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Abstract. Given a tournament T = (V, A), a subset X of V is an interval
of T provided that for any a,b € X and z € V — X, (a,z) € A if and
only if (b,x) € A. For example, §, {z} (z € V) and V are intervals
of T, called trivial intervals. A tournament whose intervals are trivial is
indecomposable; otherwise, it is decomposable. With each indecomposable
tournament 7', we associate its indecomposability graph I(T) defined as
follows: the vertices of I(T") are those of T and its edges are the unordered
pairs of distinct vertices {x,y} such that T — {z,y} is indecomposable. We
characterize the indecomposable tournaments T whose I(T") admits a.vertex
cover of size 2. :
Keywords: Indecomposability graph, Interval, Indecomposable tourna-
ment.

1 Introduction

A graph G is defined by a finite vertex set V(G) and an edge set E(G),
where an edge is an unordered pair of distinct vertices. Such a graph is
denoted by (V(G), E(G)) or simply (V, E). Given a graph G, a subset X of
V(G) is called a vertex cover of G if for each edge a € E(G), anX # 0. We
say also that G is X-covered. Given a graph G, consider an integer k > 1.
We say that G is k-covered if it is X-covered by a subset X of V(G) with
| X |= k.

A tournament T = (V(T), A(T)) or simply (V, A) consists of a finite
verter set V with an arc set A of ordered pairs of distinct vertices satisfying:
forz,y €V, withz # v, (z,y) € Aif and only if (y, z) ¢ A. The cardinality
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of T, denoted by v(T), is that of V(T'). Let T = (V, A) be a tournament.
For any (distinct) vertices z, y of V, the notation x — y signifies that
(z,y) € A. For any disjoint subsets J and J of V, we denote by I — J
whenever for each (z,y) € I x J, z — y. Similarly, for each z € V and
foreachY C V- {z}, z — Y (resp. Y — z) signifies that z — y
(resp. y — z) for each y € Y. Furthermore z ~ Y means + — Y or
Y — z. The negation is denoted by z o Y. For each subset X of V, set
Ni(X)={yeV:y— X}and N})(X)={yeV: X — y}. For
convenience, given z € V, Ny ({z}) is denoted by Ny (z), and Nf ({z}) is
denoted by N (z). A transitive tournament or a total orderis a tournament
T such that for z, y, z € V(T), if z — y and y — 2z, then £ — z. For
m > 1, set N, ={1,...,m}.

The notions of isomorphism, subtournament and embedding are defined
in the following manner. First, let T = (V, A) and T' = (V’, A’) be two
tournaments. A one-to-one correspondence f from V onto V' is an iso-
morphism from T onto T” provided that for z,y € V, (z,y) € A if and
only if (f(z), f(y)) € A’. The tournaments T and T’ are then said to be
isomorphic, if there is an isomorphism from one onto the other, which is
denoted by T ~ T’. Second, given a tournament T" = (V, A), with each
subset X of V is associated the subtournament T[X] = (X, AN (X x X)) of
T induced by X. For X C V (resp. = € V), the subtournament T[V — X]
(resp. TV — {z})) is denoted by T — X (resp. T —x). For tournaments T’
and T”, if T' is isomorphic to a subtournament of T', we say that T’ embeds
into T. The dual of T is the tournament T* = (V,{(z,y) : (y,z) € A}).
The tournament T is then said to be self-dual if T ~T*. Given a class C
of tournaments, C* denotes the class {T* : T € C}.

The indecomposability plays an important role in this paper. Given a
tournament T = (V, A), a subset I of V is an interval [7, 9, 11] (or a clan
[6]) of T' provided that for every z € V\I, z ~ I. This definition generalizes
the notion of interval of a total order. Given a tournament T = (V, A), 0,
V and {z}, where = € V, are clearly intervals of T called trivial intervals.
A tournament is then said to be indecomposable (1, 9] (or primitive [6]) if
all of its intervals are trivial. It is said to be decomposable otherwise. For
example, the 3-cycle P; = ({0, 1,2}, {(0,1),(1,2),(2,0)}) is indecomposable
whereas a total order of cardinality > 3 is decomposable. The tournaments
T and T* have the same intervals. Thus, T is indecomposable if and only if
T* is. A vertex x of an indecomposable tournament T is said to be critical
if the subtournament T — z is decomposable.

The indecomposability graph [2, 3] of an indecomposable tournaments T’
is the graph, denoted by I(T'), whose vertices are those of T and the edges
are the pairs {z,y} of distinct vertices such that T — {z,y} is indecompos-
able. This graph was introduced by Ille (8].

