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Abstract

Two graphs are defined to be adjointly equivalent if their complements
are chromatically equivalent. In 2, 7], Liu and Dong et al. gives the first
four coefficients bo, b1, b2, b3 of adjoint polynomial and two invariants R;,
Ry, which are useful in determining the chromaticity of graphs. In this pa-
per, we give the expression of the fifth coefficient by, which brings about a
new invariant R3. Using these new tools and the properties of the adjoint
polynomials, we determine the chromatic equivalence class of Bn—9,1,5.

Keywords: vertex-coloring, adjoint polynomial, the fifth coefficient, chro-
maticity, invariant, chromatic equivalence class.
AMS subject classification 2010: 05C15, 05C60, 05C31.

1 Introduction

The graphs considered in this paper are finite undirected and simple graphs. We
follow the notation of Bondy and Murty [1), unless otherwise stated. For a graph
G,1et G, V(G), E(G) , n(G), m(G), ¢(G) and t(G) be the complement, vertex
set, edge set, the order, the size, the component number and the number of tri-
angles of graph G, respectively. Ng(H) denote the number of subgraphs of G
isomorphic to H, which H is a subgraph of G. If W C V(G), we denote by
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G \ W the subgraph of G obtained by deleting the vertices of W and the edges
incident with them.

A partition {4, Az, - - , A.} of V(G), where r is a positive integer, is called
an r-independent partition of graph G if each A; is nonempty independent set of
G. We denote by (G, ) the number of r-independent partitions of G. Thus
the chromatic polynomial G is P(G,\) = 3,5, a(G,7)())r, where (A), =
AA=1)---(A=r+1)forallr > 1. The readers can turn to [4] for details on
chromatic polynomial.

Two graphs G and H are said to be chromatically equivalent, denoted by G ~
H,if P(G,)) = P(H,)). By [G] we denote the equivalence class determined by
G under “~". It is obvious that “~” is an equivalence relation on the family of all
graphs. A graph G is called chromatically unique (or simply x-unique) if H = G
whenever H ~ G. See [5, 6] for many results on this field.

The adjoint polynomial of a graph is a useful tool for this study. We now
proceed to define it. Let G be a graph of order n. If H is a spanning subgraph
of G and each component of H is complete, then H is called an ideal subgraph
of G. Two ideal subgraphs are considered to be different if they have different
edge sets. For k > 1, let N(G, k) be the number of ideal graphs H in G with
c(H) = k. The number N(G, k) is referred to as an ideal subgraph number. It is
clear that N(G,n) = 1 and N(G, k) = 0 for k£ > n. Define

Y N(G, kyzk, ifn>1.
1, otherwise.

MG@={

The polynomial h(G, z) is called the adjoint polynomial of G. Observe that
h(G,z) = h(H,z) if G = H. Hence h(G, z) is a well defined graph-function.
The notion of the adjoint polynomial of a graph was introduced by Liu [7]. Note
that the adjoint polynomial is a special case of an F-polynomial[10]. Two graphs
G and H are said to be adjointly equivalent, denoted by G ~"* H, if h(G,z) =
h(H,z). Evidently, “~"” is an equivalence relation on the family of all graphs.
Let [G)n = {H|H ~" G}. A graph G is said to be adjointly unique(or simply
h — unique) if G = H whenever G ~" H. Note that

a(G,k) = N(G,k), k=1,2,--- ,n.
It follows that
Theorem 1.1 3] (1) G ~" H if and only if G~ H.
(@ Gh={HHEeG)} _
(3) G is x-unique if and only if G is h—unique.

Hence the goal of determining [G] for a given graph G can be realized by
determining [G]r. Thus if m(G) is very large, it may be easier to study [G]x
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rather than [G]. The determination of [G] for a given graph G has received much
attention in [12, 13, 18, 19] recently.

Now we define some classes of graphs, which will be used later,

(1) Ca(resp. P,) denotes the cycle (resp. the path) of order n, and write
C={Culn23},P={Pa|n>2}and U = {Uy,1,4,1,1]t > 1}.

(2) Dn(n = 4) denotes the graph obtained from Cj and P, _; by identifying
a vertex of C3 with a pendent vertex of P,_s.

(8) Ty 15,15 is a tree with a vertex v of degree 3 such that T}, 4,1, — v =
}3’1 U B, U ‘Pls and Iz > I > [, write Ty = {T1,1,13|13 > 1} and 7 =
(T, 12,1l 12, 18) # (1,1, 1))

(4) J= {Cnv Dﬂi Kth;,lz,l;J" 2 4}'

(5) €= {Cr(Ps)s Q(T, 3)7Br,s,ta F,, Ur.a,t.a,b; K4—}

(6) Y= {wrlu 7/’3’ 1,[13(7', 5)’ 1/):11(7" 5)’ 1/)2(7" 8, t)’ 1,1)56}

-
L (<
AN

3
rees@
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;
: /t\
é t'ksb t-;a
Cr(Ps) Qr,s Br,s,t Fn Ur,s.t,a,b K4_
e 0
18 on $1
4 0{—-:1 X
s 14t

AN

Yn Yo [ ¥a(ms) | ¥3(r,s) | Pn(r,s,t) | 9%
Figure 1 Families of ¢ and o

For convenience, we simply denote A(G, ) by h(G) and h, (G, z) by b (G).
By B(G) and ¥(G) we denote the smallest and the second smallest real root of
h(G), respectively. Let dg(v), simply denoted by d(v), be the degree of vertex
v. For two graphs G and H, G U H denotes the disjoint union of G and H,
and mH stands for the disjoint union of m copies. By K,, we denote the com-
plete graph with order n. Let g(z)|f(x)(resp. g(z) { f(z)) denote g(z) divides
f(z)(resp. g(z) does not divide f(x)) and &(f(x)) denote the degree of f(z). By
(f(z), g(x)) we denote the largest common factor of f(z) and g(z) on the real
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field. Let Ng(v) be the neighborhood set of a vertex v.

