A note on hyper-Wiener index

Xuli Qi^a, Bo Zhou^{b,*}

^aCollege of Mathematics and Information Science, Hebei Normal University, Hebei Key Laboratory of Computational Mathematics and Applications,

Shijiazhuang 050024, P. R. China e-mail address: qixuli-1212@163.com

^bDepartment of Mathematics, South China Normal University, Guangzhou 510631, P. R. China

e-mail address: zhoubo@scnu.edu.cn

Abstract

The hyper-Wiener index is a graph invariant that is used as a structure descriptor for predicting physicochemical properties of organic compounds. We determine the n-vertex unicyclic graphs with the third smallest and the third largest hyper-Wiener indices for $n \geq 5$.

1 Introduction

We consider simple graphs. Let G be a connected graph with vertex set V(G) and edge set E(G). For $u, v \in V(G)$, d_{uv} denotes the distance between vertices u and v in G. The hyper-Wiener index of G is defined as [4, 5]

$$WW(G) = \sum_{\{u,v\} \subseteq V(G)} \binom{d_{uv}+1}{2} = \frac{1}{2} \sum_{\{u,v\} \subseteq V(G)} (d_{uv}^2 + d_{uv}).$$

Used as a structure descriptor (topological index) for predicting physicochemical properties of organic compounds [1], the hyper-Wiener index has been extensively studied, see, e.g., [2, 3, 6]. Among others, Xing et al. [6] determined the n-vertex unicyclic graphs (connected graphs with a unique cycle) of cycle length r with the smallest and the largest hyper-Wiener

^{*}Corresponding author.

indices for $3 \le r \le n$, and the *n*-vertex unicyclic graphs with the smallest, the second smallest, the largest and the second largest hyper-Wiener indices for n > 5.

In this note, we determine the n-vertex unicyclic graphs with the third smallest and the third largest hyper-Wiener indices. By the results of [6], among the unicyclic graphs on $n \geq 6$ vertices, there are two graphs with the second smallest hyper-Wiener index, and two graphs with the second largest hyper-Wiener index. It is of interest to note that the results of this paper show that among the unicyclic graphs on n vertices, there is one graph for $n \geq 8$ with the third smallest hyper-Wiener index, and one graph for $n \geq 6$ with the third largest hyper-Wiener index.

2 Preliminaries

The number of vertices of G is denoted by |G|. Let C_n be the n-vertex cycle. Let $C_r(T_1, T_2, \ldots, T_r)$ be the graph constructed as follows. Let the vertices of the cycle C_r be labelled consecutively by v_1, v_2, \ldots, v_r . Let T_1, T_2, \ldots, T_r be vertex-disjoint trees such that T_i and the cycle C_r have exactly one vertex v_i in common for $i = 1, 2, \ldots, r$. Then any n-vertex unicyclic graph G with a cycle on r vertices is of the form $C_r(T_1, T_2, \ldots, T_r)$,

where
$$\sum_{i=1}^{r} |T_i| = n$$
. Let $t_i = |T_i|$ for $1 \le i \le r$.

Let G be a connected graph. Recall that the Wiener index of G is defined as $W(G) = \sum_{\{u,v\}\subseteq V(G)} d_{uv}$. For $u \in V(G)$, let $W_u(G) = \sum_{v \in V(G)} d_{uv}$ and $WW_u(G) = \sum_{v \in V(G)} {d_{uv+1} \choose 2}$.

Lemma 2.1. [6] For $r \geq 3$, let $G = C_3(T_1, T_2, T_3)$ with $t_3 = 1$. Then

$$WW(G) = \sum_{i=1}^{2} WW(T_{i}) + \sum_{i=1}^{2} (|G| - t_{i})WW_{v_{i}}(T_{i}) + \sum_{i < j} t_{i}t_{j}$$
$$+ \sum_{i=1}^{2} \sum_{j \neq i} t_{j}W_{v_{i}}(T_{i}) + W_{v_{1}}(T_{1})W_{v_{2}}(T_{2}).$$

For $t_1, t_2, \ldots, t_r \geq 1$, let $S_n(t_1, t_2, \ldots, t_r)$ be the *n*-vertex unicyclic graph formed by attaching $t_i - 1$ pendant vertices to vertex v_i of the cycle C_r , and $P_n(t_1, t_2, \ldots, t_r)$ the *n*-vertex unicyclic graph formed by attaching a path on $t_i - 1$ vertices (no path is attached if $t_i = 1$) to vertex v_i of the cycle C_r , where $t_1 + t_2 + \cdots + t_r = n$.