Sayar [10] improved [9, Theorem 1] in the case of tournaments as follows.



Proposition 1.1 ( Sayar (10]) Given an indecomposable tournament T =
(V,A4), consider a subset X of V such that | X |> 3 and T[X] is indecom-

posable. If | V\ X [> 4, then (VY*) N E(I(T)) # 0.

Since, for each vertex z of an indecomposable tournament T = (V, 4),
with | V' |> 3, there exists X C V such that T[X] ~ P3 and z € X, the
following corollary is an immediate consequence of Proposition 1.1.

Corollary 1.2 For an indecomposable tournament T, with v(T) > 7, I(T)
is not 1-covered.

The next problem follows from Corollary 1.2.

Problem 1.3 ( Ille [4]) Characterize the indecomposable tournaments T
such that I(T) is 2-covered.

This problem is a natural question in the study of the (—2)-recognition
([4]). An important tool in this work is the notion of minimal tournaments
defined as follows. Given two distinct vertices = and y of an indecompos-
able tournament T, we say that T is minimal for {z,y}, or {z,y}-minimal,
whenever for each proper subset X of V(T), if z,y € X and | X |> 3, then
T[X] is decomposable. The minimal tournaments for two vertices where
characterized by Cournier and Ille [5]. In order to recall this characteriza-
tion, we introduce the tournaments Pj and Q.

¢ For k > 3, the tournament P, = (Ni, Ax) is defined as follows.
For z #£ y € Ni, (z,y) € A if

y=z+1
or
y<z-—2

e For k > 5, the tournament Q; is defined on N as follows.

QNk—2)=Pe_o, No.g -k, Ny_3vk—1landk—k—-1—k—2.

For k > 5, the tournaments Py (see Figure 1) and Qy (see Figure 2) are
indecomposable and {1, k}-minimal. Conversely,

Theorem 1.4 ( Cournier and Ille [5]) Given a tournament T,

with v(T') > 6, consider two distinct vertices a and b of T. The tournament
T is {a,b}-minimal if and only if there is an isomorphism f from T onto
Py1y, Query or (Qu(ry)* such that f({a,b}) = {1,v(T)}.
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Figure 1: The tournament Pj.

2 Preliminaries

We recall some properties of indecomposable tournaments. Given a tour-
nament T = (V, A), consider a subset X of V such that | X |> 3 and T([X]
is indecomposable. We use the following subsets of V' \ X.

o Ext(X) is the set of v € V'\ X such that T[X U{v}] is indecomposable;

e (X) is the set of v € V' \ X such that X is an interval of T'[X U {v}],
that is,

(X) = Ny (X) U Nf (X)

o for each u € X, X(u) is the set of v € V' \ X such that {u,v} is an
interval of T[X U {v}].

The family constituted by Ext(X), (X) and X(u), where u € X, is
denoted by px.

Lemma 2.1 ( Ehrenfeucht and Rozenberg [6]) Given a tournament T =
(V,A), consider a subset X of V such that | X |> 3 and T[X] is inde-
composable. The family px realizes a partition of V \ X. Moreover, the
following hold.

o Letue X,ve X(u) andw € V\ (XU X(v)). IfT[XU{v,w}] is
decomposable, then {u,v} is an interval of T[X U {v, w}].

o Letv € (X) and w € V\(XU(X)). If T[X U{v,w}] is decomposable,
then X U {w} is an interval of T[X U {v,w}].

o Letv # w € Ext(X). If T[X U {v,w}] is decomposable, then {v,w} is
an interval of T[X U {v, w}].

As a consequence of the above lemma, we obtain the following.



Figure 2: The tournament Q.

Corollary 2.2 ( Ehrenfeucht and Rozenberg [6)) Let T = (V, A) be an
indecomposable tournament. If X is a subset of V such that | X |> 3,
| VAX |> 2 and T|X)] is indecomposable, then there are two distinct vertices
z andy of V\ X such that T[X U {z,y}] is indecomposable.

Given Corollary 2.2, we introduce the following graph. Given a tourna-
ment T = (V, A), consider a subset X of V such that | X |> 3 and T[X] is
indecomposable. The graph Gx is defined on V' \ X by
givenz #y € V\ X, {z,y} € E(Gx) if T[X U {z,y}| is indecomposable.

