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Abstract

A graph G with no isolated vertex is total restrained
domination vertex critical if for any vertex v of G that
is not adjacent to a vertex of degree one, the total re-
strained domination number of G — v is less than the
total restrained domination number of G. We call these
graphs v;,-vertex critical. If such a graph G has total
restrained domination number k, we call it k —~;,-vertex
critical. In this paper, we study matching properties in
4 — vy-vertex critical graphs of minimum degree at least
two.
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1 Introduction

A vertex in a graph G dominates itself and its neighbors. A set
of vertices S in a graph G is a dominating set, if each vertex of
G is dominated by some vertex of S. The domination number,
v(G), is the minimum cardinality of a dominating set of G. A
dominating set S is called total dominating set if each vertex z
of G is dominated by some vertex y # z with y € S. The total
domination number of G, denoted by %(G), is the minimum
cardinality of a total dominating set of G. A total dominating
set of cardinality 7;(G) is called a 7:(G)-set. For references on
domination in graphs see [8].

A leaf in a graph G is a vertex of degree one, and a support
vertez is one that is adjacent to a leaf. A (vertex) cut-set in a
connected graph G, which is different from the complete graph
graph, is a subset S of vertices such that G — S is disconnected.
The connectivity of G, written x(G), is the minimum size of a
vertex set S such that G — S is disconnected or has just one
vertex. A graph G is k-connected if its connectivity is at least
k. For a subset S of vertices, we denote by ¢(G — S) the number
of components of G — S. We also use o(G — S) for the number
of odd components of G — S. For graph theory terminology see
[12].

A set of pair-wise independent edges in a graph G is called a
matching. A matching is perfect if it is incident with every
vertex of G. A graph G is called factor-critical if G — v has a
perfect matching for every vertex v.

Note that the removal of a vertex in a graph may decrease the
domination number. A graph G is called vertez domination
critical if y(G—v) < ¥(G), for every vertex v in G. For references
on vertex domination critical graphs see [1, 4, 10].

Chen et al. [2] introduced the total restrained domination, which
was further studied by J. H. Hattingh et al, [2, 3, 7]. A set
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S C V(G) is a total restrained dominating set or just a TRDS
if every vertex is adjacent to a vertex in S and every vertex
in V(G)\S is also adjacent to a vertex in V(G)\S. The total
restrained domination number of G, denoted by 7:-(G), is the
minimum cardinality of a TRDS of G.

Gera et al. [6] studied vertex and edge critical total restrained
domination in graphs. A graph G is total restrained domination
vertezx critical or just -y.-vertex critical if, for any vertex v of
V(G)\ S(G), 1r(G — v) < 1-(G), where S(G) is the set of all
support vertices of G. Similarly, G is total restrained domination
edge critical or just 7,,-edge critical if for any e & E(G), 7,-(G +
e) < 7-(G). They characterized all 7;,-vertex critical trees, as
well as those 7;,.(G)-vertex critical graphs G for which v;,.(G) —
Yr(G — v) = n — 2 for some v € V(G). A ~,-vertex critical
graph G with 7, (G) = k is called k — y;,-vertez critical.

Matching properties in 3 — ~y,-vertex critical graphs are studied
in [5]. In this paper we study matching properties in 4 — 7,
-vertex critical graphs with minimum degree at least two.

All graphs in this paper are connected, and have minimum de-
gree at least two. We call a vertex v, as a total restrained
domination critical vertex, or just 7-vertex critical vertex, if
Yir (G —v) < %-(G). Thus a graph G is v,,-vertex critical if each
vertex v of G is y,,-vertex critical. For a vertex v in a 7;,-vertex
critical graph G, we denote by S, a minimum TRDS for G — v.

2 Some preliminary results
We begin this section with the following known results.

Theorem 1 (Tutte [11]) A graph G has a perfect matching if
and only if o(G — S) < |S| for all S C V(G).
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Theorem 2 (Lovasz and Plummer [9]) A graph G is factor-
critical if and only if o(G — S) < |S| =1 for all S C V(G).