Lemma 2.2. [6] For $G = C_r(T_1, T_2, ..., T_r)$ with |G| = n,

$$WW(S_n(t_1,t_2,\ldots,t_r)) \leq WW(G) \leq WW(P_n(t_1,t_2,\ldots,t_r))$$

with left equality if and only if $G = S_n(t_1, t_2, ..., t_r)$ and with right equality if and only if $G = P_n(t_1, t_2, ..., t_r)$.

Lemma 2.3. [6] Let $G = S_n(t_1, t_2, \ldots, t_r)$. Suppose that there exist k and l with $1 \le k < l \le r$ such that $t_k, t_l \ge 2$. Let $a \in V(T_k), b \in V(T_l)$ with $a \ne v_k$ and $b \ne v_l$. If $WW_a(G) \le WW_b(G)$, then $WW(G) > WW(G - v_lb + v_kb)$.

Lemma 2.4. [6] Let $G = P_n(t_1, t_2, \ldots, t_r)$. Suppose that there exist k and l with $1 \le k < l \le r$ such that $t_k, t_l \ge 2$. Let $a \ne v_k$ and $b \ne v_l$ be end vertices of T_k and T_l and let c be the unique neighbor of b. If $WW_a(G) \ge WW_b(G)$, then WW(G) < WW(G - cb + ab).

Let $S_{n,r}$ be the unicyclic graph obtained by attaching n-r pendant vertices to a vertex of the cycle C_r , $P_{n,r}$ the unicyclic graph obtained by attaching a path on n-r vertices (at one terminal vertex) to the cycle C_r , where $3 \le r \le n$. In particular, $S_{n,n} = P_{n,n} = C_n$.

Lemma 2.5. [6] Let G be an n-vertex unicyclic graph with cycle length r. Then $WW(G) \geq WW(S_{n,r})$ with equality if and only if $G = S_{n,r}$, where

$$WW(S_{n,r}) = \begin{cases} \frac{72n^2 + (2r^3 + 18r^2 - 98r - 90)n - r^4 - 15r^3 + 25r^2 + 87r}{48} & \text{if } r \text{ is odd,} \\ \frac{72n^2 + (2r^3 + 18r^2 - 92r - 72)n - r^4 - 15r^3 + 22r^2 + 72r}{48} & \text{if } r \text{ is even.} \end{cases}$$

Lemma 2.6. [6] Let G be an n-vertex unicyclic graph with cycle length r. Then $WW(G) \leq WW(P_{n,r})$ with equality if and only if $G = P_{n,r}$, where

$$WW(P_{n,r}) = \begin{cases} \frac{n^4 + 2n^3 + (-3r^2 + 6r - 4)n^2 + (3r^3 - 12r^2 + 15r - 8)n}{24} \\ + \frac{-r^4 + 11r^3 - 23r^2 + 13r}{48} & \text{if r is odd,} \\ \frac{n^4 + 2n^3 + (-3r^2 + 6r - 1)n^2 + (3r^3 - 12r^2 + 12r - 2)n}{24} \\ + \frac{-r^4 + 11r^3 - 20r^2 + 4r}{48} & \text{if r is even.} \end{cases}$$

Let \mathbb{U}_n be the set of *n*-vertex unicyclic graphs. Let Γ_n be the set of *n*-vertex unicyclic graphs $C_3(T_1,T_2,T_3)$ with $|T_2|=|T_3|=1$. Let Ψ_n be the set of *n*-vertex unicyclic graphs $C_3(T_1,T_2,T_3)$ with $|T_1|\geq |T_2|\geq \max\{|T_3|,2\}$. Let Θ_n be the set of *n*-vertex unicyclic graphs $C_4(T_1,T_2,T_3,T_4)$ with $|T_2|=|T_3|=|T_4|=1$. Let Ω_n be the set of *n*-vertex unicyclic graphs $C_4(T_1,T_2,T_3,T_4)$ with $|T_1|\geq |T_2|\geq 2$ or $|T_1|\geq |T_3|\geq 2$. Let Φ_n be the set of *n*-vertex unicyclic graphs with cycle length at least five.