3 The tournaments whose indecomposability
graph is 2-covered

To begin, notice the following. If T is an {a,b}-minimal tournament, with
a # band v(T) > 5, then I(T) is {a, b}-covered. Indeed, if I(T’) is not {a, b}-
covered, then there exists {c,d} € E(I(T)) such that {c,d} N {a,b} = 0.
Thus, T' - {c, d} is indecomposable, which contradicts the {a, b}-minimality
of T. Also, we have to notice the following:

o For k27, I(P) = ({1,....k}, {{1,2}, {1k}, {k — 1, k}}).
e Fork>7, H(Qk) = ({1, re ,k}, {{1’2}’ {l’k}’ {2’k}’ {k - l’k}})-
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We use the following proposition.

Proposition 3.1 Let T be an indecomposable tournament with v(T') > 9.
Given a # b € V(T), if (T) is {a,b}-covered, then T contains an {a,b}-
minimal subtournament of cardinality v(T), v(T) — 1 or v(T) — 3.

Proof. Given a # b € V, assume that I(T) is {a,b}-covered. Consider a
minimal subset X of V under inclusion among the subsets Y of V satisfying
| Y |> 3, {a,b} C Y and T'[Y) is indecomposable. By minimality of X, T'[X]
is {a,b}-minimal. It remains to verify that | V\ X |= 0,1 or 3. As [(T)
is {a,b}-covered, | V \ X |# 2. Moreover, since I(T') is {a, b}-covered, it
follows from Proposition 1.1 that | V' \ X |< 3. O

The above proposition leads us to describe the tournaments T such that
I(T) is {a, b}-covered, from the {a, b}-minimal tournaments embedding into
T. We introduce the following tournaments classes.

e P is the set of P, where n > 9.
e Q is the set of Q,, where n > 9.

e P_, is the set of indecomposable tournaments T defined on N, for
some n > 9, such that I(T) is {1,n — 1}-covered and T —n = P,,_;.

e Q_, is the set of indecomposable tournaments T defined on N, for
some n > 11, such that I(T') is {1,n — 1}-covered and T —n = Qpn_1.

e P_j is the set of indecomposable tournaments T defined on N, for
some n > 12, such that I(T') is {1,n — 3}-covered and T — {n,n —
1,1’1 - 2} = Pn_s.

e Q_3 is the set of indecomposable tournaments T defined on N,, for
some n > 12, such that I(T) is {1,n — 3}-covered and T — {n,n —
l,n ot 2} = Qn_s.

Clearly, P is a subset of P_;. As Qn — 1 ~ Qp_1, we have Q C Q_,
up to isomorphism. Similarly, since P, is self-dual, (P_;)* € P_; and
(P-3)* € P—_3 up to isomorphism.

Our description is done by the following result.

Theorem 3.2 Given a tournament T, with v(T') > 12, T is indecompos-
able and I(T") is 2-covered if and only if T ~ T’ where T' € P_; UP_3U
Q1UQ 3UQ*, UQr, withv(T') > 12.

Hence, the remainder of the paper is devoted to describe each of the
classes P_;, P-3, Q-1 and Q_3.



3.1 The class P_;

The next proposition describes the class P_,,
Proposition 3.3 Given a tournament T defined on N,, where n > 9,

TeP_y ifandonlyif T—n=P,_; and

or

Nie—1U{k+1} where ke {2,...,n - 3}.

AN

l—2 - - k—1—— &k n—-2—— n-1

Ni—; where k€ {4,...,n-3}uU{2,n -1}
N (n) =

Figure 3: Nf(n) = Ny_,.

Proof. Consider a tournament T defined on N,,, where n > 9, such that
T —n = P,_;. We use the following permutation of N,,

p: N, — N,
1 — n-—1 forlgiSn—l
n — n.

We denote by ¢(T™*) the unique tournament such that ¢ is an isomor-
phism from T* onto ¢(T™*). Observe that o(T*) —n = P,,_,.
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11— 2 - k-1 k k+1 k+2 - n—2—+n-1

Figure 4: Nt (n) =Ne_1 U {k+1}.

First, assume that Nj (n) = Nx_; where k € {2}U{4,...,n—-3}U{n—1}.
To begin, we show that T is indecomposable. If k € {2,n—1},thenT ~ P,
and hence T is indecomposable. Assume that & € {4,...,n — 3}. Since
T[N,n_;] = P,_, is indecomposable, we use the partition p(,_,) as follows.
We have n ¢ (N,_;) becausen—1 -—n— 1. Asn—3 —1,n¢
N,.—1(1). Furthermore n ¢ N,_; (i) for2 < i < k because n — i —1 — i,
Thus

i=k

n ¢ | JNaoi (). (1)
t=1

Observe that N:(T.)(n) =Ni_; wherel=n—-k+1€{4,...,n—3}.
By applying (1) to ¢(T*), we get

