Tournaments whose indecomposability graph admits a vertex cover of size 2

Imed Boudabbous Université de Sfax

Institut Préparatoire aux Études d'Ingénieurs de Sfax, Tunisie E-mail: imed.boudabbous@gmail.com

Abstract. Given a tournament T=(V,A), a subset X of V is an interval of T provided that for any $a,b\in X$ and $x\in V-X$, $(a,x)\in A$ if and only if $(b,x)\in A$. For example, \emptyset , $\{x\}$ $(x\in V)$ and V are intervals of T, called trivial intervals. A tournament whose intervals are trivial is indecomposable; otherwise, it is decomposable. With each indecomposable tournament T, we associate its indecomposability graph $\mathbb{I}(T)$ defined as follows: the vertices of $\mathbb{I}(T)$ are those of T and its edges are the unordered pairs of distinct vertices $\{x,y\}$ such that $T-\{x,y\}$ is indecomposable. We characterize the indecomposable tournaments T whose $\mathbb{I}(T)$ admits a vertex cover of size 2.

Keywords: Indecomposability graph, Interval, Indecomposable tournament.

1 Introduction

A graph G is defined by a finite vertex set V(G) and an edge set E(G), where an edge is an unordered pair of distinct vertices. Such a graph is denoted by (V(G), E(G)) or simply (V, E). Given a graph G, a subset X of V(G) is called a vertex cover of G if for each edge $a \in E(G)$, $a \cap X \neq \emptyset$. We say also that G is X-covered. Given a graph G, consider an integer $k \geq 1$. We say that G is k-covered if it is K-covered by a subset K of K with K is K-covered if it is K-covered by a subset K of K with K is K-covered if it is K-covered by a subset K of K.

A tournament T = (V(T), A(T)) or simply (V, A) consists of a finite vertex set V with an arc set A of ordered pairs of distinct vertices satisfying: for $x, y \in V$, with $x \neq y$, $(x, y) \in A$ if and only if $(y, x) \notin A$. The cardinality

of T, denoted by v(T), is that of V(T). Let T=(V,A) be a tournament. For any (distinct) vertices x, y of V, the notation $x \longrightarrow y$ signifies that $(x,y) \in A$. For any disjoint subsets I and J of V, we denote by $I \longrightarrow J$ whenever for each $(x,y) \in I \times J$, $x \longrightarrow y$. Similarly, for each $x \in V$ and for each $Y \subseteq V - \{x\}$, $x \longrightarrow Y$ (resp. $Y \longrightarrow x$) signifies that $x \longrightarrow y$ (resp. $y \longrightarrow x$) for each $y \in Y$. Furthermore $x \sim Y$ means $x \longrightarrow Y$ or $Y \longrightarrow x$. The negation is denoted by $x \not\sim Y$. For each subset X of Y, set $N_T^-(X) = \{y \in V : y \longrightarrow X\}$ and $N_T^+(X) = \{y \in V : X \longrightarrow y\}$. For convenience, given $x \in V$, $N_T^-(\{x\})$ is denoted by $N_T^-(x)$, and $N_T^+(\{x\})$ is denoted by $N_T^+(x)$. A transitive tournament or a total order is a tournament T such that for $x, y, z \in V(T)$, if $x \longrightarrow y$ and $y \longrightarrow z$, then $x \longrightarrow z$. For $m \ge 1$, set $\mathbb{N}_m = \{1, \ldots, m\}$.

The notions of isomorphism, subtournament and embedding are defined in the following manner. First, let T=(V,A) and T'=(V',A') be two tournaments. A one-to-one correspondence f from V onto V' is an isomorphism from T onto T' provided that for $x,y\in V$, $(x,y)\in A$ if and only if $(f(x),f(y))\in A'$. The tournaments T and T' are then said to be isomorphic, if there is an isomorphism from one onto the other, which is denoted by $T\simeq T'$. Second, given a tournament T=(V,A), with each subset X of V is associated the subtournament $T[X]=(X,A\cap(X\times X))$ of T induced by X. For $X\subseteq V$ (resp. $x\in V$), the subtournament T[V-X] (resp. $T[V-\{x\}]$) is denoted by T-X (resp. T-x). For tournaments T and T', if T' is isomorphic to a subtournament of T, we say that T' embeds into T. The dual of T is the tournament $T^*=(V,\{(x,y):(y,x)\in A\})$. The tournament T is then said to be self-dual if $T\simeq T^*$. Given a class C of tournaments, C^* denotes the class $\{T^*:T\in C\}$.

The indecomposability plays an important role in this paper. Given a tournament T=(V,A), a subset I of V is an interval [7,9,11] (or a clan [6]) of T provided that for every $x\in V\setminus I$, $x\sim I$. This definition generalizes the notion of interval of a total order. Given a tournament T=(V,A), \emptyset , V and $\{x\}$, where $x\in V$, are clearly intervals of T, called trivial intervals. A tournament is then said to be indecomposable [1,9] (or primitive [6]) if all of its intervals are trivial. It is said to be decomposable otherwise. For example, the 3-cycle $P_3=(\{0,1,2\},\{(0,1),(1,2),(2,0)\})$ is indecomposable whereas a total order of cardinality ≥ 3 is decomposable. The tournaments T and T^* have the same intervals. Thus, T is indecomposable if and only if T^* is. A vertex x of an indecomposable tournament T is said to be critical if the subtournament T-x is decomposable.

The indecomposability graph [2, 3] of an indecomposable tournaments T is the graph, denoted by $\mathbb{I}(T)$, whose vertices are those of T and the edges are the pairs $\{x,y\}$ of distinct vertices such that $T-\{x,y\}$ is indecomposable. This graph was introduced by Ille [8].

Sayar [10] improved [9, Theorem 1] in the case of tournaments as follows.

Proposition 1.1 (Sayar [10]) Given an indecomposable tournament T = (V, A), consider a subset X of V such that $|X| \ge 3$ and T[X] is indecomposable. If $|V \setminus X| \ge 4$, then $\binom{V \setminus X}{2} \cap E(\mathbb{I}(T)) \ne \emptyset$.

Since, for each vertex x of an indecomposable tournament T = (V, A), with $|V| \ge 3$, there exists $X \subseteq V$ such that $T[X] \simeq P_3$ and $x \in X$, the following corollary is an immediate consequence of Proposition 1.1.

Corollary 1.2 For an indecomposable tournament T, with $v(T) \geq 7$, $\mathbb{I}(T)$ is not 1-covered.

The next problem follows from Corollary 1.2.

Problem 1.3 (Ille [4]) Characterize the indecomposable tournaments T such that $\mathbb{I}(T)$ is 2-covered.

This problem is a natural question in the study of the (-2)-recognition ([4]). An important tool in this work is the notion of minimal tournaments defined as follows. Given two distinct vertices x and y of an indecomposable tournament T, we say that T is minimal for $\{x,y\}$, or $\{x,y\}$ -minimal, whenever for each proper subset X of V(T), if $x,y \in X$ and $|X| \ge 3$, then T[X] is decomposable. The minimal tournaments for two vertices where characterized by Cournier and Ille [5]. In order to recall this characterization, we introduce the tournaments P_k and Q_k .