Let S_n and P_n be respectively the *n*-vertex star and path. For $n \geq 5$, let S'_n be the tree formed by attaching a pendant vertex to a pendant vertex

of the star S_{n-1} . Let P'_n be the tree formed by attaching a pendant vertex to the neighbor of one end vertex of P_{n-1} .

Lemma 2.7. [3] Among the n-vertex trees with $n \geq 5$, different from S_n , S'_n is the unique tree with the smallest hyper-Wiener index, which is equal to $\frac{1}{2}(3n^2 - n - 14)$, and among the n-vertex trees with $n \geq 5$, different from P_n , P'_n is the unique tree with the largest hyper-Wiener index, which is equal to $\frac{1}{24}(n^4 + 2n^3 - 13n^2 + 10n + 72)$.

3 The third smallest hyper-Wiener index

Among the graphs in \mathbb{U}_n with $n \geq 5$, we showed in [6] that $S_{5,3}$ and C_5 for n = 5, and $S_{n,3}$ for $n \geq 6$ are the unique graphs with the smallest hyper-Wiener index, which is equal to $\frac{1}{2}(3n^2 - 7n)$, and that $S_6(3,2,1)$, $S_{6,4}$ and $S_{6,5}$ for n = 6, and $S_n(n - 3,2,1)$ and $S_{n,4}$ for n = 5 and $n \geq 7$ are the unique graphs with the second smallest hyper-Wiener index, which is equal to $\frac{1}{2}(3n^2 - n - 24)$. In this section, we determine the graphs with the third smallest hyper-Wiener index in \mathbb{U}_n with $n \geq 5$, which are just the graphs with the smallest hyper-Wiener index in $\mathbb{U}_5 \setminus \{S_{5,3}, C_5, S_5(2,2,1), S_{5,4}\}$ for n = 5, $\mathbb{U}_6 \setminus \{S_{6,3}, S_6(3,2,1), S_{6,4}, S_{6,5}\}$ for n = 6, and $\mathbb{U}_n \setminus \{S_{n,3}, S_n(n - 3,2,1), S_{n,4}\} = (\Gamma_n \setminus \{S_{n,3}\}) \cup (\Psi_n \setminus \{S_n(n-3,2,1)\}) \cup (\Theta_n \setminus \{S_{n,4}\}) \cup \Omega_n \cup \Phi_n$ for $n \geq 7$.

For $n \geq 5$ and $3 \leq r \leq n-2$, let $S'_{n,r}$ be the *n*-vertex unicyclic graph formed by attaching a path on two vertices and n-r-2 pendant vertices to a (common) vertex of the cycle C_r . Evidently, $S'_{n,3} \in \Gamma_n$ and $S'_{n,4} \in \Theta_n$. Note that $\mathbb{U}_5 \setminus \{S_{5,3}, C_5, S_5(2,2,1), S_{5,4}\} = \{S'_{5,3}\}$.

Lemma 3.1. [6] Among the graphs in $\Gamma_n \setminus \{S_{n,3}\}$ with $n \geq 5$, $S'_{n,3}$ is the unique graph with the smallest hyper-Wiener index, which is equal to $\frac{1}{2}(3n^2-n-18)$.

Lemma 3.2. Among the graphs in $\Psi_n \setminus \{S_n(n-3,2,1)\}$ with $n \geq 6$, $S_6(2,2,2)$ for n=6 and $S_n(n-4,3,1)$ for $n \geq 7$ are the unique graphs with the smallest hyper-Wiener index, which is equal to 42 for n=6 and $\frac{1}{2}(3n^2+5n-60)$ for $n\geq 7$.

