines a
metric on Mat,y(F,) known as row-metric.
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It turns out that row weight of a vector is equal to the column weight
of transpose of the vector with its component reversed and hence the two
metrics viz. row-metric and column-metric give rise to equivalent codes
and both the metrics have been known as m-metric or RT-metric.

In this paper, we take distance and weight in the sense of row-metric.

3. Bounds on the number of check digits

An error locating code (EL code) capable of detecting and locating a
single sub-block containing errors of RT-weight e or less (1 < e < s) must
satisfy the following conditions:

(i) The syndrome resulting from the occurence of errors of RT-weight
e or less within any one sub-block must be distinct from all-zeros
syndrome.

(ii) The syndrome resulting from the occurence of errors of RT-weight e
or less with in a single sub-block must be distinct from the syndrome
resulting from any combination of errors of RT-weight e or less with
in any other sub-block.

We note here that since it is not desired to distinguish between (de-
tectable) error combinations occuring within the same sub-block, it is there-
fore not necessary that their corresponding syndromes be distinct. In fact,
in the interests of coding efficiency such syndromes should be identical
whenever possible.

In the following, we shall derive two results. The first result gives a
lower bound on the number of check digits required for the existence of
an RT-metric array code over GF(q) capable of detecting and locating a
single sub-block containing errors of RT-weight e or less (1 < e < s). In
the second result, we derive an upper bound on the number of check digits
which assures the existence of such a code.

Theorem 3.1. The number of parity check digits required for an (m x
s, k) linear RT-metric array code that locates a single corrupted sub-block
containing errors of RT-weight e or less (1 < e < s) is bounded from below

by

ms —k 2log,,{1+mze: q("l)(q—l)} 1)

=1

Proof. The maximum number of distinct syndromes available using (ms —
k) parity check digits over GF(q) is g™~ *%. The proof proceeds by first
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counting the number of syndromes that are required to be distinct by con-
ditions (i) and (ii) and then setting this number less than or equal to g™*~*,
Any syndrome produced by errors of RT-weight e or less (1 < e < s) in a
given sub-block must be distinct from any such syndrome likewise resulting
from another set of errors of RT- weight e or less in the same sub-block,
or else there would exist a combination of errors of RT-weight e or less in
that sub-block resulting in the zero syndrome contradicting condition (i).

Moreover, syndromes produced by combinations of errors of RT-weight
e or less in different sub-blocks must be distinct by condition (ii). Thus, the
syndromes of errors of RT-weight e or less (1 < e < s) occuring whether
in the same or in different sub-blocks must be distinct. Since there are

Z g\~ (g —1) possible errors of RT-weight e or less in any sub-block and

i=1
e
there are m sub-blocks in all, therefore there must be 1 +mz qi-(g-1)

i=1
distinct syndromes, counting the all zero syndrome. Thus, we must have

e
qms—-k > 1+mz q(i—l)(q_ 1)

i=1

or
ms—k > logq{l +mz gV (g - 1)}.

i=1

]

An EL code meeting the bound in (1) is called an optimum EL code. An
upper bound on the number of parity check digits for error location is given
below:

Theorem 3.2. An [m x s,k| linear RT-metric array code capable of de-

tecting errors of RT-weight e or less (1 < e < s) occuring within a single

sub-block and of locating that sub-block can always be constructed using
(ms — k) parity checks satisfying the inequality

[

ms — k > log, (1 +¢ gD (m -1) (Z q“ V(g - 1))) (2)

i=1

Proof. The existence of such a code will be proved by constructing a suit-
able (ms — k) x ms parity check matrix for the desired code. To locate
any corrupted sub-block containing errors of RT-weight e or less, it is nec-
essary and sufficient that any (nonzero) linear combination involving e (or
fewer) consecutive columns amongst the first e columns in each sub-block
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should be nonzero and distinct. Supoose that we have been chosen the first
(m — 1) sub-blocks of H viz. Hy, Hp, -, Hm— suitably. We now choose
mth sub-block H,, as follows:

The j** column viz. Hmj(l < j < €) in the m** sub-block Hy, can be
added to H provided

(a) Hmj is not a linear combination of previously chosen columns i.e.