i=l t=n-—1

n¢ | Nno1(i) ing(T*), thatis, n¢ |J Na—i(i) inT.
i=1 i=k—1
Therefore n ¢ (N,_;) and n ¢ N,_;(z) for each i € N,_;. Since pn,_,)
is a partition by Lemma 2.1, n € Ext(N,_1) or equivalently, T[N,_; U
{n}] = T is indecomposable. Now we prove that I(T) is {1,n — 1}-
covered. Given i < j € N, \ {1,n — 1}, we have to verify that T — {3, j}
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is decomposable. If i > k + 1, then {1,...,i — 1} U {n} is a non triv-
ial interval of T — {i,5}. If ¢ < k, then T — {i,j} is decomposed into
{i+1,...,n}\ {5} — {1,...,i—1}. Consequently {1,...,i—1} is a non
trivial interval of T — {4, 5} when ¢ > 3, and {i + 1,...,n} \ {7} is a non
trivial interval of T — {4, j} when i <n - 3.

Second, assume that N7 (n) = Np_y U {k+ 1} where k € {2,...,n—3}.
Suppose for a contradiction that T admits a non trivial interval I. Denote
by Tk k+1)+ the tournament obtained from T by uniquely reversing the arc
between k and & + 1. The permutation of N,, defined by

i — i for1 <i<k,
n — k+1,
i — i41 fork+1<i<n-1,

is an isomorphism from T( k41}- onto Pn. Thus T4 x41}+ is indecompos-
able. It follows that | I N {k,k+ 1} |= 1. Moreover, as T[N,_;] = P,_,,
either I = Np_; or | INN,_; |=1 and n € I. Therefore I = {k,n} or
{k +1,n}. But {k,n} is not an interval of T because n — k —1 — k,
and {k + 1,n} also since k +1 — k+ 2 — n. Consequently T is in-
decomposable. To prove that I(T') is {1,n — 1}-covered, we proceed as
previously.

Conversely, consider T' € P_,. For a contradiction, suppose that 1 —»
n. As N,_; is not an interval of T, there is i € {2,...,n — 1} such that
n — 1. Set

m=max({i € {2,...,n -1} : n — i}).

Clearly 2 < m <n-1and {m+1,...,n -1} (when m < n -2
)—n — m. Ifm =2o0rm = 3, then {m — 1,n} would be a non
trivial interval of T. Moreover, if m = n — 1, then T[{1,n — 1,n}] ~ P;
is indecomposable. It would follow from Proposition 1.1 that I(T’) is not
{1,n — 1}-covered. Thus

4<m<n-2

Set X = {4,...,n —1}. Since T[X] ~ P,_4, T[X] is indecomposable.
As X — 1,1 € (X). We have m,m + 1 € X because m < n — 2. Since
m+l —n-—m,m¢ (X). AsX — 1 — n, it follows from Lemma 2.1
that T{X U{1,n}] = T —{2, 3} would be indecomposable which contradicts
the fact that I(T') is {1,n — 1}-covered. Consequently

n— 1.

Since N, is not an interval of T, there is i € {2,...,n — 1} such that
i — n. Set
p=min({i € {2,...,n =1} : i — n}).
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Clearly 2 < py<n-1and g — n — {1,...,u — 1}. Furthermore
{n —1,n} would be a non trivial interval of T" if u = n — 2. Therefore

pef{2...,n-3}u{n-1}. (2)

Observe that ¢(T*) € P-;. By applying (2) to ¢(T™), we obtain v €
{2,...,m -3} U {n — 1} such that v — n — {1,...,v — 1} in o(T*).
Weget {n—v+1,...,n=-1} —n—n—v(nT). If u=n—1, then
N (n) = Np_y with k = n—1. Similarly, if v = n—1, then N (n) = Ny,
with k = 2. Assume that

u,veE{2...,n-3} 3)
Asp—n—{1,...,p—1}and {n—v+1,...,n-1} — n—n-—v,
we have
p<n—-v+1
and 4)
pL#EN—

Assume that u = n—v+1. We get N (n) = N,_;. Furthermore, 1 > 4
because v < n — 3. Hence

and
4<pu<n-3.