2 The expression of the fifth coefficient

In this section, we calculate the ideal graph number N (G, n — 4), which is also
called the fifth coefficient of adjoint polynomial.

Lemma 2.1 [8, 9] Let G be a graph with nvertices and m edges. Denote by
A the set of the triangles in G and by A(%) the number of triangles which cover
the vertex % in G. If the degree sequence of G is (d1,dz, -+ ,dy), then

(1) 5o(G) = N(G,n) = 1;

(2)h1(G)=N(G,n—-1) =

(3) b2(G) = N(G,n - 2) = ('"“) -3y d? + NG(Ka)

(4)b3(G) = N(G,n-3) =% (m2+3m+4) mE2 N AP 3 Ay di-
Yijer(c) %idi — 2ien O(1)d: + (m +2)Ng(K3) + Ng(Ka), where b (G)
a(G,m —i)(i=0,1,2,3).

Our aim here is to study the expression of the fifth coefficient of adjoint poly-
nomial b4(G) = N(G,n — 4). It is useful in determining the chromaticity of
graphs.

Theorem 2.1 Let G be a graph with n vertices and m edges, and let G’ = G~
A and A is a triangle of G. If the degree sequence of G’ is (d1(G’),d2(G"),- - -,
dn(G")), then

b4(G) = N(G,n — 4) = (m(G) + 6)Ng(K4) ~ L.eq Kalz) + (7)) -
No(K7)-NoW+Eace (MG 3 T d2(G) +(™(7) = No(Ps)
~Ng(P3U Py) = No(2Ps) — Eeviey (*) — No(K1,3U Ka) — No(Da) -
Ng(K3 U P;) — Ng(Cy), where K4(z) denote the number of Ky in G which
covers vertex .

Proof. By definition, N(G,n — 4) is the number of ideal subgraph H in G with
¢(H) = n — 4. Since n(H) = n, each component of H is order at most 5, we
find that H is one of the following types of graphs:

(1) 4K, U (n—8)Ky; (2) 2K3U (n—-86)K1; (3) K3U2K,U (n—T7)Ky;

(4) K4U K, U (n—6)K;; (5) Ks U (n—5)K.

Thus

N(G,n—4) = Ng(4K,) + N¢(2K3) + Ng(Ks U2K,)+ Ng(K4 U K,) +
N¢(Ks).

Observe that
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(1) Let ¢ is the set of all the subgraphs of G isomorphic to K. For
each K4y € Jf3, we denote the four vertices by 1, 7, k,m and their degrees by
d;,d;, dk, dpy, respectively. Then

No(KsUKz) = 3 (m(G) +6—(di +dj +di + dm))

(m(G) +6)Na(Ka) — D (di+d;+di+dm)
i7hkmeK,

= (m(G)+6)Ng(Kq) - > d(z)(Ka(z)),
€K,

where K4(x) denote the number of K4 in G which covers vertex z.
(2) If graph G is triangle-free or G contains one triangle, then it is easy to see
that Ng(2K3) = 0. If graph G contains at least two triangles, then we have

No(aks) = (")) - Netk) - Netud),

where NG(K + ) and Ng(9€) denote the number of subgraphs isomorphic to K-
and ¢ in G, respectively. The definition of K, and %€ can be found in Figure l

(3) If graph G is triangle-free, then it is easy to N(K3 U 2K3) = 0. If graph
G contains at least one triangle, then

n(G)

INe)
where G = G — A and A is a triangle of G.
The number of methods of choosing two nonadjacent edges is equal to the

size of line graph of G — A. So the number is 1 Z"(G ) d2(G").

(4) Now consider the number of 4K5. Flgure 2 shows all possible graphs with
size 4 and no isolated vertices, where H; = Ps, Hy = PyUK,, Hy = 2K3, Hy =
4K2,Hs = K 4,He = K13U Ky, H; = Dy, Hg = K3 U K5, Hy = C,.

H, H, Hj H, Hs Hs H, Hg Hy
Figure 2 The combinatorial types of 4K,

1111

Observe that

87



Ne(Ki)= Y (d(:))

zeV(G)
Thus

4
—Ng(K1,3U K2) — Ne(D4) — No(K3 U K2) — Ne(Cy)

= ("= > ("7) - vorv k) - Notkisu K

4 zeV(G)
—Ng(2K3) - Ng(Ps) — Neg(Ds) — No(K3 U K3) — Ng(Ca)

Ng(4Kp) = (m(G)) - Na(Ps) — Ng(Py U Kg) - NG(2K3) - NG(KIA)

The result holds.
O

Theorem 2.2 (1) by(P,) = (*;*) forn > 5;

(2) ba(Cn) = 5n("35 ) for n > 5; b4(Cs) = b4(Cy) = 0;
(3) ba(Dyn) = 5n("5%) +n — 6 forn > 5; by(Dg) = 0;
(4) ba(K7) = ba(K4) = 0; ba(Ca(Ps)) = ba(Q1,2) = 0.