Lemma 3 (Jafari Rad [5]) LetG be a~y;.-vertez critical graph
andv € V(G). If S, N Ng(v) # 0, then Ng(v) C S,.

The following is obviously verified.

Observation 4 Let G be a 4 — y,-vertex critical graph, and let
S be a cut-set with at least two vertices. Then for any vertex

veS, S,NS#0.

To obtain our main results, we study minimum degree and con-
nectivity in 4 — 7,-vertex critical graphs.

Lemma 5 IfG is a 4 —y,-vertez critical graph, then 6(G) > 3.

Proof. Let G be a 4 — v;,-vertex critical graph. Assume to the
contrary, that 6(G) = 2. Let z be a vertex with deg(z) = 2, and
let N(z) = {y, z}. For S, to dominate z, it follows that z € S,
or z € S,. But S, isa TRDS for G—y, and z is a leaf in G —y.
We deduce that z € S,. By Lemma 3, N(y) C S,.

If |S,| = 2, then deg(y) = 2 and N(y) = {z,z}. But then
{z,y, 2z} is a TRDS for G, a contradiction. Thus |S,| = 3. Let
S, = {z,zw}, where w is adjacent to z, since G[S,] has no
isolated vertex. By Lemma 3, deg(y) € {2,3}. If w is adjacent
to y, then {w, z} is a TRDS for G, a contradiction. If not, then
deg(y) = 2 and z is adjacent to y. Again {2, w} is a TRDS for
G, a contradiction. m

Theorem 6 If G is a 4 — y--vertez critical graph, then G is
2-connected.
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Proof. Let G be a 4 — ~y,-vertex critical graph. Assume to
the contrary, that G has a cut vertex z. Since G[S,] is con-
nected, (note that S, is a TRDS with |S;| < 4), and G — z
is disconnected, the set S, doesn’t dominate G — z. This is a
contradiction, and thus G is 2-connected. m

We next show that if there is a cut-set S of size 2 in a 4 — 7,,-
vertex critical graph G, then the number of odd components of
G — S is at most 2.

Theorem 7 Let G be a 4 — 7-vertex critical graph. If S is a
cut-set of size 2, then o(G — S) < 2.

Proof. Let G be a 4 — ~,,-vertex critical graph, and let S =
{z,y} be a minimum cut-set. By Lemma 5, any component of
G — S has at least two vertices. Let Gy, Gy, ..., G be the odd
components of G — S. Assume to the contrary, that £k > 3.
By Observation 4, z € S,. Since |S,| < 3, we observe that at
most two odd components of G — S contain vertices of S,. This
implies that z is adjacent to every vertex of at least k£ — 2 odd
components of G — S.

Further, for 1 < i < k, N(z) N V(G;) # 0. By Lemma 5, for
1 < i<k, |V(G)| = 3. This shows that deg(z) > 5. Also
y € S;, and we similarly have

(1) y is adjacent to every vertex of at least k — 2 components of
G-S,

(2)for1<i<k, Nly)NV(G;) # 0,
(3) deg(y) > 5.

As an immediate result of Lemma 3, we deduce that y is not
adjacent to z. Let G; be a component such that V(G;) C
N(z). There is a vertex z € V(Gj) such that z is adjacent
to y. Since S, NS # @, by Lemma 3, S, = {z,y, 2}, where
z; € N(2)NV(Gj;). Using Lemma 3, we obtain dege(z) = 3 and
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z; is adjacent to y. But then S;, NS # 0, and by Lemma 3,
deg(z;) = 3. This implies that V(G;) = {2, z1}, a contradiction
to the assumption that G; is an odd component of G~ 5. ®

3 Matching properties

In this section we study matching properties in 4 — 7.-vertex
critical graphs. Theorem 1 leads that any 4 — 7;,-vertex critical
claw-free graph of even order has a perfect matching.

Theorem 8 Any 4 — vyi,-vertez critical claw-free graph of odd
order is factor-critical.