• For $k \geq 3$, the tournament $P_k = (\mathbb{N}_k, A_k)$ is defined as follows. For $x \neq y \in \mathbb{N}_k$, $(x, y) \in A_k$ if

$$\begin{cases} y = x + 1 \\ \text{or} \\ y \le x - 2. \end{cases}$$

• For $k \geq 5$, the tournament Q_k is defined on \mathbb{N}_k as follows.

$$Q[\mathbb{N}_{k-2}] = P_{k-2}, \ \mathbb{N}_{k-2} \to k, \ \mathbb{N}_{k-3} \to k-1 \ \text{and} \ k \to k-1 \to k-2.$$

For $k \geq 5$, the tournaments P_k (see Figure 1) and Q_k (see Figure 2) are indecomposable and $\{1, k\}$ -minimal. Conversely,

Theorem 1.4 (Cournier and Ille [5]) Given a tournament T, with $v(T) \geq 6$, consider two distinct vertices a and b of T. The tournament T is $\{a,b\}$ -minimal if and only if there is an isomorphism f from T onto $P_{v(T)}$, $Q_{v(T)}$ or $(Q_{v(T)})^*$ such that $f(\{a,b\}) = \{1,v(T)\}$.

Figure 1: The tournament P_k .

2 Preliminaries

We recall some properties of indecomposable tournaments. Given a tournament T = (V, A), consider a subset X of V such that $|X| \ge 3$ and T[X] is indecomposable. We use the following subsets of $V \setminus X$.

- Ext(X) is the set of $v \in V \setminus X$ such that $T[X \cup \{v\}]$ is indecomposable;
- $\langle X \rangle$ is the set of $v \in V \setminus X$ such that X is an interval of $T[X \cup \{v\}]$, that is,

$$\langle X \rangle = N_T^-(X) \cup N_T^+(X)$$

• for each $u \in X$, X(u) is the set of $v \in V \setminus X$ such that $\{u, v\}$ is an interval of $T[X \cup \{v\}]$.

The family constituted by $\operatorname{Ext}(X)$, $\langle X \rangle$ and X(u), where $u \in X$, is denoted by p_X .

Lemma 2.1 (Ehrenfeucht and Rozenberg [6]) Given a tournament T = (V, A), consider a subset X of V such that $|X| \ge 3$ and T[X] is indecomposable. The family p_X realizes a partition of $V \setminus X$. Moreover, the following hold.

- Let $u \in X$, $v \in X(u)$ and $w \in V \setminus (X \cup X(u))$. If $T[X \cup \{v, w\}]$ is decomposable, then $\{u, v\}$ is an interval of $T[X \cup \{v, w\}]$.
- Let $v \in \langle X \rangle$ and $w \in V \setminus (X \cup \langle X \rangle)$. If $T[X \cup \{v, w\}]$ is decomposable, then $X \cup \{w\}$ is an interval of $T[X \cup \{v, w\}]$.
- Let $v \neq w \in \text{Ext}(X)$. If $T[X \cup \{v, w\}]$ is decomposable, then $\{v, w\}$ is an interval of $T[X \cup \{v, w\}]$.

As a consequence of the above lemma, we obtain the following.

Figure 2: The tournament Q_k .

Corollary 2.2 (Ehrenfeucht and Rozenberg [6]) Let T = (V, A) be an indecomposable tournament. If X is a subset of V such that $|X| \ge 3$, $|V \setminus X| \ge 2$ and T[X] is indecomposable, then there are two distinct vertices x and y of $V \setminus X$ such that $T[X \cup \{x,y\}]$ is indecomposable.

Given Corollary 2.2, we introduce the following graph. Given a tournament T=(V,A), consider a subset X of V such that $\mid X\mid \geq 3$ and T[X] is indecomposable. The graph G_X is defined on $V\setminus X$ by given $x\neq y\in V\setminus X$, $\{x,y\}\in E(G_X)$ if $T[X\cup\{x,y\}]$ is indecomposable.

3 The tournaments whose indecomposability graph is 2-covered

To begin, notice the following. If T is an $\{a,b\}$ -minimal tournament, with $a \neq b$ and $v(T) \geq 5$, then $\mathbb{I}(T)$ is $\{a,b\}$ -covered. Indeed, if $\mathbb{I}(T)$ is not $\{a,b\}$ -covered, then there exists $\{c,d\} \in E(\mathbb{I}(T))$ such that $\{c,d\} \cap \{a,b\} = \emptyset$. Thus, $T - \{c,d\}$ is indecomposable, which contradicts the $\{a,b\}$ -minimality of T. Also, we have to notice the following:

- For $k \geq 7$, $\mathbb{I}(P_k) = (\{1, \dots, k\}, \{\{1, 2\}, \{1, k\}, \{k 1, k\}\}).$
- For $k \geq 7$, $\mathbb{I}(Q_k) = (\{1, \dots, k\}, \{\{1, 2\}, \{1, k\}, \{2, k\}, \{k 1, k\}\})$.

We use the following proposition.

Proposition 3.1 Let T be an indecomposable tournament with $v(T) \geq 9$. Given $a \neq b \in V(T)$, if $\mathbb{I}(T)$ is $\{a,b\}$ -covered, then T contains an $\{a,b\}$ -minimal subtournament of cardinality v(T), v(T) - 1 or v(T) - 3.

Proof. Given $a \neq b \in V$, assume that $\mathbb{I}(T)$ is $\{a,b\}$ -covered. Consider a minimal subset X of V under inclusion among the subsets Y of V satisfying $\mid Y \mid \geq 3$, $\{a,b\} \subseteq Y$ and T[Y] is indecomposable. By minimality of X, T[X] is $\{a,b\}$ -minimal. It remains to verify that $\mid V \setminus X \mid = 0,1$ or X. As X is X is X is X in X in X in X in X in X is X in X in

The above proposition leads us to describe the tournaments T such that $\mathbb{I}(T)$ is $\{a,b\}$ -covered, from the $\{a,b\}$ -minimal tournaments embedding into T. We introduce the following tournaments classes.

- \mathcal{P} is the set of P_n where $n \geq 9$.
- Q is the set of Q_n where $n \geq 9$.
- \mathcal{P}_{-1} is the set of indecomposable tournaments T defined on \mathbb{N}_n for some $n \geq 9$, such that $\mathbb{I}(T)$ is $\{1, n-1\}$ -covered and $T n = P_{n-1}$.
- Q_{-1} is the set of indecomposable tournaments T defined on \mathbb{N}_n for some $n \geq 11$, such that $\mathbb{I}(T)$ is $\{1, n-1\}$ -covered and $T n = Q_{n-1}$.
- \mathcal{P}_{-3} is the set of indecomposable tournaments T defined on \mathbb{N}_n for some $n \geq 12$, such that $\mathbb{I}(T)$ is $\{1, n-3\}$ -covered and $T \{n, n-1, n-2\} = P_{n-3}$.
- Q_{-3} is the set of indecomposable tournaments T defined on \mathbb{N}_n for some $n \geq 12$, such that $\mathbb{I}(T)$ is $\{1, n-3\}$ -covered and $T \{n, n-1, n-2\} = Q_{n-3}$.