Proof. From Theorem 2.1, we can easily get the results by direct calculation. O

3 The third invariant

On the basis of the four coefficient by, b1, b2 and b3, Liu and Dong et al.[2, 7, 9]
give the following two invariants R; and Rj.

Definition 3.1 [2, 7, 9] Let G be a graph and b;(G)(0 < 7 < 3) be the first
four coefficients of ~(G). Then
(1) The first character of a graph G is defined as

_ 0 ifg=0,
R.i(6) = { b(G) — (DY) +1 ifg>0.

(2) The second character of a graph G is defined as

Ry(G) = bs(C) - (”‘(f’) — (bi(G) - 2) (bz(G) - (”“f))) —b(G).
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Now we define a new invariant R3(G), which is derived from the first fifth
coefficients.
Definition 3.2 Let G be a graph. Then the third character of a graph G is

defined as b (G
Ra(G) = ba(C) — ( ¢ )).

It is obvious that R3(G) is an invariant of graphs. So, for any two graphs G
and H, we have R3(G) = R3(H) if h(G) = h(H).

Theorem 3.1 Let G be a graph with k components G, Gs, - - - , Gi. Then

k k
h(G) = [[ M(G:) and R3(G) = Y _ Rs(Gy).
i=1 i=1

4 The chromaticity of graph B, g5
4.1 Preliminaries

Definition 4.1.1{8] Let G be a graph and k; (G, z) be the polynomial with
a nonzero constant term such that A(G,z) = z?©h) (G, ). If hi(G,z) is an
irreducible polynomial over the rational number field, then G is called irreducible
graph.

Theorem 4.1.1[2, 8] Let G be a graph with k components Gy, Ga, -+ - , G.
Then h(G) = [I5_, h(G:) and R;(G) = Y5, R;(G;) for j = 1,2.

It is obvious that R;(G) is an invariant of graphs. So, for any two graphs G
and H, we have R;(G) = R;(H) for j = 1,2 if h(G) = h(H) or h1(G) =
hi(H).

For an edge e = v,v; of a graph G, the graph G * e is defined as follow: the
vertex set of G x e is (V(G) — {v1,v2}) Uv(v € G), and the edge set of G * e is
{e'le’ € E(G), € is not incident with v; or v2} U {uv|u € Ng(v;) N Ne(vs)},
where Ng(v) is the set of vertices of G which are adjacent to v.

Lemma 4.1.1 [8] Let G be a graph with e € E(G). Then
h(G,z) = h{(G — e,x) + h(G x e, ),
where G — e denotes the graph obtained by deleting the edge e from G.

Lemma 4.1.2(8] (1) Forn > 2, h(Pa) = (X, )2%.
(2) Forn > 4, h(Dy) = Zkgn(%(:-k) + (::,?_3)):1:".
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(3) Forn > 4, m > 6, h(Py) = z(h(Pa-1) + h(Paz2)), H{(Dm) =
2(h(Dm—1) + h(Dm—2)).

Lemma 4.1.3 [11] Let {g:(z)}, simply denoted by {g:}, be a polynomial
sequence with integer coefficients and g, (z) = z(gn-1(z) + gn—2(z)). Then

(1) gn(z) = h(Pr)gn-k(z) + Th(Pi-1)gn-k-1(Z).

(2) h1(Pn)igk(n+1)+i(2) if and only if hy(Pn)|gi(z), where 0 < 7 < =,
n>2andk > 1.

Lemma 4.1.4 [7, 14] Let G be a nontrivial connected graph with n vertices.
Then

(1) R;(G) < 1, and the equality holds if and only if G = P,(n > 2) or
G = Ks.

(2) R1(G) =0ifand only if G € ¥.

(3) R1(G) = —1if and only if G € &, especially, ¢(G) = p(G) + 1 if and
onlyif G € {Fy|n > 6} U {K; }.

Lemma 4.1.5 [15] Let G be a connected graph. If R, (G) = 0, -1, -2, then
n(G) — m(G) < |R1(G)|-

Lemma 4.1.6 [11] Let G be a connected graph and H a proper subgraph of
G, then B(G) < B(H).

Lemma 4.1.7 [11] Let G be a connected graph. Then
(1) B(G) = —4 if and only if

G e {T(1,2,5),T(2,2,2),T(1,3,3), K1,4,Ca(P2),Q(1,1), K, Dg} UU;
(2) B(G) > —4if and only if
Ge{K,,T(1,2,i)(2<i<4),D;(4<i<T)}UPUCUT,.

Lemma4.1.8 [11] Let G be a connected graph. Then —(2+v/5) < 8(G) <
—4 if and only if G is one of the following graphs:

(1) Tll.lz,ls forly =1,lp=2l3>50rl; =1,lp>2,l3>30rly =13 =
2,l3>20rly =2,lp=13=3.