Proof. The case n=6 may be checked directly. Suppose that $n \geq 7$. Let $H_n = C_3(S'_{n-3}, S_2, S_1)$ where v_1 has degree n-3. It may be checked that

$$WW(H_n) = \frac{1}{2}(3n^2 + 5n - 40) > \frac{1}{2}(3n^2 + 5n - 60) = WW(S_n(n - 4, 3, 1)).$$

Let $G = C_3(T_1, T_2, T_3) \in \Psi_n \setminus \{S_n(n-3, 2, 1)\}$ with $t_1 \geq t_2 \geq \max\{t_3, 2\}$. If $t_2 = 2$ and $t_3 = 1$, then by Lemmas 2.1 and 2.7, we have $WW(G) \geq WW(H_n) > WW(S_n(n-4, 3, 1))$. Suppose that $(t_2, t_3) \neq (2, 1)$. By Lemma 2.2, we have $WW(G) \geq WW(S_n(t_1, t_2, t_3))$. If $t_i \geq 2$ in $S_n(t_1, t_2, t_3)$, then u_i denotes a pendant vertex of T_i and $u_i \neq v_i$ for i=1,2,3. It is easy to check that if $t_i \geq t_j \geq 2$, then $WW_{u_i}(S_n(t_1,t_2,t_3)) \leq WW_{u_j}(S_n(t_1,t_2,t_3))$ for i,j=1,2,3 with $i\neq j$. Now by Lemma 2.3, we have $WW(G)>WW(S_n(n-4,3,1))$ for $t_2=2$ and $t_3=2$, and $WW(G)\geq WW(S_n(t_1+t_3-1,t_2,1))\geq WW(S_n(n-4,3,1))$ with equalities if and only if $t_2=3$ and $t_3=1$ for $t_2\geq 3$. \square

Lemma 3.3. Among the graphs in $\Theta_n \setminus \{S_{n,4}\}$ with $n \geq 6$, $S'_{n,4}$ is the unique graph with the smallest hyper-Wiener index, which is equal to $\frac{1}{2}(3n^2 + 5n - 40)$.

Proof. Let $G = C_4(T_1, T_2, T_3, T_4) \in \Theta_n \setminus \{S_{n,4}\}$. Note that $WW(C_4) = 10$. Then

$$WW(G) = 10 + WW(T_1) + \sum_{u \in V(T_1) \backslash \{v_1\}} \left[2 \binom{d_{uv_2} + 1}{2} + \binom{d_{uv_3} + 1}{2} \right],$$

which, together with Lemma 2.7, implies that $S'_{n,4}$ is the unique graph in $\Theta_n \setminus \{S_{n,4}\}$ with the smallest hyper-Wiener index, which is equal to $\frac{1}{2}(3n^2 + 5n - 40)$. \square

For $G=C_4(T_1,T_2,T_3,T_4)=S_n(t_1,t_2,t_3,t_4)$, let u_i be a pendant vertex of T_i with $u_i\neq v_i$ if $t_i\geq 2$ for $1\leq i\leq 4$. The following two properties are easily seen: For $\{i,j\}=\{1,3\}$ or $\{2,4\}$, we have $WW_{u_i}(G)\leq WW_{u_j}(G)$ if $t_i\geq t_j\geq 2$; For the cycle $v_iv_jv_lv_k$, we have $WW_{u_i}(G)\leq WW_{u_j}(G)$ if $t_i\geq t_j\geq 2$ and $t_k=t_l=1$.

Lemma 3.4. Among the graphs in Ω_n with $n \geq 6$, $S_n(n-4,2,1,1)$ is the unique graph with the smallest hyper-Wiener index, which is equal to $\frac{1}{2}(3n^2+5n-54)$.

Proof. It is easily seen that $WW(S_n(n-4,2,1,1)) = \frac{1}{2}(3n^2 + 5n - 54)$. Let $G = C_4(T_1, T_2, T_3, T_4) \in \Omega_n$. Suppose without loss of generality that $t_1 \geq \max\{t_2, t_3, t_4\}$ and $t_2 \geq t_4$. By Lemma 2.2, we have $WW(G) \geq WW(S_n(t_1, t_2, t_3, t_4))$ with equality if and only if $G = S_n(t_1, t_2, t_3, t_4)$. Suppose that $G = S_n(t_1, t_2, t_3, t_4)$. By Lemma 2.3, if $t_2 = 1$, then $WW(G) \geq WW(S_n(n-4,1,2,1)) = \frac{1}{2}(3n^2 + 13n - 94) > WW(S_n(n-4,2,1,1))$, and if $t_2 \geq 2$, then

$$WW(G) \geq WW(S_n(t_1+t_3-1,t_2+t_4-1,1,1))$$

$$\geq WW(S_n(n-4,2,1,1))$$

with equalities if and only if $t_3 = t_4 = 1$ and $t_2 = 2$, i.e., $G = S_n(n - 4, 2, 1, 1)$. The result follows. \square