Clearly, \mathcal{P} is a subset of \mathcal{P}_{-1} . As $Q_n - 1 \simeq Q_{n-1}$, we have $Q \subseteq Q_{-1}$ up to isomorphism. Similarly, since P_n is self-dual, $(\mathcal{P}_{-1})^* \subseteq \mathcal{P}_{-1}$ and $(\mathcal{P}_{-3})^* \subseteq \mathcal{P}_{-3}$ up to isomorphism.

Our description is done by the following result.

Theorem 3.2 Given a tournament T, with $v(T) \geq 12$, T is indecomposable and $\mathbb{I}(T)$ is 2-covered if and only if $T \simeq T'$ where $T' \in \mathcal{P}_{-1} \cup \mathcal{P}_{-3} \cup \mathcal{Q}_{-1} \cup \mathcal{Q}_{-3} \cup \mathcal{Q}_{-1}^* \cup \mathcal{Q}_{-3}^*$ with $v(T') \geq 12$.

Hence, the remainder of the paper is devoted to describe each of the classes \mathcal{P}_{-1} , \mathcal{P}_{-3} , \mathcal{Q}_{-1} and \mathcal{Q}_{-3} .

3.1 The class \mathcal{P}_{-1}

The next proposition describes the class \mathcal{P}_{-1} ,

Proposition 3.3 Given a tournament T defined on \mathbb{N}_n where $n \geq 9$,

$$T \in \mathcal{P}_{-1}$$
 if and only if $T - n = P_{n-1}$ and

$$N_T^+(n) = \left\{ \begin{array}{l} \mathbb{N}_{k-1} \ \ \text{where} \ \ k \in \{4, \dots, n-3\} \cup \{2, n-1\} \\ \ \ \text{or} \\ \mathbb{N}_{k-1} \cup \{k+1\} \ \ \text{where} \ \ k \in \{2, \dots, n-3\}. \end{array} \right.$$

Figure 3: $N_T^+(n) = \mathbb{N}_{k-1}$.

Proof. Consider a tournament T defined on \mathbb{N}_n , where $n \geq 9$, such that $T - n = P_{n-1}$. We use the following permutation of \mathbb{N}_n

$$\begin{array}{cccc} \varphi: & \mathbb{N}_n & \longrightarrow & \mathbb{N}_n \\ & i & \longmapsto & n-i & \text{for } 1 \leq i \leq n-1 \\ & n & \longmapsto & n. \end{array}$$

We denote by $\varphi(T^\star)$ the unique tournament such that φ is an isomorphism from T^\star onto $\varphi(T^\star)$. Observe that $\varphi(T^\star) - n = P_{n-1}$.

Figure 4: $N_T^+(n) = \mathbb{N}_{k-1} \cup \{k+1\}.$

First, assume that $N_T^+(n) = \mathbb{N}_{k-1}$ where $k \in \{2\} \cup \{4, \dots, n-3\} \cup \{n-1\}$. To begin, we show that T is indecomposable. If $k \in \{2, n-1\}$, then $T \simeq P_n$ and hence T is indecomposable. Assume that $k \in \{4, \dots, n-3\}$. Since $T[\mathbb{N}_{n-1}] = P_{n-1}$ is indecomposable, we use the partition $p_{(\mathbb{N}_{n-1})}$ as follows. We have $n \notin \langle \mathbb{N}_{n-1} \rangle$ because $n-1 \longrightarrow n \longrightarrow 1$. As $n \longrightarrow 3 \longrightarrow 1$, $n \notin \mathbb{N}_{n-1}(1)$. Furthermore $n \notin \mathbb{N}_{n-1}(i)$ for $1 \le i \le k$ because $1 \ge i \le k$ because $1 \ge i \le k$. Thus

$$n \notin \bigcup_{i=1}^{i=k} \mathbb{N}_{n-1}(i). \tag{1}$$

Observe that $N_{\varphi(T^*)}^+(n) = \mathbb{N}_{l-1}$ where $l = n - k + 1 \in \{4, \ldots, n-3\}$. By applying (1) to $\varphi(T^*)$, we get

$$n\notin \bigcup_{i=1}^{i=l}\mathbb{N}_{n-1}(i) \ \text{in} \ \varphi(T^\star), \ \text{that is,} \ n\notin \bigcup_{i=k-1}^{i=n-1}\mathbb{N}_{n-1}(i) \quad \text{ in T}$$

Therefore $n \notin \langle \mathbb{N}_{n-1} \rangle$ and $n \notin \mathbb{N}_{n-1}(i)$ for each $i \in \mathbb{N}_{n-1}$. Since $p_{(\mathbb{N}_{n-1})}$ is a partition by Lemma 2.1, $n \in \operatorname{Ext}(\mathbb{N}_{n-1})$ or equivalently, $T[\mathbb{N}_{n-1} \cup \{n\}] = T$ is indecomposable. Now we prove that $\mathbb{I}(T)$ is $\{1, n-1\}$ -covered. Given $i < j \in \mathbb{N}_n \setminus \{1, n-1\}$, we have to verify that $T - \{i, j\}$

is decomposable. If $i \geq k+1$, then $\{1,\ldots,i-1\} \cup \{n\}$ is a non trivial interval of $T-\{i,j\}$. If $i \leq k$, then $T-\{i,j\}$ is decomposed into $\{i+1,\ldots,n\} \setminus \{j\} \longrightarrow \{1,\ldots,i-1\}$. Consequently $\{1,\ldots,i-1\}$ is a non trivial interval of $T-\{i,j\}$ when $i \geq 3$, and $\{i+1,\ldots,n\} \setminus \{j\}$ is a non trivial interval of $T-\{i,j\}$ when $i \leq n-3$.

Second, assume that $N_T^+(n) = \mathbb{N}_{k-1} \cup \{k+1\}$ where $k \in \{2, \ldots, n-3\}$. Suppose for a contradiction that T admits a non trivial interval I. Denote by $T_{\{k,k+1\}^*}$ the tournament obtained from T by uniquely reversing the arc between k and k+1. The permutation of \mathbb{N}_n defined by

is an isomorphism from $T_{\{k,k+1\}^*}$ onto P_n . Thus $T_{\{k,k+1\}^*}$ is indecomposable. It follows that $\mid I \cap \{k,k+1\}\mid = 1$. Moreover, as $T[\mathbb{N}_{n-1}] = P_{n-1}$, either $I = \mathbb{N}_{n-1}$ or $\mid I \cap \mathbb{N}_{n-1} \mid = 1$ and $n \in I$. Therefore $I = \{k,n\}$ or $\{k+1,n\}$. But $\{k,n\}$ is not an interval of T because $n \longrightarrow k-1 \longrightarrow k$, and $\{k+1,n\}$ also since $k+1 \longrightarrow k+2 \longrightarrow n$. Consequently T is indecomposable. To prove that $\mathbb{I}(T)$ is $\{1,n-1\}$ -covered, we proceed as previously.