(2) Upstapforr =a =1, (rs,t) € {(1,1,2),(2,4,2),(2,5,3),(3,7,3),
(3,8,4)},orr=a=1,s > 1,t > t*(s,b), b > 1, where (s,b) # (1,1) and

s+b+2, ifs>3.
= b+3, ifs=2
b, ifs=1.

(3) Dy, forn > 9.
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(4) Cn(P,) forn > 5.

(5) Fn forn > 9.

(6) Bystforr=5,s=1andt=3,orr > 1,s=1ift=1,orr >4,s=1
ift=2,0orb>c+3,s=1ift>3.

(7) G = Cy(P3) or G 22 Q(1,2).

Corollary 4.1.1 [12] If graph G such that R;(G) < —2, then 8(G) <
-2-+/6.

4.2 The algebraic properties of adjoint polynomials

Lemma4.2.1{11] Forn,m 2 2, h(Py) | h(Py) if and only if (n+1)|(m +

% if niseven,
n2

1

Theorem4.2.1 (1)Forn > 9, 8(h1(Bn-9,1,5)) = { n21 otherwise.

2 ifniseven,
(2) Forn 29, p(Bn-9,1,5) = { ﬁ;‘—l gtherwise.

(3) Forn > 9, h(Bn—9,1,5) = (h(Bn-10,1,5) + h(Bn-11,1,5))-

Proof. (1) Choosing a pendent edge e = uv € E(Bp_g,1,5) such that d(u) = 1,
d(v) = 3, and by Lemma 4.1.1, h(Bn—-9,1,5) = zh(Dp_1) + zh(Ps)h(Dpn-1).
We have, from Lemma 4.1.2, that

8(h1(Dn-1)) = |n/2] and 8(h1(Ps)h1(Dn—7)) = 2+ |(n — 6)/2]

If nis even, then 0(hy(Dn-1)) = § > 1‘-,;—2 = O0(h1(Ps)h1(Dp—7)), which
implies 8(h;(Bn-9,1,5)) = 3. If n is odd, then we arrive at d(hy(Dn-1)) =
221 > 253 = §(hy(Ps)h1(Dn-7)), which implies that 8(hi(Bn—9,1,5)) =

n-l

7.
(2) It obviously follows from (1).

(3) Choosing a pendent edge e = uwv € E(Bp_9,1,5) such that d(u) = 1,
d(v) = 3. We have, by Lemma 4.1.2, that

h(Bn_g,l,s) = xh(Dn..l) + .'l:h(Ps)h(D -7)

22 (h(Dn—2) + h(Dn—3)) + 2*h(Ps)(h(Dn—s) + h(Dn_0))
2(zh(Dp2) + zh(Ps)h(Dn_g)) + z(zh(Dn_3)
+zh(Ps)h(Dn-9))

= z(h(Bn-10,1,5) + A{(Bn-11,1,5))
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Theorem 4.2.2 Forn > 2, m > 10, h(P,) | h(Bm-9,1,5) if and only if
n=2andm=3k+3fork>3orn=4andm =5k+3fork > 2.

Proof. Let go(z) = z7 + 1225 + 5625 + 129z* + 155z° + 9722 + 30z + 4,
g1(z) = —27—112%—4625-9224—9273 - 4622 -9z and gm (z) = T(gm-1(z)+
gm—2(x)). We can deduce that

go(z) = z7 +122% + 56z° + 129z* + 1552° + 972° + 30z + 4,
g1(z) —z7 — 112% — 4625 — 92z% — 9223 — 4622 — 9z,
92(z) z7 +102° + 3725 + 63x% + 5123 + 2122 + 4z,

g3(zr) = -z’ —92%—202% — 412 — 2523 — 522,

ga(z) = z7 +8z% + 2225 + 262% + 162° + 427,

gs(z) = —z7 — 725 — 1525 — 924 — 23,

gs(r) = z7+7z% + 172 + 1527 + 427, (4.1)
gr(z) = 2125+ 62° 4 3zf,

gs(z) = z® + 927 + 23z° + 182° + 42?,

go(z) = z°+9z® + 257 + 2428 + 725,

gm(x) = h(Bm—Q,l,S), ifm > 10.

Letm = (n+1)k+i, where 0 < i < n. Itis obviousthat by (Pp)|h(Bm-9,1,5)
if and only if h1(P,)|gm(z). From Lemma 4.1.3, it follows that h1(P,)|gm(z)
if and only if hy(P,)|gi(z), where 0 < i < n. We distinguish the following two
cases:

Casel n > 10.

If0 <i <9, from (4.1), it is not difficult to verify that hy(Py) { gi(z). If
i > 10, from i < n, Lemma 4.1.2 and Theorem 4.2.1, we have that 8(h,(P,)) =
|3] = 8(h1(Bi-e,1,5)) = | 3] Suppose that hy(Py)|h1(Bi—s,1,5), it must leads
to I(h1(Fr)) = O(hi1(Bi-g,1,5)) and h1(Pn) = hi(Bi-g,,s), which implies
Ry(P,) = Ry(Bi-9,1,5). It is a contradiction by Lemma 4.1.4. Hence h;(Py,) t
h1(Bi_g,1,5), together with (hy(P,), z2(Bi~9.1.8)) = 1, hy(P,) { h(Bi-9,1,5)-

Case2 2<n<9.