Proof. Let G be a 4 — ;,-vertex critical claw-free graph of odd
order. Suppose to the contrary that G is not factor critical. By
Theorem 2, there is a subset S C V(G) such that o(G—S) > |S]|.
Since G is of odd order, we conclude that o(G — S) > |S| + 1.
By Theorem 6, |S| > 2. So o(G — S) > 3. From Lemma 7, we
obtain that |S| > 3. Then o(G — S) = 4. Let Gy, G2, Gz and
G4 be four odd components of G — S. We proceed with Fact 1.

Fact 1. For any vertexz € S, |S;]=3and S; C S.

Proof of Fact 1. Since o(G — S) > 4, clearly for any z € S,
|S: N'S| > 2. Assume to the contrary that there is a vertex
z € S such that |S; N S| =2. Let S;NS = {a,b}. If a has some
neighbor in at least three components of G — S, then there is a
K, 3 with center a, a contradiction. Thus the neighbors of a in
G — S are in at most two components. Similarly the neighbors of
bin G — S are in at most two components. Thus we may assume
without loss of generality that a is adjacent to all vertices of G
and G,, and b is adjacent to all vertices of G5 and a vertex of
G,. (since maybe |S;| = 3 and the third vertex of S; be in Gy).
Now we have a K 3 with center a and a leaf in Gy, a leaf in Gy
and a leaf in G3, a contradiction.(d
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An immediate consequent is that |S| > 4, and thus o(G-S) > 5.
Since G is claw-free, each of a, b, and ¢ has neighbors in at most
two components of G — S. In particular, a is adjacent to some
vertex in G — S. By Fact 1 and Lemma 3, S, N {b,c} = 0. This
implies that |S| > 6 and thus o(G — S) > 7. Now we have a
K 3 with center a, b, or ¢, a contradiction. m

Now we study K 4-free graphs. We first investigate some prop-
erties of cut-sets.

Lemma 9 If S is a cut-set of size 3 in a 4 — ~y,.-vertez critical
K, 4-free graph G, then o(G — S) < 4.

Proof. Let G be a 4—;,-vertex critical K 4-free graph and let S
be a cut-set of size 3. Suppose to the contrary, that o(G—S) > 4.
Let Gy, G2, G3, G4 be four odd components of G — S. Suppose
that S = {z,y,2}. If |S; N S| = 1, then S, NS dominates the
vertices of at least four components of G — S, giving a Kj 4, a
contradiction. So |S;NS| = 2, and so 5;NS = {y, 2}. Similarly,
S,NS={z,2z} and S, NS = {z,y}.

If y is adjacent to z, then we deduce from S, NS = {z, 2z} and
Lemma 3, that N(y) C S,. According to Lemma 5, we have
deg(y) > 3. So deg(y) = 3 and S, = N(y) = {z, 2, w,}, where
w; ¢ S. Similarly, S, = N(z) = {z,y,w,}, where w, & S.
Let wy),w; € V(G1) UV(G;). We conclude that S, does not
dominate V(G3) U V(G,), a contradiction.

Thus y is not adjacent to z. Similarly, z € N(y) U N(z), and
therefore S is an independent set. Let w € V(G)\ S. We
observe that S, NS # 0, and since G[S,)] is connected, we find
that N(z) N N(y) " N(z) # 0. Let a € N(z) N N(y) N N(=2).
Since S,NS # @, by Lemma 3 we obtain that S, = {z,y, 2} and
deg(a) = 3. This contradicts the fact that S is independent. m
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Lemma 10 Let S be a cut-set of size 4 in a 4—y,--vertez critical
K 4-free graph G. If ¢(G — S) > 5, then for any vertez v €
VG)\S, |Sy|=3 and S, C S.

Proof. Let G be a 4 — v;,-vertex critical K 4-free graph, and
let S be a cut-set of size 4. Suppose that ¢(G — §) > 5. Since
G is K 4-free, for any vertex z € V(G), |S: N S| > 2. Assume
to the contrary, that there is a vertex v € V(G) \ S such that
|S, N S| = 2. Let S = {z,y, 2, w}, and let Gy, Gy, ..., G5 be five
components of G — S. Let v € V(G;) and S, NS = {z,y}.