Conversely, consider $T \in \mathcal{P}_{-1}$. For a contradiction, suppose that $1 \longrightarrow n$. As \mathbb{N}_{n-1} is not an interval of T, there is $i \in \{2, \ldots, n-1\}$ such that $n \longrightarrow i$. Set

$$m = \max(\{i \in \{2, \ldots, n-1\} : n \longrightarrow i\}).$$

Clearly $2 \le m \le n-1$ and $\{m+1,\ldots,n-1\}$ (when $m \le n-2$) $\longrightarrow n \longrightarrow m$. If m=2 or m=3, then $\{m-1,n\}$ would be a non trivial interval of T. Moreover, if m=n-1, then $T[\{1,n-1,n\}] \simeq P_3$ is indecomposable. It would follow from Proposition 1.1 that $\mathbb{I}(T)$ is not $\{1,n-1\}$ -covered. Thus

$$4 \le m \le n-2$$
.

Set $X = \{4, \ldots, n-1\}$. Since $T[X] \simeq P_{n-4}$, T[X] is indecomposable. As $X \longrightarrow 1$, $1 \in \langle X \rangle$. We have $m, m+1 \in X$ because $m \leq n-2$. Since $m+1 \longrightarrow n \longrightarrow m$, $m \notin \langle X \rangle$. As $X \longrightarrow 1 \longrightarrow n$, it follows from Lemma 2.1 that $T[X \cup \{1,n\}] = T - \{2,3\}$ would be indecomposable which contradicts the fact that $\mathbb{I}(T)$ is $\{1,n-1\}$ -covered. Consequently

$$n \longrightarrow 1$$
.

Since \mathbb{N}_{n-1} is not an interval of T, there is $i \in \{2, \ldots, n-1\}$ such that $i \longrightarrow n$. Set

$$\mu = \min(\{i \in \{2, \ldots, n-1\} : i \longrightarrow n\}).$$

Clearly $2 \le \mu \le n-1$ and $\mu \longrightarrow n \longrightarrow \{1, \dots, \mu-1\}$. Furthermore $\{n-1, n\}$ would be a non trivial interval of T if $\mu = n-2$. Therefore

$$\mu \in \{2, \dots, n-3\} \cup \{n-1\}.$$
 (2)

Observe that $\varphi(T^*) \in \mathcal{P}_{-1}$. By applying (2) to $\varphi(T^*)$, we obtain $\nu \in \{2,\ldots,n-3\} \cup \{n-1\}$ such that $\nu \longrightarrow n \longrightarrow \{1,\ldots,\nu-1\}$ in $\varphi(T^*)$. We get $\{n-\nu+1,\ldots,n-1\} \longrightarrow n \longrightarrow n-\nu$ (in T). If $\mu=n-1$, then $N_T^+(n)=\mathbb{N}_{k-1}$ with k=n-1. Similarly, if $\nu=n-1$, then $N_T^+(n)=\mathbb{N}_{k-1}$ with k=2. Assume that

$$\mu, \nu \in \{2, \dots, n-3\}.$$
 (3)

As $\mu \longrightarrow n \longrightarrow \{1, \dots, \mu-1\}$ and $\{n-\nu+1, \dots, n-1\} \longrightarrow n \longrightarrow n-\nu$, we have

$$\begin{cases} \mu \le n - \nu + 1 \\ \text{and} \\ \mu \ne n - \nu. \end{cases} \tag{4}$$

Assume that $\mu=n-\nu+1$. We get $N_T^+(n)=\mathbb{N}_{\mu-1}$. Furthermore, $\mu\geq 4$ because $\nu\leq n-3$. Hence

$$\begin{cases} N_T^+(n) = \mathbb{N}_{\mu-1} \\ \text{and} \\ 4 \le \mu \le n-3. \end{cases}$$

So assume that $\mu \neq n - \nu + 1$. It follows from (3) and (4) that

$$5 \le \mu + \nu + 1 \le n. \tag{5}$$

For a contradiction, suppose that $n > \mu + \nu + 1$. Set $X = \{1, \ldots, \mu\} \cup \{n\} \cup \{n - \nu, \ldots, n - 1\}$. The function

$$\begin{array}{cccc} X & \longrightarrow & \{1,\dots,\mu+\nu+1\} \\ i & \longmapsto & i & \text{for } 1 \leq i \leq \mu, \\ n & \longmapsto & \mu+1, \\ i & \longmapsto & i-(n-\mu-\nu-2) & \text{for } n-\nu \leq i \leq n-1, \end{array}$$

is an isomorphism from T[X] onto $P_{\mu+\nu+1}$. Thus T[X] is indecomposable with

$$\mid \mathbb{N}_n \setminus X \mid = n - (\mu + \nu + 1). \tag{6}$$

Since $\mathbb{I}(T)$ is $\{1, n-1\}$ -covered, $n-(\mu+\nu+1)\neq 2$. Moreover, it follows from Proposition 1.1 that $n-(\mu+\nu+1)\leq 3$. Thus $n-(\mu+\nu+1)=1$ or 3. If $n-(\mu+\nu+1)=1$, then $\{\mu+1,n\}$ would be a non trivial interval of T.

Suppose that $n - (\mu + \nu + 1) = 3$. We have $\mathbb{N}_n \setminus X = \{\mu + 1, \mu + 2, \mu + 3\}$. As $\mathbb{I}(T)$ is $\{1, n - 1\}$ -covered, we should have $T[X \cup \{i\}]$ is decomposable for $i \in \mathbb{N}_n \setminus X$. Using Lemma 2.1, we obtain the following contradiction

- if $T[X \cup {\mu+1}]$ is decomposable, then $\mu+1 \in X(1)$ and $\mu=3$;
- if $T[X \cup {\mu+3}]$ is decomposable, then $\mu+3 \in X(n-1)$ and $\mu=n-7$;
- if $T[X \cup {\mu+2}]$ is decomposable, then

$$\left\{ \begin{array}{l} \mu+2\in X(1) \text{ and } \mu=2\\ \text{or}\\ \mu+2\in X(n-1) \text{ and } \mu=n-6. \end{array} \right.$$

It follows that $n=\mu+\nu+1$. We obtain $N_T^+(n)=\mathbb{N}_{\mu-1}\cup\{\mu+1\}$. Moreover $2\leq\mu\leq n-3$ by (3).

The next remark describes the indecomposability graph of the tournaments of \mathcal{P}_{-1} .

Remark 3.4 Consider $T \in \mathcal{P}_{-1}$. Applying Proposition 3.3, we have to distinguish the following two cases according to $N_T^+(n)$.