Lemma 3.5. Among the graphs in $\Phi_n \setminus \{S_{6,5}\}$ with $n \geq 6$, C_6 for n = 6 and $S_{n,5}$ for $n \geq 7$ are the unique graphs with the smallest hyper-Wiener index, which is equal to 42 for n = 6 and $\frac{1}{2}(3n^2 + 5n - 60)$ for $n \geq 7$.

Proof. The result holds trivially for n = 6. Suppose that $n \ge 7$. By the expression for $WW(S_{n,r})$ given in Lemma 2.5, if r is odd and $7 \le r \le n$, then we have

$$48[WW(S_{n,r}) - WW(S_{n,5})]$$
= $(2r^3 + 18r^2 - 98r - 210)n - r^4 - 15r^3 + 25r^2 + 87r + 1440$
 $\geq (2r^3 + 18r^2 - 98r - 210)r - r^4 - 15r^3 + 25r^2 + 87r + 1440$
= $r^4 + 3r^3 - 73r^2 - 123r + 1440 > 0$,

and thus $WW(S_{n,r}) > WW(S_{n,5})$, and if r is even and $6 \le r \le n$, then we have

$$48[WW(S_{n,r}) - WW(S_{n,5})]$$
= $(2r^3 + 18r^2 - 92r - 192)n - r^4 - 15r^3 + 22r^2 + 72r + 1440$
 $\geq (2r^3 + 18r^2 - 92r - 192)r - r^4 - 15r^3 + 22r^2 + 72r + 1440$
= $r^4 + 3r^3 - 70r^2 - 120r + 1440 > 0$,

and thus $WW(S_{n,r}) > WW(S_{n,5})$. The result follows from Lemma 2.5. \square

Proposition 3.1. Among the graphs in \mathbb{U}_n with $n \geq 5$, $S'_{n,3}$ for n = 5 and $n \geq 8$, $S'_{6,3}$, $S_6(2,2,2)$, $S_6(2,2,1,1)$ and C_6 for n = 6, and $S'_{7,3}$, $S_7(3,3,1)$ and $S_{7,5}$ for n = 7 are the unique graphs with the third smallest hyper-Wiener index, which is equal to $\frac{1}{2}(3n^2 - n - 18)$.

Proof. The case n=5 is trivial. By the discussion at the beginning of this section, the third smallest hyper-Wiener index of graphs in \mathbb{U}_n is equal to the minimum of the values of the hyper-Wiener indices appearing in Lemmas 3.1–3.5. These values and the corresponding graphs are listed in Table 1, from which the result follows easily. \square

4 The third largest hyper-Wiener index

Among the graphs in \mathbb{U}_n , with $n \geq 5$, we showed in [6] that $P_{n,3}$ is the unique graph with the largest hyper-Wiener index, which is equal to $\frac{1}{24}(n^4 + 2n^3 - 13n^2 + 10n + 24)$, and that $P_n(n-3,2,1)$ and $P_{n,4}$ are the unique graphs with the second largest hyper-Wiener index, which is equal to $\frac{1}{24}(n^4 + 1)$

Table 1: Graphs and their hyper-Wiener indices in Lemmas 3.1–3.5.

graphs	hyper-Wiener indices		
	n	6	7
$S'_{n,3} (n \ge 6)$	$\frac{1}{2}(3n^2-n-18)$	42	61
$S_6(2,2,2) (n=6)$		42	
$S_n(n-4,3,1) \ (n\geq 7)$	$\frac{1}{2}(3n^2 + 5n - 60)$		61
$S'_{n,4} (n \ge 6)$	$\frac{1}{2}(3n^2 + 5n - 40)$	49	71
$S_n(n-4,2,1,1) \ (n \geq 6)$	$\frac{1}{2}(3n^2 + 5n - 54)$	42	64
$C_6 \ (n=6)$		42	
$S_{n,5} \ (n \ge 7)$	$\frac{1}{2}(3n^2 + 5n - 60)$		61

