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Abstract. The general sum-connectivity index is defined as xo(G) =
Y werc)(da(u) + dg(v))*. Let (n,B) be the class of trees of order n
with given matching number 8. In this paper, we characterize the structure
of the trees with a given order and matching number that have maximum
general sum-connectivity index for 0 < & < 1 and give sharp upper hound
for a > 1.
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1. Introduction

Let G = (V(G), E(G)) be a connected simple graph with |V(G)| = n and
|[E(Gl=m. If m =n+c¢~1, then G is called a c-cyclic graph. Specially,
if ¢ = 0 or 1, then G is called a tree or a unicyclic graph, respectively.
Let Ng(v) denote the neighbor set of vertex v in G, then dg(v) = |Ng(v)|
is named the degree of v in G. Let A(G) bhe the maximum degree of G.
Let P, and S,, be respectively the path and the star with n vertices. A
pendent path in G is a path having one end-vertex of degree at least 3,
the other is of degree 1 and the intermediate vertices are of degree 2. An
internal path of G is defined as a walk vovy...vs(s > 1) such that the
vertices vg, vy, ..., v, are distinct, dg(vo) > 2,dg(vs) > 2 and dg(v;) = 2,
whenever 0 < i < s. For a path P,, denote by |P,| the length of P,. A
matching M of the graph G is a subset of E(G) such that no two edges in
M share a coinmon vertex. A matching M of G is said to be maximun, if
for any other matching M’ of G, |M’| < |M|. The matching number 8 of
G is the numnber of edges of a maximun matching in G. If M is a matching
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of a graph G and vertex v € V(G) is incident with an edge of M, then v is
said to be M-saturated, otherwise be M-unsaturated.

The well-known Randié connectivity index R(G) of G, is defined as:
R(G) = L wer(c)(da(u)da(v))~%, which is proposed by Randi¢ in 1975
(1], bas received intensive attention since its successful applications in
QSPR and QSAR [2]. Its mathematical properties as well as those of
its generalizations have been studied extensively as summarized in the
books [3, 4]. Recently, a closely related variant of Randi¢ connectivity
index called the sum-connectivity index [5], denoted by x(G), is defined as:
X(G) = T e (dalw) + da(v) 1.

It has heen found that the suin-connectivity index and the Randié con-
nectivity index correlate well among themselves and with m-electronic en-
ergy of benzenoid hydrocarbons [5]. The ordinary Randi¢ connectivity
index has heen extended to the general Randié connectivity index (4] de-
fined as: Ro(G) = ¥ .,ep(c)(de(v)da(v))™, where a is a real number.
Motivated by this, the general sum-connectivity index [6] is defined as:
Xa(G) = ZquE(G) (dg(u) +dg(v))°.

Some properties of x(G), such as for trees and unicyclic graphs, have
already been established [6, 7]. But by the results of experimnents, B. Zhou
and N. Trinajstié¢ (7] have pointed out that the optimum exponent of the
sumn-connectivity index depends on the property considered and the prop-
erties of the general suin-connectivity index warrant further studies. In
this paper, we will study the trees of order n with given matching number
B, and characterize the structure of the trees which have maximal general
sum-connectivity index for 0 < a < 1 and give sharp upper bound for
a > 1in I (n,B), where I (n, B) is the class of trees of order n with given
matching number 8.

2. Trees with maximal general sum-connectivity
index in 7 (n, B)

For convenience, let T* be the extremal tree in & (n, 8) which has maxi-
mnal general sum-connectivity index fora > 0, V* = {v € V(T™*),d(v) > 3},
and M* a fixed maximum matching of T*. Note that if 8 = 1, then
T* > S,;if 3=2,n =4, T* = P;. Hence we can only consider the case for
B > 2 aud n > 5 in the following discussion. Note that we have A(T*) > 3.
Otherwise, if A(T*) < 2, then T* must be a path. Let T* = v ... vn—3
and T = T* — {v;vz} + {vyv3}, it is easy to see that T’ and T have the
same matching number and xo(T") = Xo{T*) = 5% —3* > 0, for n = 5,



and for n > 6 xo(T') = xa(T*) = 2-5% — 2. 4% > 0, it is contradict to
maximality of T*.

Lemma 2.1. Let P be a pendent path of T*, then |P| < 2.