From (1) of Lemma4.1.2 and (4.1) , we can verify that h; (P,) = gi(z) if and
onlyifn=2andi=3orn=4andi=3for0 <i < 9. FromLemma 4.1.3,
we have that k) (P,)|h(Bm-9,1,5) ifandonlyif n =2and m =3k +3orn =4
and m = 5k + 3. From p(P,) = 1, p(P3) = 2 and p(Bm-9,1,5) = | 5| > 2 for
m > 10, we obtain that the result holds. O

Theorem4.2.3 Form > 10, hz(Pg) ‘f h(Bm_.g,lys) and hz(Pq) f h(Bm_g‘175).
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Proof. Suppose that h2(P;) | h(Bm—-9,1,5), from Theorem 4.2.2, we have that_
m = 3k + 3, where k > 3. Let g (x) = h(Bpm—9,1,5) for m > 10. By (3) of
Theorem 4.2.1, (1) of Lemma 4.1.2, it follows that

Im (:L') = h(P2)gm—2(x) + 172gm_3(a:)
= R (P2)gm-a(z) + 222h(P2)gm-5(z) + z* gm—s(z)
= h*(P2)(gm-4(z) + 282 gm-7(2)) + 32 A(P2)gm—s(z) + 2°gm_o(x)
= h*(P2)(gm-a() + 282 gm—7(2) + 32 gm_10(z))

+42°h(P3) gm—11(2) + 2°gm-12(z)

k—2
= R3(Py) Z.‘lm—&z—l(x) + (k- l)zzk_4h(P2)gm+l—3(k-—l)(x)
s=]

+22*2h(Py)gm-3(k~1(Z)

According to the assumption and m = 3k + 3, we arrive at, by (4.1), that
h*(Pp) | ((k — 1)z®*~*h(P2)gr(z) + 2?1 gs(z))
that is
h(P2) | ((k — 1)z?*~4(22% + 625 + 3z*) + 22~ 12%(2® + 622 + 11z + 4))

By direct calculation, we obtain that & = —1, which contradicts to k£ > 3.
Using the similar methods, we also prove that h%(Py) { h(By—9 1,5)- O

Lemma 4.2.2[2, 8] (1) R2(Cr) =0forn > 4; Ry(C3) = —2; Ry(K)) = 0.

(2) R2(Br,l,1) =3forr>1; Rz(Br,l,:) =4forr,t > 1.

(3) Ro(Fs) = 5; Ro(Fp) =4forn > 7; Ry(K[) = 3.

(4) Rg(Dq) = 0; Rz(Dn) =1forn > 5; RZ(TI,I,I) = -1.

(5) Re(T11,15) = 15 Ra(Th1p5) = 1 Ro(Thy ty0,) = 2F0r i3 > 1 > 1y >
2; Ry(P,) = —1; Ry(P,) = —2forn > 3.

(6) Ra(Cr(P2)) = 3 forr > 4; Ry(Ca(P3)) = Ra(Qh,2) = 4.

Lemma 4.2.3[16] Let graph G € £\{Fn, Uy s,t,06, K7 }, then

(1) R2(G) = 3ifand only if G € {Crn_1(Pa)|n > 5} U{Q1,1} U {Ba-5,1,1
|n 27},

(2) R2(G) = 4 ifand only if G € {Cr(Ps)|r = 4,58 > 3} U {Q1,n-4|n >
6} U {Br,1,t, B1,1,1|r, t > 2}.

(3) R2(G) =5 ifand only if G € {Qrslr,s = 2} U {By,1,¢, Brs |y s,t >
2}.
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(4) R2(G) = 6 if and only if G € {Bys.|s,t = 2}.
Corollary 4.2.1 Let graph G,, € E\{Fn, Uy s,t,0,6, K }» then Ro(G) > 3.

Lemmad.2.4[12,13,18] (1)Forn >5,m > 4, B(Cr(P2)) < B(Ca-1(P2))
< B(Dm).

(2) Forn > 6, m > 6, B(F,) = B(Bm-s,1,1) if and only if n = 2k + 1 and
m=k+2.

(3) Forn > 4, m > 6, B(Fn) < B(Fm-1) < B(Dn) < B(Cn) and
B(Bm-5,1,1) < B(Bm-4,1,1) < B(Dxr).

(4) Forn > 7, m > 6, B(Bn-s,1,2) = B(Fn) ifand only if m =n — 1.

(5) For6<i<8n>i+1,m2>6, ﬂ(Bn—i,l,i—4) < ﬂ(Dm)

(6) For n > 8, B(Bn-7,1,3) = B(Q1,2) = B(C4(Ps)) if and only if n = 13.

(7) Forn > 9, B(Q(1,2)) = B(Ca(Ps)) = B(Bn_s,1,4) if and only if
n=12.

(8) Forr,t > 1, B(Br1,t) < B(Bri1,1,t)-

(9) B(T1,3,6) = B(Cs(P2)), B(T1,3,11) = B(Bs,1,2)-

(10) B(Ba,1,5) = B(Ca(Ps)) = B(Q(1,2)).

Theorem 4.2.4 (1) Form > 10, n > 21, ﬂ(Bl,l,s) < ,B(Bg'llr,) <
B(Bs,1,5) < B(Bars) < B(Bs,s) < B(Bs,1,5) < B(Br,1,5) < B(Cm(P2)) <
B(Bs,1,5) < B(Co(P2)) = B(Bo,1,5) < B(Bro,1,5) < B(B1,1,5) = B(Cs(P2))
< B(C7(P2)) < B(Bn-9,1,5) < B(Ce(P2)) < B(Cs(P2)) < B(Ca(FP2)).