1. If
$$N_T^+(n) = \mathbb{N}_{k-1}$$
 where $k \in \{4, \dots, n-3\} \cup \{2, n-1\}$, then

$$E(\mathbb{I}(T)) = \begin{cases} \{\{1,n\},\{n,n-1\},\{n-1,n-2\}\} & \text{if } k=2, \\ \{\{1,2\},\{1,n\},\{n,n-1\},\{n-1,n-2\}\} & \text{if } k=4, \\ \{\{1,n\},\{1,n-1\},\{n-1,n\}\} & \text{if } k=5 \text{ and } n=9, \\ \{\{1,n\},\{1,n-1\},\{n-1,n\},\{n-1,n-2\}\} & \text{if } k=5 \text{ and } n\geq 10, \\ \{\{1,2\},\{1,n\},\{1,n-1\},\{n-1,n\},\{n-1,n-2\}\} & \text{if } k\in\{6,\dots,n-5\}, \\ \{\{1,2\},\{1,n\},\{1,n-1\},\{n-1,n\}\} & \text{if } k=n-4 \text{ and } n\geq 10, \\ \{\{1,2\},\{1,n\},\{n-1,n\},\{n-1,n-2\}\} & \text{if } k=n-3, \\ \{\{1,2\},\{1,n\},\{n-1,n\}\} & \text{if } k=n-1. \end{cases}$$

2. If
$$N_T^+(n) = \mathbb{N}_{k-1} \cup \{k+1\}$$
 where $k \in \{2, \dots, n-3\}$, then

$$E(\mathbb{I}(T)) = \begin{cases} \{\{1,2\},\{1,n\},\{n,n-1\},\{n-1,n-2\}\} & \text{if } k = 2, \\ \{\{1,n\},\{n,n-1\},\{1,n-1\},\{n-1,n-2\}\} & \text{if } k = 3, \\ \{\{1,2\},\{1,n\},\{1,n-1\},\{n-1,n\},\{n-1,n-2\}\} & \text{if } k \in \{4,\dots,n-5\}, \\ \{\{1,2\},\{1,n\},\{1,n-1\},\{n-1,n\}\} & \text{if } k = n-4, \\ \{\{1,2\},\{1,n\},\{n-1,n\},\{n-1,n-2\}\} & \text{if } k = n-3. \end{cases}$$

The class Q_{-1} 3.2

The next proposition describes the class Q_{-1} ,

Proposition 3.5 Given a tournament T defined on \mathbb{N}_n , where $n \geq 11$, such that $T - n = Q_{n-1}$,

 $T \in \mathcal{Q}_{-1}$ if and only if

$$N_{T}^{+}(n) = \begin{cases} \mathbb{N}_{n-4} \cup \{n-1\} \\ or \\ \mathbb{N}_{n-3} \cup \{n-1\} \\ or \\ \mathbb{N}_{k-1} \cup \{k+1, n-2, n-1\} \text{ where } k \in \{2, \dots, n-4\} \\ or \\ \mathbb{N}_{k-1} \cup \{n-1, n-2\} \text{ where } k \in \{2\} \cup \{4, \dots, n-3\}. \end{cases}$$

$$Proof. \text{ Let } T \text{ be a tournament defined on } \mathbb{N}_{n} \text{ such that } T - n = Q_{n-1}$$

Proof. Let T be a tournament defined on \mathbb{N}_n such that $T - n = Q_{n-1}$ where $n \geq 11$. To begin assume that T satisfies (7). To verify that T is indecomposable and I(T) is $\{1, n-1\}$ -covered, we proceed as at the beginning of the proof of Proposition 3.3.

Conversely, assume that T is indecomposable and $\mathbb{I}(T)$ is $\{1, n-1\}$ covered. Set $X = \mathbb{N}_{n-3}$. We have $T[X] = P_{n-3}$ is indecomposable. Clearly $n-1 \in \langle X \rangle$. Similarly set $Y = \mathbb{N}_{n-4}$. We have $T[Y] = P_{n-4}$ is indecomposable and $n-1 \in \langle Y \rangle$. Also set $Z = \{4, \ldots, n-1\}$. We have $T[Z] \simeq Q_{n-4}$ is indecomposable. Observe that $1 \in \mathbb{Z}(n-1)$.

Let $u \in Y$. For a contradiction, suppose that $n \in X(u)$. We have $n \in Y(u)$ as well. Since $\mathbb{I}(T)$ is $\{1, n-1\}$ -covered, $T - \{n-3, n-2\} =$

 $T[Y \cup \{n-1,n\}]$ is decomposable. By Lemma 2.1, $\{u,n\}$ is an interval of $T[Y \cup \{n-1,n\}]$. In particular $n \longrightarrow n-1$. Now we prove that $n \longrightarrow n-2$, which implies that $\{u,n\}$ would be a non trivial interval of T. We distinguish the following two cases.

- Assume that $u \neq 1$. Set $Y' = (Y \setminus \{u\}) \cup \{n\}$. As $\{u, n\}$ is an interval of $T[Y \cup \{n\}]$, $T[Y] \simeq T[Y']$ and hence T[Y'] is indecomposable. We have $n-1 \in \langle Y' \rangle$ because $n \longrightarrow n-1$. Since $\mathbb{I}(T)$ is $\{1, n-1\}$ -covered, $T \{u, n-3\} = T[Y' \cup \{n-2, n-1\}]$ is decomposable. As $Y' \cup \{n-2\}$ is not a interval of $T[Y' \cup \{n-2, n-1\}]$, it follows from Lemma 2.1 that $n-2 \in \langle Y' \rangle$. In particular $n \longrightarrow n-2$.
- Assume that u=1. For a contradiction, suppose that $n-2 \longrightarrow n$. Set $Z'=\mathbb{N}_{n-5}$. The tournament $T[Z']=P_{n-5}$ is indecomposable. Moreover $n\in Z'(1),\ n-2\in \langle Z'\rangle$ and $1\longrightarrow n-2\longrightarrow n$. It follows from Lemma 2.1 that $T[Z'\cup\{n-2,n\}]$ is indecomposable. Set $Z''=Z'\cup\{n-2,n\}$. We have $n-1\notin \langle Z''\rangle$ because $n\longrightarrow n-1\longrightarrow n-2$. Furthermore, since $T[\{n-1,n-2,n\}]$ is indecomposable, $n-1\notin Z''(n-2)\cup Z''(n)$. By Lemma 2.1 $n-1\notin Z'(v)$ for $v\in Z'$ because $n-1\in \langle Z'\rangle$. Thus $n-1\notin Z''(v)$ for $v\in Z'$. It follows from Lemma 2.1 that $n-1\in \operatorname{Ext}(Z'')$. Thus $T[Z''\cup\{n-1\}]=T-\{n-4,n-3\}$ is indecomposable which contradicts the fact that $\mathbb{I}(T)$ is $\{1,n-1\}$ -covered.

Consequently

$$n \notin \bigcup_{u=1}^{u=n-4} X(u)$$
.

Since p_X is a partition of $\{n-2, n-1, n\}$ by Lemma 2.1, we obtain

$$n \in X(n-3) \cup \langle X \rangle \cup \operatorname{Ext}(X)$$
.