{ N#(n) = Nuy

So assume that u # n — v + 1. It follows from (3) and (4) that

5<u+v+l<n. (5)

For a contradiction, suppose that n > u+v+1. Set X = {1,...,pu} U
{n}u{n—-v,...,n—1}. The function

X — {1,...,p+v+1}

i — i for1<i<pu,
n u+1,
i — i—-(n-p-v-2) forn—v<i<n-1,

is an isomorphism from T[X] onto P,4,,1. Thus T[X] is indecompos-
able with
INN\X [=n—(u+v+1) (6)

Since I(T) is {1,n— 1}-covered, n— (1 +v+1) # 2. Moreover, it follows
from Proposition 1.1 that n— (u+v+1) < 3. Thusn—(u+v+1) =1lor3.
If n— (u+v+1) =1, then {u +1,n} would be a non trivial interval of T'.
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Suppose that n — (u + v +1) =3. We have N, \ X = {p+ 1,4+ 2,1+ 3}.
As I(T) is {1,n — 1}-covered, we should have T[X U {i}] is decomposable
for i € N, \ X. Using Lemma 2.1, we obtain the following contradiction

o if T[X U {u + 1}] is decomposable, then u +1 € X (1) and p = 3;
o if T[XU{p+3}] is decomposable, then u+3 € X(n—1) and p = n—7;
e if T[X U {u + 2}] is decomposable, then

or

p+2eX(l)and p=2
p+2€X(n—1)and p=n—86.

It follows that n = p + v + 1. We obtain Nf(n) = N,_; U {u + 1}.
Moreover 2 < p <n -3 by (3).

O

The next remark describes the indecomposability graph of the tourna-
ments of P_;.

Remark 3.4 Consider T € P_,. Applying Proposition 3.3, we have to
distinguish the following two cases according to N (n).

1. IfN;(n) =Ni_) wherek € {4,...,n -3} U {2,n -1}, then

[ {{Lin},{n,n—-1},{n—-1,n~2}} if k=2,
{{1,2}, {1,n}, {n,n -1}, {n-1,n—2}} if k=4,

{t,n},{t,n-1},{n—1,n}} ifk=5andn=09,

{{1,n}, {,n-1},{n-1,n},{n—-1,n - 2}}

ifk=5 and n > 10,
E(I(T)) = 4

{{,2},{1,n},{1,n-1},{n-1,n},{n - 1,n - 2}}
ifke{6,...,n -5},

{{1,2},{1,n},{1,n -1}, {n—1,n}}ifk =n—4 and n > 10,

{{1,2},{1,n},{n-1,n},{n-1,n-2}} fk=n-3,

\ {{1’2}’{1,"7’}’{""11”}} fk=n—-1.
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2. If Nf(n) =Ni_1 U{k + 1} where k € {2,...,n — 3}, then

[ {{1,2},{1,n},{n,n—1},{n—-1,n—2}} if k=2,
{{1,n},{n,n-1},{1,n—-1},{n-1,n—-2}} if k=3,

E((T)) = ¢ {{1,2},{1,n},{1,n -1}, {n — l,nt}gcne—{i:n—’i}i 5,

{{1,2}, {1,n},{1,n -1}, {n—-1,n}} ifk=n—4,

| {{1,2},{1,n},{n-1,n},{n-1,n—-2}} fk=n-3
(]

3.2 The class Q_;

The next proposition describes the class Q_;,

Proposition 3.5 Given a tournament T defined on N, where n > 11,
such that T —n = Qp-1,
T € Q_, if and only if

( Nn_4U{n-—1}
or
Nn_3U{‘n—1}
Ni(m)={ or (7)
Ne—1U{k+1,n—2,n—1} where k€ {2,...,n—4}
or
| Ny-1U{n—1,n—2} where k€ {2}U{4,...,n—3}.

Proof. Let T be a tournament defined on N, such that T — n = Qn—1
where n > 11. To begin assume that T satisfies (7). To verify that T
is indecomposable and I(T) is {1,n — 1}-covered, we proceed as at the
beginning of the proof of Proposition 3.3.

Conversely, assume that T is indecomposable and I(T) is {1,n — 1}-
covered. Set X = N,,_3. We have T[X] = P,_3 is indecomposable. Clearly
n—1 € (X). Similarly set Y = N,_4. We have T[Y] = P,,—4 is indecompos-
ableand n —1 € (Y). Alsoset Z = {4,...,n —1}. We have T[Z] ~ Qn_4
is indecomposable. Observe that 1 € Z(n — 1).