If V(G,) = {v} then N(v) C S, and so we have S, N Ng(v) # 0
by Lemma 5. Hence Lemma 3 implies that Ng(v) C S,, and we
obtain the contradiction |S, N S| = 3. So |V(G1)| > 1.

Let G' = G—v. If ¢(G—S) > 6, then ¢(G'—S) > 6. In this case
G’ has an induced K} 4, and so G has an induced K 4. This is
a contradiction. We deduce that ¢(G — S) = 5.

We show that |S,| = 3. Assume that |S,| = 2. Then S, = {z,y}
and z and y are adjacent. Since G is K 4-free, N(z)N((V(G1)U
.UV(Gs))—{v}) # 0 and N(y)N((V(G1)U...UV(Gs)) - {v}) #
0. If {z,w} C N(z), then by Lemma 3, |S;| > 4, a contradiction.
Thus {z,w} € N(z), and similarly {z,w} € N(y). Thus we
may assume that z € N(z) and w € N(y). If deg(y) > 4, then
by Lemma 3, |S,| > 4, a contradiction. Thus deg(y) = 3 and
similarly deg(z) = 4. But then {z,y} does not dominate G — v,
a contradiction. Thus |S,| = 3.

We next show that z & N(y). Assume that £ € N(y). Since
G—S has five components, and |S,NS| = 2, we may assume that
one of z or y is adjacent to some vertex in three components of
G — S. Without loss of generality, assume that y is adjacent to
some vertex in each of G35, G4 and Gs. Then z is adjacent to any
vertex in Go and Gy —v. If there are z; € (N(y)NV(G3))—N(zx),
T3 € (N(y) NV(Gy4)) — N(z) and 23 € (N(y) NV(Gs)) — N(x),
then G[{z,y,z1,%2,23}] is a Ky4, a contradiction. Thus we
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may assume, without loss of generality, that z is adjacent to
any vertex of Gs. By Lemma 3, {z,w} C S,, and S, NS =
{z,w}. Let a € N(y) N V(Gs). Since S, dominates G5 we may
assume that z is adjacent to a. Now {z,y, 2} C N(a). Then by
Lemma 3, S, = {z, ¥, 2}, since G is K] 4-free. This implies that
z € N(z). But then |S;| > 4, a contradiction.

Thus z is not adjacent to y.

There is a vertex z; € V(G) \ S such that S, = {z,y,21}. So z
is adjacent to both = and y. We show that N(z;) N {z,w} = 0.
It is easy to see that {z,w} € N(z1). Suppose to the contrary
that N(z1) N {z,w} # 0. Assume that z € N(z;). This implies
that S,, = {z,y,2}. As an immediate result z is adjacent to
both z and y. But then S, N N(2) # 0, and so by Lemma 3,
S, = {z,y,2}. Further, N(z1) = {z,y,2}. So w is adjacent to
either z or y. Suppose that w is adjacent to z. Then N(z) C S,.
It follows that |S,| > 3, a contradiction. We conclude that
N(z)N{z,w}=0. So {z,w} C N(z) UN(y).

Since [Sz| < 3 and |S,] < 3, we have {z,w} € N(z), and
{z,w} € N(y). Thus we may assume that w € N(z) and z €
N(y). 1t follows that {z,w} C S, {y,2} C S,. Further, S, N
S = {z,w}, S; NS = {y,2z}. This provides an induced K;,
since ¢(G — S) = 5, a contradiction. m

Lemma 11 If S is a cut-set of size 4 in a 4 — ,,-vertez critical
K, 4-free graph G, then o(G — S) < 5.