First, assume that $n \in X(n-3)$. As $n \in X(n-3)$, $n \longrightarrow 4$. Thus $n \longrightarrow 4 \longrightarrow n-1$ and hence $n \notin Z(n-1)$. Furthermore $T[Z \cup \{1,n\}] = T - \{2,3\}$ is decomposable because $\mathbb{I}(T)$ is $\{1,n-1\}$ -covered. Since $1 \in Z(n-1)$, $\{1,n-1\}$ is an interval of $T[Z \cup \{1,n\}]$. In particular $n \longrightarrow n-1$, so that $\{n-3,n\}$ is an interval of T-(n-2). Therefore $\{n-3,n\}$ is not an interval of $T[\{n-3,n-2,n\}]$ and $n \longrightarrow n-2$. For k=n-4, we obtain

$$N_T^+(n) = \left\{ \begin{array}{ll} \mathbb{N}_{k-1} \cup \{k+1, n-2, n-1\} & \text{if} \quad n \longrightarrow n-3 \\ \mathbb{N}_{k-1} \cup \{n-2, n-1\} & \text{if} \quad n \longrightarrow n-3. \end{array} \right.$$

Second, assume that $n \in \langle X \rangle$. Suppose for a contradiction that $n \in Z(n-1)$. We have $\{4,\ldots,n-3\} \longrightarrow n \longrightarrow n-2$. As $n \in \langle X \rangle$, we obtain $\{1,\ldots,n-3\} \longrightarrow n \longrightarrow n-2$ and $\{n-1,n\}$ would be a non trivial interval of T. Thus

$$n \notin Z(n-1)$$
.

Since $\mathbb{I}(T)$ is $\{1,n-1\}$ -covered, $T-\{2,3\}=T[Z\cup\{1,n\}]$ is decomposable. As $1\in Z(n-1)$ and $n\notin Z(n-1)$, $\{1,n-1\}$ is an interval of $T[Y\cup\{1,n\}]$. We obtain either $\{1,n-1\}\longrightarrow n$ or $n\longrightarrow\{1,n-1\}$. Suppose for a contradiction that $\{1,n-1\}\longrightarrow n$. Since $n\in \langle X\rangle$, $\mathbb{N}_{n-3}\longrightarrow n$. If $n-2\longrightarrow n$, then \mathbb{N}_{n-1} would be a non trivial interval of T, and if $n\longrightarrow n-2$, then $\{n-1,n\}$ would be a non trivial interval of T. Therefore

$$n \longrightarrow \{1, n-1\}.$$

As $n \in \langle X \rangle$, $n \longrightarrow \mathbb{N}_{n-3}$. Since \mathbb{N}_{n-1} is not an interval of T, $n-2 \longrightarrow n$ and we obtain

$$N_T^+(n) = \mathbb{N}_{n-3} \cup \{n-1\}.$$

Third, assume that $n \in \operatorname{Ext}(X)$. For a contradiction, suppose that $n-1 \longrightarrow n$. As $\mathbb{I}(T)$ is $\{1,n-1\}$ -covered, $T-\{n-3,n-2\}=T[Y\cup\{n-1,n\}]$ is decomposable. Since $Y \longrightarrow n-1 \longrightarrow n$, it follows from Lemma 2.1 that $n \in \langle Y \rangle$. Furthermore, as $n \in \operatorname{Ext}(X)$, $T[X \cup \{n\}] = T[Y \cup \{n-3,n\}]$ is indecomposable. Thus, either $Y \longrightarrow n \longrightarrow n-3$ or $n-3 \longrightarrow n \longrightarrow Y$. If $Y \longrightarrow n \longrightarrow n-3$, then $\{n-2,n\}$ would be a non trivial interval of T. Suppose that $n-3 \longrightarrow n \longrightarrow Y$. Since $n \longrightarrow 4 \longrightarrow n-1$, $n \notin Z(n-1)$. As $1 \in Z(n-1)$ and $n-1 \longrightarrow n \longrightarrow 1$, it would follow from Lemma 2.1 that $T[Z \cup \{1,n\}] = T - \{2,3\}$ is indecomposable and $\mathbb{I}(T)$ would not be $\{1,n-1\}$ -covered. Consequently

$$n \longrightarrow n-1$$
.

Lastly, consider $X' = X \cup \{n\}$. We have T[X'] is indecomposable because $n \in \operatorname{Ext}(X)$. We verify that $\mathbb{I}(T[X'])$ is $\{1,n-3\}$ -covered. Otherwise, there exist $x \neq y \in X' \setminus \{1,n-3\}$ such that $T[X'] - \{x,y\}$ is indecomposable. Set $Y' = X' \setminus \{x,y\}$. We have $Y' \longrightarrow n-1$ because $n \longrightarrow n-1$. Therefore $n-1 \in \langle Y' \rangle$. Moreover $n-2 \notin \langle Y' \rangle$ because $1 \longrightarrow n-2 \longrightarrow n-3$. Since $Y' \longrightarrow n-1 \longrightarrow n-2$, $T[Y' \cup \{n-2,n-1\}]$ is indecomposable by Lemma 2.1. As $x,y \in X' \setminus \{1,n-3\} \subseteq \mathbb{N}_n \setminus \{1,n-1\}$, $\mathbb{I}(T)$ would not be $\{1,n-1\}$ -covered. It follows that

$$\mathbb{I}(T[X'])$$
 is $\{1, n-3\}$ - covered.

Consider the bijection

$$\varphi: \begin{array}{ccc} X' & \longrightarrow & \mathbb{N}_{n-2} \\ x \in X & \longmapsto & x \\ & & & & \\ & & & & \\ \end{array}$$

and denote by T' the unique tournament defined on \mathbb{N}_{n-2} such that φ is an isomorphism from T[X'] onto T'. We obtain that $T' \in \mathcal{P}_{-1}$. By Proposition 3.3,

$$N_{T'}^+(n-2) = \left\{ \begin{array}{ll} \mathbb{N}_{k-1} & \text{where} \ \ k \in \{2\} \cup \{4,\dots,n-5\} \cup \{n-3\} \\ \text{or} \\ \mathbb{N}_{k-1} \cup \{k+1\} & \text{where} \ \ k \in \{2,\dots,n-5\}. \end{array} \right.$$

Thus

$$N_{T[X']}^{+}(n) = \begin{cases} \mathbb{N}_{k-1} & \text{where } k \in \{2\} \cup \{4, \dots, n-5\} \cup \{n-3\} \\ \text{or} \\ \mathbb{N}_{k-1} \cup \{k+1\} & \text{where } k \in \{2, \dots, n-5\}. \end{cases}$$
(8)

Since $n \longrightarrow n-1$, we obtain

$$N_{T[X']}^+(n) = \left\{ \begin{array}{ll} \mathbb{N}_{n-4} \cup \{n-1\} \\ \text{or} & \text{when} \quad k=n-3. \\ \mathbb{N}_{k-1} \cup \{n-2,n-1\}. \end{array} \right.$$

Assume that $k \neq n-3$. We show that $n \longrightarrow n-2$. Set $Y' = \mathbb{N}_{n-5}$. We have $T[Y'] = P_{n-5}$ is indecomposable and $n-2, n-1 \in \langle Y' \rangle$. Moreover, by (8), $n \notin \langle Y' \rangle$ because $k \neq n-3$. As $\mathbb{I}(T)$ is $\{1, n-1\}$ -covered, $T - \{n-4, n-3\} = T[Y' \cup \{n-2, n-1, n\}]$ admits a non trivial interval I. Since T[Y'] is indecomposable, $I \cap Y'$ is a trivial interval of T[Y']. Therefore $I \cap Y' = \emptyset$, $\{u\}$, where $u \in Y'$, or Y'.