Let v € Y. For a contradiction, suppose that n € X(u). We have
n € Y(u) as well. Since I(T) is {1,n — 1}-covered, T — {n — 3,n — 2} =
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T[Y U {n — 1,n}] is decomposable . By Lemma 2.1, {u,n} is an interval
of T[Y U {n — 1,n}]. In particular n — n — 1. Now we prove that
n — n — 2, which implies that {u,n} would be a non trivial interval of T'.
We distinguish the following two cases.

o Assume that u # 1. Set Y’ = (Y'\ {u})U {n}. As {u,n} is an interval
of T[Y U {n}], T[Y] ~ T'[Y’] and hence T[Y") is indecomposable. We
have n —1 € (Y’) because n — n — 1. Since I(T) is {1,n — 1}-
covered, T — {u,n — 3} =T[Y'U {n — 2,n — 1}] is decomposable. As
Y’U {n —2} is not a interval of T[Y’'U {n — 2,n — 1}}, it follows from
Lemma 2.1 that n — 2 € (Y’). In particular n — n ~ 2.

e Assume that u = 1. For a contradiction, suppose that n - 2 — n.
Set Z' = N,_5. The tournament T[Z’| = P,_s is indecompos-
able. Moreover n € Z'(1), n -2 € (Z’Yand 1 — n -2 — n.
It follows from Lemma 2.1 that T[Z’' U {n — 2,n}] is indecompos-
able. Set 27 = Z' U{n —2,n}. We have n —1 ¢ (Z”) because
n —s n—1 — n— 2 Furthermore, since T[{{n — 1,n — 2,n}]
is indecomposable, n — 1 ¢ Z”(n — 2) U Z”(n). By Lemma 2.1
n—1¢ Z'(v) for v e Z' because n —1 € (Z’). Thusn—1¢ Z"(v)
for v € Z'. It follows from Lemma 2.1 that n — 1 € Ext(Z"). Thus
T[Z”U{n -1} =T — {n — 4,n — 3} is indecomposable which con-
tradicts the fact that I(T') is {1,n — 1}-covered.

Consequently

u=n—4

n¢ |J X(u).
u=1
Since px is a partition of {n — 2,n — 1,n} by Lemma 2.1, we obtain

n € X(n - 3) U (X) UExt(X).

First, assume that n € X(n—3). Asn € X(n—3),n — 4. Thusn —
4 — n—1and hence n ¢ Z(n—1). Furthermore T[ZU{1,n}] = T—{2,3}
is decomposable because I(T) is {1,n — 1}-covered. Since 1 € Z(n — 1),
{1,n —1} is an interval of T[Z U {1,n}]. In particular n — n — 1, so that
{n—3,n} is an interval of T— (n—2). Therefore {n—3,n} is not an interval
of T[{n - 3,n —2,n}} and n — n — 2. For k = n — 4, we obtain

Nt (n) = Neyu{k+1,n-2,n-1} if n—n-3
T Nequ{n-2,n-1} if n—n-3.
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Second, assume that n € (X). Suppose for a contradiction that n €
Z(n—1). We have {4,...,n =3} — n — n—2. As n € (X), we obtain
{1,...,n=3} — n — n—2 and {n—1,n} would be a non trivial interval
of T. Thus

n¢ Z(n—1).

Since I(T) is {1,n — 1}-covered, T — {2,3} = T[Z U {1,n}] is decom-
posable. As1 € Z(n—1)and n ¢ Z(n— 1), {1,n — 1} is an interval of
T[Y U {1,n}]. We obtain either {1,n —1} — norn — {1,n—1}. Sup-
pose for a contradiction that {1,n — 1} — n. Since n € (X), Np_3 — n.
If n—2 — n, then N,,_; would be a non trivial interval of T, and if
n — n—2, then {n —1,n} would be a non trivial interval of T Therefore

n— {l,n—-1}

Asn € (X),n — N, _3. Since N,_, is not an interval of T', n—2 — n
and we obtain

Ni(n) =Np_sU {n—1}.

Third, assume that n € Ext(X). For a contradiction, suppose that
n—1 — n. AsI(T) is {1,n—1}-covered, T—{n—3,n—2} = T[YU{n—1,n}]
is decomposable. Since Y — n — 1 — n, it follows from Lemma 2.1 that
n € (Y). Furthermore, as n € Ext(X), T[X U {n}| =T[Y U {n —3,n}] is
indecomposable. Thus, either Y —n—n-30orn—-38—n—Y. If
Y — n — n — 3, then {n — 2,n} would be a non trivial interval of T
Suppose that n =3 —n — Y. Sincen — 4 —n—-1,n¢ Z(n-1).
Asle€ Z(n-1)and n—1 — n — 1, it would follow from Lemma 2.1
that T[Z U {1,n}) = T — {2, 3} is indecomposable and I(T) would not be
{1,n = 1}-covered. Consequently

n—n-—1.