Proof. Assune to the contrary that P = vov;y...v; (I > 3) is a pendent
path of T with d(vg) =t (t > 3), d(vi) =1, d(vy) = ... = d(vi-1) = 2.
Denote Ng = Np-(v) \ {v1}. Let T/ = T* — {'Ul_z‘vl..l} + {'Uovz}. Note
that if vy_1vy € M*, it must have v;_ovi_y ¢ M*, then M* is also a
maximal matching of TV. If vj_yu; ¢ M*, it must have v;_jv;_, € M*,
then M* — {v_sv;_1} + {vi_ 1w} is a maximal matching of T7’. Hence

T' € 7(n,B).

Case 1. If | > 4, then xa(T') — xa(T*) > ((t + 3)* — 4%] — [4* - 3°] >
[6 — 4] — [4 — 3%]. By the Lagrange mean-value theorem, we have
(6~ — 4% — [4% —3%) = a(2-n{ ! =5 "), where m; € (4,6),m € (3,4). If
a > 1, it is ohvious that 2 n?"l ~787 ' >0.Ifa e (0,1),2- 78" 1 =g~ >
2-6°"' =31 and 2 -3—_1— = %= > 1, then 2-7§~1 — 2~1 > 0. Hence

Xa(T") > x"(T"), a contradiction.

Case 2. If | = 3, then

Xa(T') = Xa(T*) = D (t+1+d(w)®+(E+3)" +(t+2)* -
w€Ny
[ D (¢ +d@)® + (t+2)* +4%] >0,
©wENy
also a contradiction. This completes the proof. O

Lemma 2.2. Let P be an internal path of T*, then |P| <1.

Proof. Assume to the contrary that P = vov;...v(l > 2) is an internal
path of T* with d(vo) = t(t > 3), d(v1) = s(s = 3),d(v1) = ... = d(vi-1) =
2. Let Ny = N7-(vo) \ {v1} and Ny = Np-(v) \ {vi-1}.

Case 1. | = 2.

Subcase 1.1. If v; is M*-unsaturated, then vy and v, are both M*-
saturated. Let T = T — {vyvp} + {vova}, we have T € 7 (n, B) (as shown
in Figure 1).

le(T’) - Xo(T™)
= D (EH1+dW) "+ (E+2) "+ (E+s+1) + D (s+d(w)”

ue€Ny u€N,
—[ D )+ (E+2D"+ (s +2)+ Y (s +d(w))*] >0,
u€Ny ueN,



v, v, ¥, v, ¥, v,
—

7" r

Figure 1: The graphs T* and T” in Subcase 1.1.

a contradiction.

Subcase 1.2. If v; is M*-saturated, without loss of generality, let
vovy € M*. Using the same transformation as in subcase 1.1, it is contra-
dict to the assuinption of T*.

Case 2. | = 3.

Subcase 2.1. If vjvp € M*, let T' = T* — {vov3} + {vov3}, we have
T' € Z(n,B) (as shown in Figure 2).

-. ° 0 < v - ) °
—
7

Figure 2: The graphs T* and T’ in Subcase 2.1.

X(Y(T,) - Xﬂ(T*) > [(t +s+ l)a - (S + 2)a] - [4& - 30:]
= o[- =037,

where )y € (s+2, s+t+1),72 € (3,4). Ifa > 1, (t=1)n¢"' =52~ > Osince
5,623 fae(0,1), ¢t - =95 ' > (- 1)(s+t+1)>"1 -3 >
2.7"1 —3%"1 > 2.6°71 -3~ > O since s,t > 3. Then xa(T") > xa(T™),
a contradiction.

Subcase 2.2. If vivp, ¢ M*, let TV = T* — {viv2} + {vova}, we have
T € 7 (n,B) and xo(T') — xafT*) > 0, a contradiction.

Case 3. | = 4.

Subcase 3.1. If v, is M*-unsaturated, then vy and vs must he M*-
saturated. Let 7" = T* — {v va, Va3 } + {vov2, v1u3}, we have T' € I (n, B)
(as shown in Figure 3). Xxa(T") = Xa(T*) = [L.en,(t +1 +d(u))* —

: : —
7 7

Figure 3: The graphs T* and T” in Subcase 3.1.

Y wen, (8 +d(w)®] + [(t + 3)* —4°] > 0, since t > 3, a contradiction.
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Subcase 3.2. If vy is M™-saturated, without loss of generality, let
vyvg € M*, let T = T* — {vau3} + {vovs}, we have T" € T (n, B). xa(T') —
Xa(T*) > [(t+3)* - 4] - [4* = 3%] > [6* —4%] — [4>* - 3%] > 0, since t > 3,
a contradiction.