(2) Form > 10, n > 21, B(B1,1,5) < B(B2,1,5) < B(B1,1,2) = B(Fs) <
B(Bs,1,5) < B(F7) = B(Ba,1,5) < B(Bs,1,5) < B(Fs) < B(Bs,1,5) < B(B7,1,5)
;(g(fis‘l.s) < B(Bo,1,5) < B(Bio,1,5) < B(Fo) = B(B11,1,5) < B(Bn-9,1,5) <

7('13) For n 2 10, ﬁ(Q(1,2)) = ,3(04(P3)) = ﬂ(Bn_g,l’s) if and only if
n = 20.

(4) Forn 2 10, m > 4, B(Bn-9,1,5) < B(Dn).

(5) Forn 2 m, t > 6, B(Bm-t-4,1,t) < B(Bn-9,1,5).

(6) Forn > 10, m > 6, B(Bn-9,1,5) = B(Bm-s5,1,1) if and only if m =
6,n = 20.

(7) Forn > 10, m > 7, B(Bn-9,1,5) = B(Bm-6,1,2) if and only if m = 9,
n=20orm = 10,n = 18.

(8) For n > 10, m > 8, ﬂ(Bn_g'l’g,) = ﬂ(Bm_7'1'3) if and only if m =13,
n = 20.

(9) Forn > 10, m > 9, B(Bn-9,1,5) = B(Bm-s,1,4) if and only if m = 16,
n = 20.

Proof. (1) For n > 21, it is obvious that T} 3¢ is a proper subgraph of B,,_g 1 5.

From Lemma 4.1.6 and (9) of Lemma 4.2.4, we have 8(Br_9,1,5) < B(T1,3,6)
= A(Cs(P2)). From (1) and (8) of Lemma 4.2.4, the result holds.
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(2) Using software Mathematica and by calculation, we have 3(B, 1,6)
—4.50469 < ,3(32,1'5) = —4.40387 < ,3(.32'1,4) = ﬂ(Bl,l,z) = ﬁ(Fs)
—4.39026 < B(Bs,15) = —4.34292 < B(B415) = B(Fy) = —4.30278
B(Bs,1,5) = —4.27497 < B(Bg,1,5) = —4.25517 < B(Fs) = B(Bs,1,2)
—4.24978 < ﬂ(B7‘1’5) = —4.24089 < ,B(Bs'],,s) = —4.23057 < ,3(39,1,5) =
—4.22318 < ,@(310_1,5) = —4.21795 < ﬁ(Fg) = ﬂ(Bu‘Ls) < ﬂ(F _1) =
B(Bm—s,1,2). Forn > 21, it follows, from Lemma 4.1.6 and (9) of Lemma 4.2 .4,
that B(Bn-9,1,5) < B(T1,3,11) = B(Bs,1,2). From (3) and (8) of Lemma 4.2.4,
the result holds.

(3) From (10) of Lemma 4.2.4, the result evidently holds.

(4) By (3) of Lemma 4.2.4 and (2) of the theorem, it is easy to get the result.

(5) Since n > m and ¢t > 6, from (8) of Lemma 4.2.4 and Lemma 4.1.6, we
have 3(Bm—t-4,1,t) < B(Bn—t-4,1,t) < B(Bn-9,1,t) < B(Bn-9,1,5)-

(6) Applying (2) of the theorem and (2) of Lemma 4.2.4, the result holds.

(7) From (4) of Lemma 4.2.4 and (2) of the theorem, we can get the result.

(8) By (6) of Lemma 4.2.4 and (3) of the theorem, the result evidently holds.

(9) Using (7) of Lemma 4.2.4 and (3) of the theorem, we can get the result.
a

Al

Lemma 4.2.5(12,17] (1) Fort > 10and 1 < ¢; < 8, we have
Y(Ur,2,6,51) < Y(U1,2,9,51) = —4 < ¥(U1,2,,,5,1)

(2) Forr,t > 1, h(Ur,2.0,1,.) = h(K1U B, 1,).

Lemma 4.2.6 Forn > 10and 1 < n; < 8, we have

YV(Bn-9,15) < ¥(Bs,1,5) = —4 < ¥(Bn,,1,5)
Proof. From Lemma 4.2.5, the result obviously holds. O

4.3 The chromaticity of graph Pn_g,l,s

Theorem 4.3.1 Let G be a graph such that G ~* B,,_g, 5, where n > 10.
Then G contains at most two components whose first characters are 1, further-
more, one of both is P, and the other is Py or one of both is P and the other is

Cs.