 $2n^3-25n^2+46n+72$). In this section, we determine the third largest hyper-Wiener index in \mathbb{U}_n with $n\geq 5$, which are just the graphs with the largest hyper-Wiener index in $\mathbb{U}_n\setminus\{P_{n,3},P_n(n-3,2,1),P_{n,4}\}=(\Gamma_n\setminus\{P_{n,3}\})\cup(\Psi_n\setminus\{P_n(n-3,2,1)\})\cup(\Theta_n\setminus\{P_{n,4}\})\cup\Omega_n\cup\Phi_n$. If n=5, then $\mathbb{U}_n\setminus\{P_{n,3},P_n(n-3,2,1),P_{n,4}\}$ contains exactly $S_{5,3}$ and C_5 with equal hyper-Wiener index 20. So we assume that $n\geq 6$.

For $n \geq 6$ and $3 \leq r \leq n-2$, let $P'_{n,r}$ be the *n*-vertex unicyclic graph formed by attaching a pendant vertex to the neighbor of the pendant vertex of $P_{n-1,r}$.

Lemma 4.1. [6] Among the graphs in $\Gamma_n \setminus \{P_{n,3}\}$ with $n \geq 6$, $P'_{n,3}$ is the unique graph with the largest hyper-Wiener index, which is equal to $\frac{1}{24}(n^4+2n^3-25n^2+22n+120)$.

Lemma 4.2. Among the graphs in $\Psi_n \setminus \{P_n(n-3,2,1)\}$ with $n \geq 6$, $P_6(2,2,2)$ for n=6 and $P_n(n-4,3,1)$ for $n \geq 7$ are the unique graphs with the largest hyper-Wiener index, which is equal to 42 for n=6 and $\frac{1}{24}(n^4+2n^3-37n^2+106n+144)$ for $n \geq 7$.

Proof. The case n=6 may be checked directly. Suppose that $n\geq 7$. Let $L_n=C_3(P'_{n-3},P_2,P_1)$ where v_1 has degree 3. Note that $WW(P_n(n-4,3,1))=\frac{1}{24}(n^4+2n^3-37n^2+106n+144)>WW(L_n)=\frac{1}{24}(n^4+2n^3-37n^2+58n+192)$. Let $G=C_3(T_1,T_2,T_3)\in \Psi_n\setminus \{P_n(n-3,2,1)\}$ with $t_1\geq t_2\geq \max\{t_3,2\}$.

If $t_2 = 2$, $t_3 = 1$, by Lemmas 2.1 and 2.7, we have $WW(G) \leq WW(L_n) < WW(P_n(n-4,3,1))$. Suppose that $(t_2,t_3) \neq (2,1)$. By Lemma 2.2, we have $WW(G) \leq WW(P_n(t_1,t_2,t_3))$.

If $t_i \geq 2$ in $P_n(t_1, t_2, t_3)$, then u_i denotes a pendant vertex of T_i and $u_i \neq v_i$ for i = 1, 2, 3. It is easy to check that if $t_i \geq t_j \geq 2$, then

 $WW_{u_i}(P_n(t_1,t_2,t_3)) \ge WW_{u_j}(P_n(t_1,t_2,t_3))$ for i,j=1,2,3 with $i \ne j$. Now by Lemma 2.4, we have $WW(G) < WW(P_n(n-4,3,1))$ for $t_2=2$ and $t_3=2$, and $WW(G) \le WW(P_n(t_1+t_3-1,t_2,1)) \le WW(P_n(n-4,3,1))$ with equalities if and only if $t_2=3$ and $t_3=1$ for $t_2\ge 3$. \square

Lemma 4.3. Among the graphs in $\Theta_n \setminus \{P_{n,4}\}$ with $n \geq 6$, $P'_{n,4}$ is the unique graph with the largest hyper-Wiener index, which is equal to $\frac{1}{24}(n^4 + 2n^3 - 37n^2 + 58n + 192)$.