Proof. Let G be a 4—~;,-vertex critical K- 1,4-free graph and let .S
be a cut-set of size 4. Suppose to the contrary, that o(G—8) > 5.
Let S = {z,y,z,w} and let v € V(G) \ S. By Lemma 10,
|So| = 3 and S, C S. Suppose that S, = {x,y, 2}, where y
is adjacent to both z and z. If y is adjacent to w, then by
Lemma 3, we conclude that dege(y) = 3 and N(y) = {=z, z, w},
since Sy, NS # 0. But then S; = {z,z,w} is a cut-set with
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o(G — §1) > 6, contradicting Lemma 9. So y is not adjacent
to w. Since w is dominated by S, = {z,y, 2}, we may assume,
without loss of generality, that z is adjacent to w. Similarly
(similar to the case that y is not adjacent to w) we see that
z is not adjacent to z. Since G is Kj4-free, we observe that
|S;NS| > 2. Now Lemma 3 implies that Ng(z) C S,. According
to Lemma 5, deg(z) > 3 and hence deg(z) = 3. Since z and z are
not adjacent, there is a vertex a € V(G) — S which is adjacent
to z. Thus S, = {y,w, a}. Since y and w are not adjacent and
G|S.] has no isolated vertex, we see that a is adjacent to y, 2
and w. By Lemma 10, S, = {y, z,w}. Now since |[S, N S| > 2,
by Lemma 3, S, = {z,z,a}. In particular, deg(y) = 3. But
from S, = {y, z,w}, we deduce that w is adjacent to all vertices
of G — (S U{a}). This produces a K4, a contradiction. m

Lemma 12 Let S be a cut-set of size at least 5 in a 4 — -
vertex critical K, 4-free graph G. If ¢(G — S) > 6, then for any
vertez v € V(G), |S,| =3 and S, C S.

Proof. Let G be a 4 — y;-vertex critical K 4-free graph and let
S be a cut-set of size at least 5. Suppose that ¢(G — S) > 6. It
can be easily seen that for any vertex z € V(G), |S; N S| > 2.
Assume to the contrary, that there is a vertex y € V(G) such
that |S, NS| = 2. It follows that any vertex of S, NS dominates
the vertices of at least three components of G — S. ThlS yields
an induced K 4, a contradiction. ®

Lemma 13 If S is a cut-set of size 5 in a 4 — yr--vertez critical
K 4-free graph G, then o(G — S) < 6.

Proof. Let G be a 4 — ~y,-vertex critical K 4-free graph and let
S be a cut-set of size 5. Suppose to the contrary, that o(G—S) >
6. Let y € S be a vertex such that deggis)(y) = A(G[S]). If
deggis)(y) > 4, then by Lemma 3, |S,| > 4, a contradiction.
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Thus A(G[S]) < 3. If deggys)(y) = 3, then by Lemma 12, |Sy| =
3 and degg(y) = 3. Then S) = S\ {y} is a cut-set with o(G —
S1) 2 6, contradicting Lemma 11. We deduce that deggis)(y) =
A(G[S]) < 2. By Lemma 12, deggis)(y) = A(G[S]) = 2. But
then S, € S contradicting Lemma 12. m

Now we are ready to give the main results of this paper.

Theorem 14 Any 4 — y,,.-vertex critical K, 4-free graph of even
order has a perfect matching.

Proof. Let G be a 4 — y,-vertex critical K 4-free graph of even
order. Suppose to the contrary that G has no perfect matching.
By Theorem 1, there is a subset S C V(G) such that o(G—-S) >
|S| + 1. Since G is of even order, we conclude that o(G — S) >
|S| +2. Since x(G) > 2, we observe that |S| > 2. By Theorem 7
and Lemmas 9, 11, 13, we deduce that |{S| > 6. Thus o(G—S) >
8. Since G is K 4-free, it follows from Lemma 12 that for any
vertex v € S, |S,| = 3 and S, C S. We consider the following
cases.

Case 1. Assume that |S| = 6. It follows that o(G — S) > 8.
Now let u be a vertex of G — S. By Lemma 12, S, C S and
|Su| = 3. Since G[S,] is connected, a vertex of S, is adjacent to
the other two vertices of S,. Now S, dominates S, and there are
three other vertices in S. Thus there is a vertex u, in 9, that is
adjacent to at least three vertices of S. If deggys)(u1) = 4, then
by Lemma 3, |Sy,| > 4, a contradiction. Thus deggs)(u1) = 3.
But |S,,| = 3 and S,, € S. Thus by Lemma 3, degg(u) = 3.
Now S; = S\ {u;) is a cut-set with o(G — S;) > 8, contradicting
Lemma 13.