Proof. Let G be one of the components of G such that R;(G;) = 1. From
Theorem 4.2.2, that h1(G,)|h(Bn-9,1,5) if and only if G; & P, and n = 3k + 3,
or G; & P and n = 5k + 3. We distinguish the following cases:

According to (1) of Lemma 4.1.3, we obtain the following equality:

h(Bisk+9,1,5) = h(P1s)(Bis(k—1)+9,1,5) + Zh(P1a)h(Bisk—1)+8,1,5) (4-2)
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Noting that {njn = 3k + 3,k 2 3} N{njn =6k + 3,k > 2} = {njn =
15k + 18,k > 0}, we have

h(P2)h(Ps) | h(Bisk-1)+9,1,5) (4.3)

By Lemma 4.2.1, we get h(P2) | h(P14) and h(Py) | h(Pr4), together with
(h(P2), h(Py)) = 1, which leads to

h(P2)h(Pys) | h(Pr4) (4.4)

From (4.2) to (4.4), h(Pz)h(P.;) | h(815k+9'1,5). Noting h(P4) = h(K] U
Cj;), we also have h(P2)h(C3) | h(Bisk+9,1,5), together with Theorem 4.2.3, so
the theorem holds. (]

Lemma 4.3.1 Let G be a graph such that G ~* B,,_g 1 5, where n > 10. If
n # 18, then G does not contain K as one of its components.

Proof. According to Theorem 4.2.2, we arrive at hy(P2) | h1(Bg,,5), that is,
(z + 1) | h1(Bo,1,5). From Lemma 4.2.6, we obtain that y(Bs,1,5) = —4 and
(z 4+ 4) | h1(Bg,1,5) if and only if n = 18. Noting that (z + 1,z +4) = 1 and
hi(K7) = (z + 1)(z + 4), we obtain that hy(K}") | h1(Bn-o,1,5) if and only if
n = 18. From this together with o(K; ) = 2 and a(Bg,1,5) = 9, we know that
the lemma holds. a

Theorem 4.3.2 Let G be a graph such that G ~h Bn_9,1,5, wheren > 9.

(1) If n = 18, then [G]h = {39‘1,5,134 UK, UCy(Pz), Co(P2) UDg, KU
¥3(6,1)};

(2) If n # 18, then [G]h = {Bn_g,l's}.

Proof. (1) When n = 18, let graph G satisfy h(G) = h(Bg,1,5). From Lemma
4,14, n(G) = m(G) and R;(G) = —1. We distinguish the following cases:

Case 1 G is a connected graph.

By Rg(G) = Rz(Bg‘l,s) = 4 and (2) of Lemma 4.2.3, we have G € ¥ =
{Cr(Ps) | 7+ s =19} U {Q1,22} U{Br1, | +t = 15}. Combining this
with Theorem 2.1 and Definition 3.2, we get R3(G) = R3(Bg,1,5) = —1827. By
direct calculation, we have R3(C\(P;)), R3(Q1,22), Ra(Br,1,t) # —1827, where
r+s=19, r+t =15 Thus 4 ¢ [G]p.

Case 2 G is not a connected graph.

By calculation, we have h(G) = h(Bg,1,5) = z%(z + 1)(z + 4)(z? + 3z +
1)(z® +102* 4 342% + 4522 4- 19z + 1). Since z + 4 is not an adjoint polynomial
of a graph, we have A(G) = h(Bg,15) = z*fi1(z)f2(z) fa(z), where fi(z) =
(z+1)(z+4), fo(z) = 2243z+1 and f3(z) = 2°+10z%+3423 +452%+19z+1.
By calculation, R, (f1(z)) = —1. Noting that b1 (f1(z)) = 5, we obtain fi(z) =
h1(K7) if f1(z) is a factor of adjoint polynomial of some graph.

Subcase 2.1 K is acomponent of G.
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Since G is not connected, the expression of G must be G = K] UG;. Noting
that i(P;) = z* + 323 + 22 and h(C3) = z®+ 322 +z, we consider the following
cases:

Subcase 2.1.1 P, is a component of G.

In this subcase, G = K; U Py UG, where h(G}) = 210 + 10z? + 3428 +
45z +192%+25. Noting that R, (G,) = —1 and n(G;) = m(G,) = 10, we have
from Lemma 4.1.4 that G; € £. From Lemma 4.2.3, Ry(G) = Ry(Bs,15) =
4. From this together with Ry(G) = R2(K; ) + Ra(P;) + R2(G1), we have
R2(G,) = 3, which results in Gy € {Co(P2), Bs 1,1} by (1) of Lemma 4.2.3. By
calculating the third invariant of these graphs, K, U Py U Cy(P,) € [G].

Subcase 2.1.2 Cj is a component of G.

The expression of G is G = K; U C3 U Gy, where h(G)) = z'! 4+ 10z!° +
34z% + 4528 + 1927 4 28, From R;(G) = —1and n(G;) = m(G,) +1 =11,
it follows from Lemma 4.14 that G € ¢ = {K; U C3 U Ty 5 ¢,0,6}, Where
r+s+4+t+a+b = 11. By calculating the third invariant of these graphs,
4 Z [Gla.

Subcase 2.1.3 Neither C3 nor P, is a component of G.

The expression of G must be G = K; U G, where G is connected. Noting
that R,(G1) = -2 and n(G}) = m(G;) + 2 = 11, we have from Lemma
4.14 that G; € . Then Ra(G) = Ra(Bgyl's) = —1827 = Rg(KZ) +
R3(G,) by Theorem 3.1, which implies R3(G;) = —1827 by Theorem 2.2
and Definition 3.2. From n(G) = n(Bg,1,5) = 18, we consider that G; €
{03, 93, 3(6,1),%3(5,2), ¥3(4,3), ¥&(3, 1), 94(2,2), ¥§(1, 1,2), ¥§(2, 1, 1) }U
{3(1,3)} (Figure 1). By calculating the third invariant of these graphs, K; U
¥3(6,1) € [G]a.