Proof. Let $G = C_4(T_1, T_2, T_3, T_4) \in \Theta_n \setminus \{P_{n,4}\}$. By similar arguments as in the proof of Lemma 3.3, we have

$$WW(G) = 10 + WW(T_1) + \sum_{u \in V(T_1) \setminus \{v_1\}} \left[2 \binom{d_{uv_2} + 1}{2} + \binom{d_{uv_3} + 1}{2} \right],$$

which, together with Lemma 2.7, implies that $P'_{n,4}$ is the unique graph in $\Theta_n \setminus \{P_{n,4}\}$ with the largest hyper-Wiener index, which is equal to $\frac{1}{24}(n^4 + 2n^3 - 37n^2 + 58n + 192)$.

For $G = C_4(T_1, T_2, T_3, T_4) = P_n(t_1, t_2, t_3, t_4)$, let u_i be a pendant vertex of T_i with $u_i \neq v_i$ if $t_i \geq 2$ for $1 \leq i \leq 4$. The following two properties are easily seen: For $\{i, j\} = \{1, 3\}$ or $\{2, 4\}$, we have $WW_{u_i}(G) \geq WW_{u_j}(G)$ if $t_i \geq t_j \geq 2$; For the cycle $v_i v_j v_l v_k$, we have $WW_{u_i}(G) \geq WW_{u_j}(G)$ if $t_i \geq t_j \geq 2$ and $t_k = t_l = 1$.

Lemma 4.4. Among the graphs in Ω_n with $n \geq 6$, $P_n(n-4,1,2,1)$ is the unique graph with the largest hyper-Wiener index, which is equal to $\frac{1}{24}(n^4+2n^3-37n^2+106n+72)$.

Proof. It is easily checked that $WW(P_n(n-4,1,2,1) = \frac{1}{24}(n^4 + 2n^3 - 37n^2 + 106n + 72)$. Let $G = C_4(T_1, T_2, T_3, T_4) \in \Omega_n$. Suppose without loss of generality that $t_1 \geq \max\{t_2, t_3, t_4\}$ and $t_2 \geq t_4$. By Lemma 2.2, we have $WW(G) \leq WW(P_n(t_1, t_2, t_3, t_4))$ with equality if and only if $G = P_n(t_1, t_2, t_3, t_4)$. Suppose that $G = P_n(t_1, t_2, t_3, t_4)$. By Lemma 2.4, if $t_2 = 1$, then $WW(G) \leq WW(P_n(n-4, 1, 2, 1))$ with equality if and only if $t_3 = 2$, i.e., $G = P_n(n-4, 1, 2, 1)$, and if $t_2 \geq 2$, then

$$WW(G) \leq WW(P_n(t_1 + t_3 - 1, t_2 + t_4 - 1, 1, 1))$$

$$\leq WW(P_n(n - 4, 2, 1, 1))$$

$$= \frac{1}{24}(n^4 + 2n^3 - 49n^2 + 142n + 192)$$

$$< WW(P_n(n - 4, 1, 2, 1)).$$

The result follows.

Lemma 4.5. Among the graphs in Φ_n with $n \geq 6$, C_6 for n = 6, and $P_{n,5}$ for $n \geq 7$ are the unique graphs with the largest hyper-Wiener index, which is equal to 42 for n = 6 and $\frac{1}{24}(n^4 + 2n^3 - 49n^2 + 142n + 120)$ for $n \geq 7$.

Proof. By the expression for $WW(P_{n,r})$ given in Lemma 2.6, if r is odd and $7 \le r \le n$, then