Case 4. | > 5. Let TV = T* — {viv2,v3v4} + {vov2,v1v4}, We have
T' € .7 (n, B)(as shown in Figure 4), we also have x(T') — xo(T*) > 0, a
contradiction. (|

() s o) .
7 r

Figure 4: The graphs T* and T in Case 4.

Lemma 2.3. |[V*| < 2.

Proof. Assume that |V*| > 3, then by Lemtmna 2.2, there exist vg, vy, v2 €
V* such that vovy,viv2 € E(T*). Let d(vw) = r,d(v1) = s,d(v2) = t. Let
No = Nr-(vo) \ {1}, N1 = Np-(v1) \ {vo,v2} and Ny = Np-(v2) \ {w1},
respectively.

Case 1. Only one vertex of {vg,v1,v;} is M*-saturated. Then it must
be vi. Let T" = T* — Uyen, {vva} + Uven,{vv1}, ohviously, M* is also a
maximum matching of T'. xo(T') = Xa(T™) > (r+s+t—1)*—(r+5)* > 0,
a contradiction.

Case 2. Exactly two vertices of {vo,v1,v,} are M*-saturated.

Subcase 2.1. If vg,v; are M*-saturated, then every vertex in N, is
M*-saturated. Let T' = T* — U,en, {vva} + Uyen, {vv1}, obviously, M*
is also a maximum matching of 7”. Similar to Case 1, we also obtain a
contradiction.

Subcase 2.2. If vg,vy are M*-saturated, assume voz € M*. Let
T' = T*—U,en, {vva} +Usen, {vv1 }, obviously, M* — {vaz}+{v1v2} is also
a maximumn matching of 7’. Similar to Case 1, we also have a contradiction.

Subcase 2.3. If v;, v, are M*-saturated, then every vertex in Ny is M*-
saturated. Let T’ = T™ —U,en, {vva} +Uven, {vv1 }, obviously, M* is also a
maximum matching of T7. xo(T') = Xa(T*) > (r+s+t-1)*—(s+1)* > 0,
a contradiction.

Case 3. {wy,v),v2} are all M*-saturated.

Subcase 3.1. vyv; € M* or vyv2 € M*. Without loss of generality, let
vur € M™, then there exists w € V(T™) \ {vo,v1} such that vow € M*.
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let T/ = T* — Uyen, {vvo} +Uven, {vv1 }, obviously, M* is also a maximum
matching of 7. Similar to Subcase 2.3, a contradiction to the assumption
of T*.

Subcase 3.2. vovy,viv2 ¢ M*. Then there exist z € No,y € Ny,z €
Ny such that vox, vy, v22z € M*. If d(z) > 3, we choose z, vg,v; instead of
v, V1, Uz for consideration, and back to Subcase 1.1, we get a contradiction.
If d(x) = 2, by Lemma 2.1, we know that the degree of the vertex which is
adjacent to z other than vy is 1. It is easy to see that M* — {voz}+{ux}isa
maximuin matching of 7%, At the sane tiine, there are exactly two vertices
of {vg, vy, v} that are saturated by M* — {voz} + {uz}. then back to Case
1, we also get a contradiction. So we have d(z) = 1,d(y) = 1,d(z) = 1. Let
T' =T* — Uye(No—n) {v¥0} — Une(Na—2) {v2} + Use(No—2)u(N, -2 {01 }.

Xa(T) = xa(T*) > (+s+t=3)"+2(r+s+t—-2)"+2-3"—
(r+1)*+(s+ 1)+ +1)*+(r+5)% + (s +1)°)

Let F(r,s,t) = (r4+s+t=3)*+2(r+s+t—2)*+2.3%—[(r+1)*+(s+1)* +
(t+ 1D+ (r+5)"+(s+t)?). If @ = 1, it is easy to see that F(r,s,t) =7+
t—2 > 0, a contradiction. If @ > 1, we have 8”5';"‘), aF(ar;"'), 6”5;9") > 0.
Hence, F(r,s,t) > F(3,3,3) > 0, where 7 € (6,7) and 72 € (3,4), also a
contradiction.