Lastly, consider X’ = X U {n}. We have T[X’] is indecomposable be-
cause n € Ext(X). We verify that [(T[X’]) is {1,n—3}-covered. Otherwise,
there exist ¢ # y € X'\ {1,n — 3} such that T[X’] — {z,y} is indecompos-
able. Set Y/ = X'\ {z,y}. We have Y/ — n — 1 because n — n — L.
Therefore n—1 € (Y’). Moreover n—2 ¢ (Y') because 1 — n—2 — n-3.
Since Y — n—1—n—-2, T[Y'U {n - 2,n —1}] is indecomposable by
Lemma 2.1. As z,y € X'\ {1,n —3} C N, \ {1,n — 1}, {T) would not be
{1,n — 1}-covered. It follows that

I(T[X'}) is {1,n— 3} — covered.

Consider the bijection
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p: X' — Nn—2
zeX +— T
n —_— n—=2

and denote by T” the unique tournament defined on N,,_ such that
¢ is an isomorphism from T'[X’) onto T”. We obtain that TV € P_,;. By
Proposition 3.3,

Ny where k€ {2}U{4,...,n-5}U{n -3}

Nf(n—-2)=¢ or
Ni-1U{k+1} where ke {2,...,n—5}.

Thus

Ni_1 where k€ {2}U{4,...,n-5}u{n~3}

Nfixy(n) = ¢ or (8)
Nip_1U{k+1} where ke {2,...,n—5}.

Since n — n — 1, we obtain

N;:[X,](n) ={ or when k=n-3.
Ne—jU{n-2,n-1}.

Assume that k £ n —3. We show that n — n—2. Set Y’ = N,,_5. We
have T[Y’] = P,_s is indecomposable and n — 2,n — 1 € (Y”). Moreover,
by (8), n & (Y’) because k # n—3. As (T) is {1,n— 1}-covered, T — {n —
4,n -3} =T[Y'U {n - 2,n — 1,n}] admits a non trivial interval I. Since
T[Y'] is indecomposable, I N Y’ is a trivial interval of T[Y’]. Therefore
INY' =9, {u}, whereve Y’ or Y".

o Assume that INY' = 0. Asn—-2n—1¢€ (Y') and n ¢ (Y),
I={n-2n-1}. Sincen —n—-1,n-—n-2.

o Assume that I NY’ = {u'}, where u’ € Y’. For every z € I\ {u'},
wehavez € Y'(u'). Asn-2,n—-1€(Y'),n—-2,n—-1¢Y'(x) by
Lemma 2.1. Hence I = {«/,n} and n — n — 2 because v’ — n — 2.



o Assume that INY’ =Y’. For every z € {n—2,n—1,n}\ I, we have
z€(Y'). Thusn € l. Sincen —n—1—n-2,I #Y'U{n-2,n}.
It follows that n—2¢ I. As Y’ — n — 2, we obtainn — n — 2.

It follows that

n—n-—2

Consequently n — {n — 2,n — 1} and it follows from (8) that

Ni—1U{k+1,n—2,n—1} where ke€{2,...,n-5}
N;I[ X'] (ny=( or
NiyU{n-2,n—-1} where ke {2}U{4,...,n—-5}.
O
The next remark describes the indecomposability graph of the tourna-
ments of Q_;.

Remark 3.6 Consider T € Q_;. Applying Proposition 3.5, we have to
distinguish the following cases according to N (n).

1. If Nf(n) =Np_3U {n -1}, then E(I(T)) = {{1,2},{2,n -1},
{n,1},{n,n —1},{1,n —1}}.

2. If N} (n) = N,_4U{n—1}, then E(I(T)) = {{1,2},{2,n—1},{n,1},
{n,n—-1},{1,n—-1},{n—1,n—2}}.

3 IfNt(n) =N U{n—1,n—2} wherek € {4,...,n—3}U{2}, then

({{1,n},{n,n—1},{l,n—1},{n—1,n~2}} if k=20rk =35,

{{1,2},{1,n},{n,n—-1},{n—-1,2},{n—1,n - 2}} if k=4,

BT = Y{1,25, {1, n}, {1,n = 1}, {n - 1,1}, {n — L,n — 2}, {2,n — 1}}

ifke {6,...,n—5}U{n -3},

{{1,2},{1,n},{1,n—1},{n - 1,n},{n —1,2}} fk=n—-4.