$$48[WW(P_{n,r}) - WW(P_{n,5})]$$

$$= (-6r^2 + 12r + 90)n^2 + (6r^3 - 24r^2 + 30r - 300)n$$

$$-r^4 + 11r^3 - 23r^2 + 13r - 240$$

$$\leq (-6r^2 + 12r + 90)rn + (6r^3 - 24r^2 + 30r - 300)n$$

$$-r^4 + 11r^3 - 23r^2 + 13r - 240$$

$$= (-12r^2 + 120r - 300)n - r^4 + 11r^3 - 23r^2 + 13r - 240$$

$$\leq (-12r^2 + 120r - 300)r - r^4 + 11r^3 - 23r^2 + 13r - 240$$

$$= -r^4 - r^3 + 97r^2 - 287r - 240 < 0.$$

and thus $WW(P_{n,r}) < WW(P_{n,5})$, and if r is even and $8 \le r \le n$, then

$$48[WW(P_{n,r}) - WW(P_{n,5})]$$

$$= (-6r^2 + 12r + 96)n^2 + (6r^3 - 24r^2 + 24r - 288)n$$

$$-r^4 + 11r^3 - 20r^2 + 4r - 240$$

$$\leq (-6r^2 + 12r + 96)rn + (6r^3 - 24r^2 + 24r - 288)n$$

$$-r^4 + 11r^3 - 20r^2 + 4r - 240$$

$$= (-12r^2 + 120r - 288)n - r^4 + 11r^3 - 20r^2 + 4r - 240$$

$$\leq (-12r^2 + 120r - 288)r - r^4 + 11r^3 - 20r^2 + 4r - 240$$

$$= -r^4 - r^3 + 100r^2 - 284r - 240 < 0.$$

and thus $WW(P_{n,r}) < WW(P_{n,5})$. For r = 6 and $n \ge 7$, we have $24[WW(P_{n,6}) - WW(P_{n,5})] = -24(n-3)^2 + 288 < 0$. For n = r = 6, we have $42 = WW(C_6) > WW(P_{6,5}) = 39$. The result follows from Lemma 2.6. \square

Proposition 4.1. Among the graphs in \mathbb{U}_n with $n \geq 5$, $S_{5,3}$ and C_5 for n = 5, $P_6(2,1,2,1)$ for n = 6, $P_7(3,3,1)$ for n = 7 and $P'_{n,3}$ for $n \geq 8$ are the unique graphs with the third largest hyper-Wiener index, which is equal to 20 for n = 5, 46 for n = 6, 90 for n = 7 and $\frac{1}{24}(n^4 + 2n^3 - 25n^2 + 22n + 120)$ for $n \geq 8$.

Proof. The case n=5 is trivial. Suppose that $n \geq 6$. By the discussion at the beginning of this section, the third largest hyper-Wiener index of graphs in \mathbb{U}_n is equal to the maximum of the values of the hyper-Wiener

indices appearing in Lemmas 4.1-4.5. These values and the corresponding graphs are listed in Table 2, from which the result follows easily. \Box

Table 2: Graphs and their hyper-Wiener indices in Lemmas 4.1-4.5.

graphs	hyper-Wiener indices		
g	n	6	7
$P'_{n,3} (n \ge 6)$	$\frac{1}{24}(n^4+2n^3-25n^2+22n+120)$	45	89
$P_6(2,2,2) (n=6)$		42	
$P_n(n-4,3,1) \ (n \ge 7)$	$\frac{1}{24}(n^4 + 2n^3 - 37n^2 + 106n + 144)$		90
$P'_{n,4} (n \ge 6)$	$\frac{1}{24}(n^4+2n^3-37n^2+58n+192)$	39	78
$P_n(n-4,1,2,1) \ (n \ge 6)$	$\frac{1}{24}(n^4 + 2n^3 - 37n^2 + 106n + 72)$	46	87
$C_6 \ (n=6)$		42	
$P_{n,5} (n \geq 7)$	$\frac{1}{24}(n^4 + 2n^3 - 49n^2 + 142n + 120)$		75

Acknowledgement. This work was supported by the Science Foundation of Hebei Normal University (No. L2012Q02) and the Hebei Provincial Natural Science Foundation of China (No. A2014205149).

References

- [1] J. Devillers, A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach, Amsterdam, 1999.
- [2] M.V. Diudea, B. Parv, Molecular topology. 25. Hyper-Wiener index of dendrimers, J. Chem. Inf. Comput. Sci. 35 (1995) 1015-1018.
- [3] I. Gutman, W. Linert, I. Lukovits, A.A. Dobrynin, Trees with extremal hyper-Wiener index: Mathematical basis and chemical applications, J. Chem. Inf. Comput. Sci. 37 (1997) 349-354.
- [4] D.J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Sci. 35 (1995) 50-52.
- [5] M. Randić, Novel molecular description for structure-property studies, Chem. Phys. Lett. 211 (1993) 478-483.
- [6] R. Xing, B. Zhou, X. Qi, Hyper-Wiener index of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 66 (2011) 315-328.