Hpj # amiy Hmyiy + 0mia Hmgiy + 0 0myi Hm i,
where {i1,%2, - -,ir} € {1,2,---,5 — 1},

and

(b) Hm;(1 < j < e) is not a linear combination combination of previously
chosen j — 1 columns of the m** sub-block H,, together with a linear
combination of first e or fewer consecutive columns from amongst any
one of the remaining (m — 1) sub-blocks viz. Hy,Ha,--+,Hm-1.

Condition (a) gives rise to ¢’ ! linear combinations whereas the number of
linear combination arising out of condition (b) equals

e

g¥=V(m - 1) (z g V(g -1).

i=1

Thus, the total number of linear combinations arising out of conditions (a)
and (b) are given by

qu™1 + ¢V (m - 1)(2 q" (g - 1)).

i=1

At worst all these linear combinations might yield a distinct sum. Thus, the
column Hy,j(1 < j < €) can be added to the m*® sub-block H,, provided
that all the (ms—k)-tuples are not exhausted by theses linear combinations
i.e. for j = e, the et* column Hme can be added to the m®* sub-block if

e
qms—k > q(c—l) + q(e—l)(m _ 1) (Z q(l—l)(q — 1))

i=1
or
€ .
g™k > 1+ gD 4 gD (m — 1)(2 ¢"“ Vg~ 1))-

i=1

which gives (2) on taking logarithm. After the e** column in the mt* sub-
block, there is no constraint on the columns Hy, e4+1, Hm,e+2,* * +, Hm,s since
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the desired code is to locate sub-blocks containing errors of RT-weight e or
less. Thus, the m** sub-block can be added to H if (2) is satisfied.

Example 3.1. Take m = 4,5 = 3,e = 2,k = 6 and ¢ = 2. Then

2
RHS.of (2) = 1+2'+2'x 3(220—1))

i=1

= 1+2+6(2°+2) =21
Also,

2m3—k
2936 = 96 =64,

LHS. of (2)

Therefore, L.H.S. of (2) =64 > 21 =R.H.S. (2) and hence by Theorem 3.2,
there exists a [4 x 3, 6] linear RT-metric array code over GF(2) that locates
any corrupted sub-block containing errors of RT-weight 2 or less.

Consider the following (4 x 3 — 6) x (4 x 3) = 6 x 12 parity check
matrix of a {4 x 3, 6] linear RT-metric array code over GF(2) constructed
by the procedure discussed in Theorem 3.2.

o -

100:000:110:0T11
010:001:101:10°1
g-[001:000:011:111
000:100:100°:110
000:010:010°:101
L0000 :001:000:111]J,,

The code V' C Mat,x3(F>) which is the null space of H locates any cor-
rupted sub-block containg errors of RT-weight 2 or less since syndromes of
these error patterns are all distinct as seen from Table 3.1.
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Table 3.1

Errors of RI-weight 2 or less confined to a single sub-block Syndromes
0 1 0
0 3 o | =010 000 000 000) (010000)
00 0)
T 1 0)
g g g = (110 000 000 600) (110000)
00 0)
00 0
0 5 o | =(e00010000 000) (000010)
000/
/7070 0
s o o | =000 110 000 000) (000110)
\0 0 0/
/00 0
8 (1] 8 = (000 GO0 010 000) (101010)
\ 0 0 0/
700 0
? (1] g = (000 000 110 000) (011110)
\ 0 0 0/
/00 0
g g g = (000 000 000 010) (101101)
\0 1 0
/00 0
000
o 0 o |=(000000000110) (110010)
\1 1 0/

Note.If we take e = s = 3 in Example 3.1 then inequality (2) is not satisfied

3

as RH.S. of (2) =1+22+2%2x3 (22(‘-1)) =14+4+12(2°+2'+22) =89

i=1

and L.H.S. of (2) = 2m*~*=64.

Thus (2) is not satisfied. Also, the code V' which is the null space of H is



not able to locate all corrupted sub-blocks containing errors of RT-weight
3 or less as the syndromes of two such distinct corrupted sub-blocks viz.
000 0 00

(1) (1) 8 and 2 (1) (1) are same and are equal to (000110). This
0 00 0 00
justifies the sufficiency of Theorem 3.2.