Case 2. Assume that |S| > 7. It follows that o(G — S) > 9. Let
G1, Gy, ..., Gg be nine components of G — S. Let v € V(G,). By
Lemma 12, |S,| =3 and S, € S. Let S, = {z,y, 2}, where y
is adjacent to both z and 2. Since G is K 4-free, we find that
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o(G—S)=9and |S| =7 If |V(Gy)| > 1, then G — (SU {v})
has exactly nine components, and any vertex of S, dominates
the vertices of exactly three components of G — (SU {v}). This
implies that (N(z) N N(y)) N (V(G) — (SU {v})) = (N(y) N
N(2))N(V(G) - (SuU{v})) = 0. Now we can obtain an induced
K4, for example with center z and leaf y. Thus we assume
that |V(G;)| = 1. Then G — (S U {v}) has eight components
Gy, Gs, ..., Ge. It is obvious that each of z, y and z can dominates
at most three components. If (N(z) N N(y)) N (V(Gz)U ... U
V(Go)) # @ and (N(y)NN(2))N(V(G2)U...UV(Gy)) # 0, then
S, dominates at most 7 components of G — S, a contradiction.
Thus we may assume, without loss of generality, that (N(z) N
N(y) N (V(Gz) U ... U V(Gy)) = 0. Since {z,y} dominates at
least five components of G — S, there is a K, 4 with center z and
leaf y or with center y and leaf z, a contradiction. m

Theorem 15 Any 4 — v,,.-vertez critical K, 4-free graph of odd
order is factor-critical.

Proof. Let G be a 4 — ~y,-vertex critical K| 4-free graph of odd
order. Suppose to the contrary that G is not factor critical. By
Theorem 2, there is a subset S C V(G) such that o(G—S) > |S|.
Since G is of odd order, we conclude that o(G—S) > |S|+1. By
Theorem 6, |S| > 2. So o(G — S) > 3. It follows from Theorem
7 that |S| > 3. But then we use Lemmas 9, 11 and 13 to deduce
that |S| > 6. This implies that o(G — S) > 7. By Lemma 12,
for any vertex v € V(G), |Sy| = 3 and S, € S. We consider the
following cases.

Case 1. Assume that |S| = 6. If there is a vertex v € S such
that v is not adjacent to a vertex in G — S, then S; = S — {v}
is a vertex cut set with o(G — S;) > 8, contradicting Lemma
13. Thus for any vertex v € S, each vertex of S, is adjacent
to some vertex in G — S. Now Lemma 3 implies that for any
vertex v € S, S, N N[v] = 0. It follows that A(G[S]) = 2. Let
S = {v1,vs,...,v6} and let v, be adjacent to v; and v3. Then
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Sy, = {v4,vs,v6}, and we may assume that vs is adjacent to
vs and vg. Since S,, dominates {vi,v3}, we may assume that
v € N(vg) and vy € N(v3). Thus G[S] is a cycle on six vertices.
Let w € G — S. By Lemma 12, S, € S. But then S, cannot
dominate S, a contradiction.

Case 2. Assume that |S| > 7. Then o(G - S) > 8. Let v € S.
By Lemma 12, we assume that S, = {z,y,z} C S, where y
is adjacent to z and 2. Since G is K 4-free, any vertex of S,
dominates at most three components of G—S. If (N(z)NN(y))N
(V(G)=8S) # 0 and (N(y) N N(2)) N (V(G) — S) # 0, then S,
dominates at most 7 components of G—S, a contradiction. Thus
we may assume, without loss of generality, that (N(z) NN (y))N
(V(G)—S) = 0. Since {z,y} dominates at least five components
of G — S, there is a K; 4 with center z and leaf y or with center
y and leaf z, a contradiction. m
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