- Assume that $I \cap Y' = \emptyset$. As $n-2, n-1 \in \langle Y' \rangle$ and $n \notin \langle Y' \rangle$, $I = \{n-2, n-1\}$. Since $n \longrightarrow n-1, n \longrightarrow n-2$.
- Assume that $I \cap Y' = \{u'\}$, where $u' \in Y'$. For every $x \in I \setminus \{u'\}$, we have $x \in Y'(u')$. As $n-2, n-1 \in \langle Y' \rangle$, $n-2, n-1 \notin Y'(u')$ by Lemma 2.1. Hence $I = \{u', n\}$ and $n \longrightarrow n-2$ because $u' \longrightarrow n-2$.

• Assume that $I \cap Y' = Y'$. For every $x \in \{n-2, n-1, n\} \setminus I$, we have $x \in \langle Y' \rangle$. Thus $n \in I$. Since $n \longrightarrow n-1 \longrightarrow n-2$, $I \neq Y' \cup \{n-2, n\}$. It follows that $n-2 \notin I$. As $Y' \longrightarrow n-2$, we obtain $n \longrightarrow n-2$. It follows that

$$n \longrightarrow n-2$$
.

Consequently $n \longrightarrow \{n-2, n-1\}$ and it follows from (8) that

$$N_{T[X']}^+(n) = \begin{cases} \mathbb{N}_{k-1} \cup \{k+1, n-2, n-1\} & \text{where} \quad k \in \{2, \dots, n-5\} \\ \text{or} \\ \mathbb{N}_{k-1} \cup \{n-2, n-1\} & \text{where} \quad k \in \{2\} \cup \{4, \dots, n-5\}. \end{cases}$$

The next remark describes the indecomposability graph of the tournaments of Q_{-1} .

Remark 3.6 Consider $T \in Q_{-1}$. Applying Proposition 3.5, we have to distinguish the following cases according to $N_T^+(n)$.

- 1. If $N_T^+(n) = \mathbb{N}_{n-3} \cup \{n-1\}$, then $E(\mathbb{I}(T)) = \{\{1,2\}, \{2,n-1\}, \{n,1\}, \{n,n-1\}, \{1,n-1\}\}$.
- $\{n,1\}, \{n,n-1\}, \{1,n-1\}\}.$ 2. If $N_T^+(n) = \mathbb{N}_{n-4} \cup \{n-1\}$, then $E(\mathbb{I}(T)) = \{\{1,2\}, \{2,n-1\}, \{n,1\}, \{n,n-1\}, \{1,n-1\}, \{n-1,n-2\}\}.$
- 3. If $N_T^+(n) = \mathbb{N}_{k-1} \cup \{n-1, n-2\}$ where $k \in \{4, \dots, n-3\} \cup \{2\}$, then

$$E(\mathbb{I}(T)) = \begin{cases} \{\{1,n\},\{n,n-1\},\{1,n-1\},\{n-1,n-2\}\} & \text{if } k=2 \text{ or } k=5, \\ \{\{1,2\},\{1,n\},\{n,n-1\},\{n-1,2\},\{n-1,n-2\}\} & \text{if } k=4, \\ \{\{1,2\},\{1,n\},\{1,n-1\},\{n-1,n\},\{n-1,n-2\},\{2,n-1\}\} \\ & \text{if } k \in \{6,\dots,n-5\} \cup \{n-3\}, \\ \{\{1,2\},\{1,n\},\{1,n-1\},\{n-1,n\},\{n-1,2\}\} & \text{if } k=n-4. \end{cases}$$

4. If $N_T^+(n) = \mathbb{N}_{k-1} \cup \{k+1, n-1, n-2\}$ where $k \in \{2, \dots, n-4\}$, then

$$E(\mathbb{I}(T)) = \begin{cases} \{\{1,2\},\{1,n\},\{n,n-1\},\{n-1,n-2\},\{2,n-1\}\} \ if \ k=2, \\ \{\{1,n\},\{n,n-1\},\{1,n-1\},\{n-1,n-2\}\} \ if \ k=3, \\ \{\{1,2\},\{1,n\},\{1,n-1\},\{n-1,n\},\{n-1,n-2\},\{n-1,2\}\} \\ if \ k\in\{4,\dots,n-5\}, \\ \{\{1,2\},\{1,n\},\{1,n-1\},\{n-1,n\},\{n-1,2\}\} \ if \ k=n-4. \end{cases}$$

3.3 The class \mathcal{P}_{-3}

Proposition 3.7 Up to isomorphism, the elements of \mathcal{P}_{-3} are the tournaments T defined on \mathbb{N}_n , where $n \geq 12$, such that $T[\mathbb{N}_{n-3}] = P_{n-3}$, $n-2 \in N_T^-(\mathbb{N}_{n-3})$ and satisfying one and only one of the following assertions.

1.
$$n-1 \in N_T^-(\mathbb{N}_{n-3}), n \in \mathbb{N}_{n-3}(n-3)$$
 and

$$E(G_{\mathbf{N_{n-3}}}) = \{\{n-2,n\}\}$$
 with $n-2 \longrightarrow n-1$.

2.
$$n-1 \in \mathbb{N}_{n-3}(n-4), n \in \mathbb{N}_{n-3}(n-3)$$
 and

$$\left\{ \begin{array}{l} E(G_{\mathbb{N}_{n-3}}) = \{\{n-2,n-1\},\{n-2,n\}\} \\ or \\ \{n-1,n\} \in E(G_{\mathbb{N}_{n-3}}), \mid E(G_{\mathbb{N}_{n-3}}) \mid \geq 2 \ with \ n \longrightarrow n-3. \end{array} \right.$$

3. $n-1, n \in \mathbb{N}_{n-3}(u)$, where u = n-4 or n-3, and

$$E(G_{\mathbf{N_{n-3}}}) = \begin{cases} {}^{\cdot} \; \{\{n-2,n-1\}\} & \textit{with} \;\; n-1 \not\sim \{u,n\} \\ \textit{or} \\ {}^{\cdot} \; \{\{n-2,n-1\},\{n-2,n\}\} & \textit{with} \;\; u \not\sim \{n-1,n\}. \end{cases}$$

The proof is analogous to that of Proposition 3.3. The next lemma is helpful.

Lemma 3.8 Let T be an indecomposable tournament defined on \mathbb{N}_{n-1} where $n \geq 12$, verifying: $T[\mathbb{N}_{n-3}] = P_{n-3}$ and for each vertex i of $\mathbb{N}_{n-1} - \{1, n-3\}$, i is critical. Then one and only one of the following assertions holds, where $\{\alpha, \beta\} = \{n-2, n-1\}$.