4. Construction of an EL code from a row-cyclic array
code in RT-spaces

In this section, we construct an EL code from a row-cyclic array code
[5]) in RT-spaces:

Theorem 4.1. If g(x) = g1(z)g2(z)- - - qui(z) is a product of distinct ir-
reducible polynomials g;(z)(1 < i < 1), over GF(q) all belonging to the
same period t with deg g(z) = p. If the row-cyclic [1 x t,t — p| array code
generated by g(x) has RT-distance d, then there ezists an [m X s, k| linear
RT-metric array code that locates any corrupted sub-block containing errors
of RT-weight (d — 1) or less where m =t + 2 (number of sub-blocks), s =t
(length of each sub-block) and k = ms — 2p.

Proof. Let a;(i = 1to ) be any root of g;(z) forall 1 <i <! Thel xt
cyclic and hence row-cyclic code V' generated by g(z) is the null space of
the parity check matrix

1 o o2 oo of?

) 1 a a2 .-+ of!
H=¢ . . 7 . 7 - (3)

1 o of - of!

pxt

The RT-distance of the code V" is d implies that every set of (d—1) or fewer
columns of H’ taken from first (d — 1) columns is linearly independent and
there exists a linear dependence relation between first d columns of H'.

Now we first discuss the construction for the parity check matrix H
of the desired error locating code for the case when [ = 1.

Let g(z) = g1(z) with deg g(z) = p.
Let a be any root of g(z) = g1(z).

H=(1 a a® ... at_l)pxt
We form the parity check matrix of the desired error locating codes as
H= ( B 01 H: H,I 51,1 ...... thll 1 ) ) (4)
0 H H oH o*H ---... a'~'H (2p)x2(t4+2)
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where the submatrices 0, H,aH,a?H,----- - ,ot~1H are p x t matrices and
define the sub-block length s =t of the desired error locating code.

Clearly the code V which is the null space of H has the following
parameters:

m = Number of sub-blocks =t+2,
s = Length of each sub-block =,
k = Dimension of code =ms— 2p,
Number of parity check digits = 2p.

To prove that the code V' locates any corrupted sub-block containing errors
of RT-weight (d — 1) or less, it suffices to show that

(1) The syndrome resulting from the occurrence of errors of RT-weight
(d — 1) or less with in any one sub-block must be nonzero and

(2) The syndrome resulting from the occurrence of errors of RT-weight
(d = 1) or less within a single sub-block must be distinct from the
syndrome resulting from any combinations of errors of RT-weight (d—
1) or less within any other sub-block.

We note that condition (1) is clearly satisfied since any (nonzero) linear
combination involving the first d — 1 (or fewer) columns of H drawn from
the same sub-block is nonzero by virtue of the corresponding property of
the matrix H'.

Also, for condition (2) , we note that any (nonzero) linear combination
involving the first (d — 1) or fewer columns drawn from the first sub-block
have its lower p entries equal to zero. Likewise any (nonzero) linear combi-
nation involving the first (d — 1) or fewer columns drawn from the second
sub-block of H have its upper p entries equal to zero. Any (nonzero) linear
combination involving the first (d — 1) or fewer columns drawn from the i*
sub-block (3 < i < t+2) must have its lower as well as upper p entries to be
nonzero because of the column independence property of matrix H’'. Now
we show that the syndromes of errors of RT-weight (d — 1) or less confined
to distinct sub-blocks in the last ¢ sub-blocks is different. For this let

ww <d-1 and0<a,b<t—1.

Suppose that

~ a(i—l) i a(J—l)
Z/\i ( astGE-1) ) = lelj ( ab+t-1) ) ,/\i,[..tj € GF(q) (5)
j=1

i=1
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The two terms in (5) represent linear combinations of upto first (d — 1)
columns of H chosen from the two sub-blocks out of the last t-sub-blocks
of H. Equating the first p-rows in (5), we get

w w’
3 ha) = 3 alD 0, ©
i=1 J=1

because each term is a linear combination of first (d — 1) or fewer columns
of H' and hence is nonzero.

Equating last p rows in (5), we get

w w’
S hatHD = 3 ab+ G
i=1 j=1

or
w w'

a®d Mol =y el (7)
i=1 j=1

Dividing (7) by (6) yields
a® =ab where 0 < a,b<t—-1.