If0 < o < 1, without loss of generality, let r < s < tand T' = T —vpz+
29 Xa(T) = Xa(T") > [(r+s—1) = (r+5)°] 4 [3% = (r+1)*] = [(s+1)*
(s+2)% > a(nf " +n5~ =05~ "), where ny € (r+s—1,7+s),72 € (3,7+1)
and 73 € (s + 1, s + 2). Obviously, 75 < 73, then 75! — ng~! > 0. Hence
Xa(T') > xa(T*), it is a contradiction. This comnpletes the proof. O

Figure 5: The structure of the graph in Theoremn 2.4 (ii).

By Lemmas 2.1-2.3, we have the following theoren.

Theorem 2.4. Let T* be the extremal tree in I (n, ) which has mazimal
general sum-connectivity indez for a >0, V* = {v € V(T*),d(v) > 3}.

(i) If [V*| = 1 and V* = {w}, then the attached parts of w are either
pendent paths of length 1 or pendent paths of length 2;



(i) If [V*| = 2 and V* = {u, v}, then wv € E(T*). Besides u and v, the
attached parts of u and v are either pendent paths of length 1 or pendent
paths of length 2 (as shown in Figure 5).

Lemma 2.5. If V* = {u,v}, let dp-(u) = r,dp-(v) = s(r,s > 3), then
there exist pendent vertices in Np-(u) and Np-(v), respectively.

Proof. We prove it by contradiction. Without loss of generality, suppose
there are no pendent vertices in Nr-(u). Let ¢ be the number of pendent
paths of length 2 attached at v, and TV = T* - 3 €(Npe (v)—{u}) VW +
2 0e (N (0) (u}) uw, obviously, T" € F(n,B). xa(T') — xa(T*) = (r —
D(r+s+1)* = (r+2)*] + t[(r+s+1)* — (s +2)%}+ (s —t = 1)[(r +5)* —

(s +1)%] > 0, since r, s > 3. It is contradict to the maximality of T*. O

Lemma 2.6. Ifa>1, |V*| =1.

Proof. Suppose to the contrary that V* = {u,v}. Assume drp. (u) =
r,dr-(v) = s and 7 > s > 3. Let p; be the number of paths of length
2 attached at u and p; the number of paths of length 2 attached at v. By
Lemma 2.5, there exists z € Nr.(v) with dp-(z) = 1, and r —p; — 1 >
Lo Let T" = T* — 3 e(Npe ()= {2 WV T orwe(Npe (v)— —{wz)) Wy Then
Xa(T") = xa(T*) > (r + s = 1)* = (r + 1)* + 3% — (s + 1)°. Let F(r s) =

(r+s-1)*—(r+1)*+3*~(s+1)*. Ifa>1, wehavef’—%'—’l,aps > 0.
Then F(r,s) > F(3,3) = (5 —4%) — (4% = 3%*) = n{~! — g~ > 0, since
T € (4,5) and 12 € (3,4). Hence xa(T') > xa(T*), it is contradict to the
maximality of T*. (]

-

Tupm

na2fiel

Figure 6: The graph T(n, B).

Theorem 2.7. For o > 1, let T € 7 (n,B), then we have xo(T) < (8 —
Dn=B+2)"+(B-1)3"+(n—28+1)(n — B+ 1)*. The equality holds
if and only if T has the structure of Figure 6.

Proof. 1f n = 2B or n > 2B + 2, hy Theorem 2.4 and Lemma 2.6, the
structure of extremal tree T* is unique and showed in Figure 6.

Xe(T?) = (B-1)(n-B+2)"+(B-1)3"+(n-28+1)(n—B+1).
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Figure 7: The graphs T7 and T5.

If n =-28 + 1, then there are two possible structures of extremal trees
showed in Figure 7. By direct calculation, we have

Xa(T) = (B-1)(B+3)"+2(8+2)" +(6-1)3%,
Xo(T2) = B(B+2)"+8-3%

then,
Xo(T1) = Xa(T2) = (B-2)[(B+3)" - (B+2)°]+(B+3)*—-3*>0.
This completes the proof. O

Remark: For T € 9 (n,B) (n > 5, 8 > 2), if « > 1, we have obtained
the maximumn value of the general suin-conunectivity index and characterized
the corresponding extremal tree. But for the case 0 < a < 1, it is rather
complicated, we only have characterized the structure of the corresponding
extremal trees in Theoremn 2.4. It would be interesting to find the exact
extremal graphs for 0 < a < 1.
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