1.
$$N_T^-(\mathbb{N}_{n-3}) = \{\alpha\}, \ \mathbb{N}_{n-3}(n-3) \cup \mathbb{N}_{n-3}(n-4) = \{\beta\}.$$

2.
$$N_T^+(\mathbb{N}_{n-3}) = \{\alpha\}, \mathbb{N}_{n-3}(1) \cup \mathbb{N}_{n-3}(2) = \{\beta\}.$$

3.
$$\mathbb{N}_{n-3}(n-4) = \{\alpha\}, \ \mathbb{N}_{n-3}(n-3) = \{\beta\} \text{ with } \beta \longrightarrow n-3.$$

4.
$$\mathbb{N}_{n-3}(1) = \{\alpha\}, \ \mathbb{N}_{n-3}(2) = \{\beta\} \text{ with } 1 \longrightarrow \alpha.$$

3.4 The class Q_{-3}

The proof of the last proposition is similar to that of Proposition 3.5. For convenience, we use the following notation. Given a tournament T = (V, A), consider a subset X of V such that $|X| \ge 3$ and T[X] is indecomposable. For $u \in X$, X(u) is divided into $X^-(u)$ and $X^+(u)$ as follows

- $X^-(u)$ is the set of the elements x of X(u) such that $x \longrightarrow u$;
- $X^+(u)$ is the set of the elements x of X(u) such that $u \longrightarrow x$.

Proposition 3.9 Up to isomorphism, the elements of Q_{-3} are the tournaments T defined on \mathbb{N}_n , where $n \geq 12$, such that $T[X] = Q_{n-3}$ and satisfying one and only one of the following assertions, where $X = \mathbb{N}_{n-3}$.

1.
$$n-2 \in N_T^+(X)$$
, $n-1 \in X^-(n-4)$, and

$$\begin{cases} n \in X^+(n-4) \text{ and } E(G_X) = \{\{n-2, n-1\}, \{n-2, n\}\} \\ or \\ n \in X(n-4), n \longrightarrow n-1 \text{ and } E(G_X) = \{\{n-2, n-1\}\}. \end{cases}$$

2.
$$n-2 \in X^+(n-3)$$
, $n-1 \in N_T^-(X)$, $n \in N_T^+(X)$ and $E(G_X) = \{\{n-2, n-1\}, \{n-2, n\}\}.$

3.
$$n-2 \in X^+(n-3), n-1 \in \langle X \rangle$$
, and

$$\left\{ \begin{array}{ll} n \in \langle X \rangle, \ n \not\sim \{n-2,n-1\} & and \ E(G_X) = \{\{n-2,n-1\}\} \\ or \\ n \in X^+(n-3), \ n-2 \longrightarrow n \ and \ E(G_X) = \{\{n-2,n-1\}\}. \end{array} \right.$$

4.
$$n-2 \in X^{+}(n-3), n-1 \in X(n-4), and$$

$$\begin{cases}
n \in \langle X \rangle & \text{and} \quad E(G_X) = \{\{n-2,n-1\}, \{n-2,n\}\} \\
or \\
n \in N_T^{+}(X) & \text{and} \quad E(G_X) = \{\{n-2,n\}, \{n-1,n\}\} \\
or \\
n \in N_T^{+}(X), n-1 \longrightarrow n-4 \quad and \\
E(G_X) = \{\{n-2,n-1\}, \{n-2,n\}, \{n-1,n\}\}.
\end{cases}$$
5. $n-2, n-1 \in X^{-}(n-3), n-1 \longrightarrow n-2, n \in X(1) \quad and \quad E(G_X) = \{\{n-2,n\}\}.$

5.
$$n-2, n-1 \in X^-(n-3), n-1 \longrightarrow n-2, n \in X(1)$$
 and $E(G_X) = \{\{n-2, n\}\}.$

6.
$$n-2 \in X^-(n-3)$$
, $n-1 \in X^+(1)$, and

$$\begin{cases} n \in X^{-}(1) \text{ and } E(G_X) = \{\{n-2, n-1\}, \{n-2, n\}\} \\ or \\ n \in X(1), n-1 \longrightarrow n \text{ and } E(G_X) = \{\{n-2, n-1\}\} \\ or \\ n \in X(2) \text{ and } E(G_X) \supseteq \{\{n-2, n-1\}\}. \end{cases}$$

7.
$$n-2 \in X^-(n-3)$$
, $n-1 \in X^+(2)$, and

$$\begin{cases} n \in X^{-}(2), \ n \longrightarrow n-1 \ and \ E(G_X) = \{\{n-2, n-1\}, \{n-2, n\}\} \\ or \\ n \in X(2), \ n-1 \longrightarrow n \ and \ E(G_X) = \{\{n-2, n-1\}\}. \end{cases}$$

$$8. \ n-2 \in X^{-}(n-3), \ n-1 \in X^{-}(1), \ n \in X(2) \ and \ E(G_X) = \{\{n-2, n-1\}\}.$$

8.
$$n-2 \in X^-(n-3)$$
, $n-1 \in X^-(1)$, $n \in X(2)$ and $E(G_X) = \{\{n-2, n-1\}, \{n-2, n\}\}.$

ACKNOWLEDGEMENTS

Many thanks are owed to the referee for his insightful and helpful comments and suggestions.

REFERENCES

[1] H. Belkhechine and I. Boudabbous, Indecomposable tournaments and their indecomposable subtournaments on 5 and 7 vertices, to appear in Ars Combinatoria.

- [2] H. Belkhechine, I. Boudabbous and M. B. Elayech, Les graphes (-1)-critiques, to appear in *Ars Combinatoria*.
- [3] I. Boudabbous and P. Ille, Critical and infinite directed graphs, Discrete Math. 307 (2007), pp. 2415-2428.
- [4] A. Boussaïri, A. Chaïchaâ and P. Ille, Indecomposability graph and indecomposability recognition, submitted.
- [5] A. Cournier and P. Ille, Minimal indecomposable graphs, Discrete Math 183 (1998), pp. 61-80.
- [6] A. Ehrenfeucht and G. Rozenberg, Primitivity is hereditary for 2-structures, Theoret. Comput. Sci. 70 (1990), pp. 343-358.
- [7] R. Fraïssé, L'intervalle en théorie des relations, ses généralisations, filtre intervallaire et clôture d'une relation, in: Orders, Description and Roles, M. Pouzet et D. Richard éd. North-Holland. (1984), pp. 313-342.
- [8] P. Ille, Recognition problem in reconstruction for decomposable relations, in: B. Sands, N. Sauer, R. Woodrow (Eds.), Finite and Infinite Combinatorics in Sets and Logic, Kluwer Academic Publishers. (1993), pp. 189-198.
- [9] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997), pp. 71-78.
- [10] M.Y. Sayar, Partially critical tournaments and partially critical supports, Contrib. Discrete Math. 6 (2011), pp. 52-76.
- [11] J.H. Schmerl and W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, *Discrete Math.* 113 (1993), pp. 191-205.