Since 1,a,a?,--+,a!~! are all distinct so we must have a = b i.e. a and b
refer to the same sub-block. Hence condition (2) is satisfied and the linear
RT-metric array code defined by H is an error locating code capable of
locating any corrupted sub-block of length ¢ containing errors of RT-weight
(d —1) or less.

This proves the theorem for the case ! = 1. For arbitrary I, we can
replace the matrices H',aH',o?H’, -+ - in (4) by matrices derived from
H’ by cyclic permutation of columns of H’. With this modification, we get
the theorem by the same reasoning as discussed for the case [ = 1. ]

Example 4.1. Let g(z) = 23 + 2+ 1 be a primitive irreducible polynomial
over GF'(2). Then t = order of g(z) = 29%89(z) _ 1 = 23 _ 1 = 7. Here
p = deg g(z) = 3. The parity check matrix of the [1 x 7, 4] row-cyclic code
generated by g(z) is given by

H = (1 a o® o&® o' a® o)y
1 0 01 011

= [o0o101110 :
0010111/,
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where a satisfies o +a+1=0.

The code V'’ which is the null sapce of H’ has minimum RT-distance 4 as
the first 3 columns of H are linearly independent over GF(2) and first 4
coumns of H are linearly dependent. Thus d = 4.

We construct the [t(t +2),¢(t +2) —2p] = [7 X 9,7 x 9 — 6] = [63,57]
linear RT-metric array code with m= 9 (number of sub-blocks), s = 7
(length of each sub-block) that is capable of locating any corrupted sub-
block containing errors of RT-weight d — 1 = 3 or less.

The parity check matrix of such a code is given by

H= H 0 H H H' H' H H’ H'
“\ 0 H H' oH o*H' o*H o*H o°H' o8H' 6x63

Remark. The code constructed in Example 4.1 is an optimal error locating
code in RT-spaces as it meets the bound obtained in (1) in Theorem 3.1
viz.

g™k 214+ m) ¢ D(g-1).

i=1

For the [7 x 9,7 x 9 — 6] = [63,57] linear RT-mtric array code over GF(2)
constructed in Example 4.1, we have

LHS. of (1) = 2%°%=2=64

d-1 3
RHS. of (1) = 1+9) 20~V =1+9) 26D

i=1 i=1
1+9(2°+ 2! +2%)
14+9x7=64

Example 4.2. Let g(z) = 2%+ 2% + 22+ +1 be an irreducible polynomial
of degree p=4 over GF(2). Here t=order of g(z) = 5 as g(z) divides z° — 1
and 5 is the least positive integer such that g(zx) divides " — 1. Thus g(z)
generates a [1 x 5, 1] row-cyclic linear RT-metric array code V over GF(2)
characterized by the following parity check matrix:

H=(01 a o & a*xs where a is a root of g(z).

or

il
O~ OO
-0 O C

= e

0
1
0
0

oo O

4x5



Since first four columns of H’ are linearly independent over GF(2) and first
five coulmns of H’ are linearly dependent, therefore minimum RT-distance
of code V' having H' as parity check matrix is d = 5.

We construct the [t(t + 2),¢(t +2) — 2p] = [6 x 7,5 x 7 — 8] = [35,27]
linear RT-metric array code with m = 7 (number of sub-blocks), s = 5
(length of each sub-block) that is capable of locating any corrupted sub-
block containing errors of RT-weight d — 1 = 4 or less.

The parity check matrix of such a code is given by

g_(H O H H H H I
S\ 0 H H oH oH BH ofH ).

This code is not optimal error locating code as it does not meet the bound
given by (1) in Theorem 3.1 as shown below:

LHS. of (1) = 2%727=28 =256

4
RHS. of (1) = 1+7(Z2(i—1))
i=1

14+7(2° 42! +22 4 2%
1+7(14+2+4+8)=106
Thus L.H.S. of (1) > R.HS. (1).

Note. Apart from t(t+2) length error locating code constructed in Theorem
4.1, we can also construct error locating code of length ¢2 by taking

H’ H' H'
H=(HI oH' ... at—lHl)'
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