4 If Nf(n) =Ne_1U{k+1,n—1,n—2} wherek € {2,...,n—4}, then
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E(I(T)) = {

({1,2},{L,n}, {n,n=1},{n—1,n -2}, {2,n - 1}} if k=2,
{L,n},{n,n-1}{l,n-1},{n-1,n-2}} if k=3,

{25 {1, n},{1,n -1}, {n-Ln}, {n-1,n-2},{n—1,2}}
ifke {4,...,n -5},

3.3 The

{{1,2},{1,n},{1,n-1},{n-1,n},{n-1,2}} ifk=n—-4.

O

class P_3

Proposition 3.7 Up to isomorphism, the elements of P_3 are the tour-
naments T defined on N,, where n > 12, such that T[N,_3] =

= n-3;

n—2 € Np (Nn_3) and satisfying one and only one of the following asser-

tions.

1.n-1€

2.n-1€¢

NT_(Nn—S): ne Nn—3(n - 3) and

E(GN,._;,) = {{'n - 2,n}} with n—2 —n-1.
N, _3(n—4), n € N,_3(n —3) and

or
{n—-1,n} € E(GN,_,),| E(GN,_,) |> 2 with n — n—3.

S n-1,n

E(Gn,_,) = { or

The proof
helpful.

{ E(Gn,_;)={{n-2,n-1},{n-2,n}}

€ No_3(u), whereu=n—4 orn—3, and

"{{n-2,n-1}} with n—1# {u,n}

{{n-2,n-1},{n—2,n}} with us {n—1,n}.

is analogous to that of Proposition 3.3. The next lemma is
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Lemma 3.8 Let T be an indecomposable tournament defined on N,_,;
where n > 12, verifying : T[N,—3] = P,—3 and for each vertez i of Npo—; —
{1,n — 3}, i is critical. Then one and only one of the following assertions
holds, where {a, 8} = {n —2,n —1}.

1. N5 (Np_3) = {a}, Nn_3(n — 3) UN,_3(n — 4) = {B}.

2. N (Nass) = {a}, Na-s(1) UNazs(2) = {8},

3. Np_3(n—-4)={a}, Nu_3(n - 3) = {8} withf — n - 3.
4. Ny_3(1) = {a}, N,—3(2) = {8} with1 — c.

3.4 The class Q_3

The proof of the last proposition is similar to that of Proposition 3.5. For
convenience, we use the following notation. Given a tournament T' = (V, A),
consider a subset X of V such that | X |> 3 and T'(X] is indecomposable.
For u € X, X (u) is divided into X ~(u) and X*(u) as follows

e X~ (u) is the set of the elements z of X(u) such that z — u;

e X*(u) is the set of the elements = of X (u) such that u — z.

Proposition 3.9 Up to isomorphism, the elements of Q_3 are the tour-
naments T defined on N,,, where n > 12, such that T[X] = Q-3 and
satisfying one and only one of the following assertions, where X =N,,_3.

1. n—-2eNf(X),n-1€ X~ (n—4), and

or

{ n€ Xt (n-4) and E(Gx)={{n—-2,n-1},{n-2,n}}
n€eX(n—-4), n—n—-1and E(Gx)={{n—-2,n-1}}.

2. n—-2€Xt(n-3),n—1€ Nz (X), n€ Nf(X) and
EGx)={{n-2,n-1},{n-2,n}}.

3 n-2€Xt(n-3),n—1¢€ (X), and
{ ne(X), nt{n-2n-1} and E(Gx)={{n-2,n-1}}

or
neXt(n-3), n—-2—n and E(Gx)={{n-2,n-1}}.
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4n-2€Xt(n—-3),n-1€ X(n~4), end

n€(X) and E(Gx)={{n—2,n-1},{n—-2,n}}

or

n € Nf(X) end E(Gx)={{n-2,n},{n-1,n}}

ZTEN}"(X), n—1—n—-4 and
EGx)={{n-2,n-1},{n-2,n},{n—-1,n}}.

5n-2,n-1€eX"(n-3),n—-1—n-2ne€ X(1) and E(Gx) =
{{n-2,n}}.
6. n-2€X " (n-3),n—1€ X*(1), and

n€ X (1) and E(Gx)={{n—-2,n—-1},{n—2,n}}
Totre X(1), n—=1—n and E(Gx)={{n-2,n-1}}
:"e X(2) and E(Gx)2 {{n-2,n-1}}.

7n-2e€eX (n-3),n—1€ X*(2), and

or

ne€eX (2),n—n—-1and E(Gx)={{n-2,n-1},{n—-2,n}}
{ n€ X(2), n—1—n aend E(Gx)={{n-2,n-1}}.

8 n-2€eX (n-3),n—1€ X~ (1), n€ X(2) and E(Gx) = {{n —
2,n—-1},{n—-2,n}}.
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