Subcase 2.2 K is not a component of G.

Let G = G; U G; and hi(Gy) = z*(z + 1)(z + 4)(z® + 3z + 1) and
h1(G2) = z'° + 10z° + 3428 + 4527 + 192° + 5. Noting that R;(G,) = 0 and
n(G1) = m(G1), we have G; = Cs or G = Ds. Itis easy to see that Ry (G2) =
—1 and n(G2) = m(G3). Combining this with Lemma 4.2.2 and Theorem 4.1.1,
R3(G) = Ry(Bq,1,5) = 4 = R2(G1) + R2(G3). If Gy = Cg, then Ry(Gs) = 4,
which leads to G, = 31,2,2. So Rg(G) = R3(C3) + Rs(Bl,g'g) # Ra(Bg,l,s).
Thus Cg U By 22 ¢ [Gla. If Gy = Dg, then Ry(G) = 3, which results in
G2 = Co(P,) or G2 = Bs 1,1. By calculating the third invariant of these graphs,
Cg(Pz) UDg € [G]h

(2) Whenn > 10andn # 18,1etG = U:=1 G;. From Theorem 4.1.1, we
have

t
hG) = H h(G:) = h(Bn-9,1,5), (4.5)
=1

which results in 3(G) = B(Bn-9,1,5) € [-2 — /5, —4) by Lemma 4.1.8. Let
s; denote the number of components G; such that R(G;) = —i, where ¢ > —1.
From Theorems 4.1.1 and 4.3.1, it follows that 0 < s_; < 2,



t
Ry(G) =) _ Ry(G:) = -1and n(G) = m(G), (4.6)
i=1
which results in
S_1 =81 +283+3s3—1. (4.7)

Let UTE'RTlulst = (UTG'flTl,l,ls) U (UTET.'TI.lzJa) U (UTE'TaTllJzJa)’
7= {Tianlls 2 24 T2 = Tl 2 82 2 24T = {Th s 2
lp > 1 > 2}, To = Ty UT, UT;, the tree Ty, 1, 4, is denoted by T for short,
A= {ili > 4} and B = {3l > 5}.

We distinguish the following cases by 0 < s_; < 2

Casel s_; =0.

It follows, from (4.7), that s3 = sz = 0, s; = 1. From (4.6), we set

G = G1U(UieaCi)U(UjeBD;)U f DsUa Ky UBT: 1,1U(Ure Thy 12 015)s (4-8)

where R, (G;) = —1.
From Lemmas 4.2.2, 4.2.3 and Theorem 4.1.1, we arrive at

Ry(G) = Rg(Bn_g,l,s) =4= Rg(Gl) + lBl +a+ |'T1l +2|7§| + 3|7E§| (4.9)

From (4.6) and (4.8), it follows that 0 < n(G;) — m(G1) < 1, which brings
about the following subcases:

Subcase 1.1 n(G;) = m(G1) + 1.

Applying Lemmas 4.1.4 and 4.3.1, we have G; = F,,. Recalling that n(G) =
m(G), we obtain that

a+b+ ||+ 215+ 3|T3) =1 (4.10)

Using (3) of Lemma 4.2.2, we arrive at |B| = a = |T1| = |T2] = |T3| = 0.
From this together with (4.10), it follows that b = 1 and G = F;,, U (U;je4Ci) U
Dy UT1,1'1. From (3) of Lemma 4.2.2, Lemmas 4.1.7 and 4.1.8, ,B(Bn_g,l,s) =
B(G) = B(Fy,). From (2) of Theorem 4.2.4, we have 8(F,,) = B(Bn-9,1,5) if
andonlyifm = 7,n = 13 orm = 9, n = 20. Itis impossible form = 7, n = 13.
If n(G) = n(Bn—-9,1,5) = 20, then G = Fy U C; UT);,;. From Theorem 3.1,
we get R3(G) = R3(F7) + R3(Cr) + R3(Th,1,1) # Ra(Bo,1,5). S0 4 & (Gl

Subcase 1.2 n(G,) = m(G,).

Recalling that n(G) = m(G), we arrive at, from (4.8), a = b = |T;| =
|72| = | 73] = O, which leads to

G= Gl U (UieACi) U (UjeBDj) U fD4 (4.11)

From (3) of Lemma 4.1.4 and Lemma 4.1.8, it follows that
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G, € {Bm—t—4,l,ty Cr(PZ)’ Q(L 2)’ C4(P3)}v (412)

where m — ¢ — 4, and r satisfy the conditions of Lemma 4.1.8.

We distinguish the following subcases by (4.12):

Subcase 1.2.1 G, = C.(P,).

From Lemma 4.1.7, (3) of Lemma 4.2.4, it follows that 3(G) = B(C(P,)).
Since B(G) = B(Bn-9,1,5), we have, from (1) of Theorem 4.2.4, that 3(G) =
B(Cr(P,)) if and only if n = 20, r = 8 or n = 18, r = 9. The latter has been
discussed in Case 1. We now only consider the former case. If n = 20, r = 8,
thenG € 4 = {Cg(Pg) U Cy, Ca(Pz) U Dy, Gs(Pg) ucCr; U D4,CB(P2) U
D;u D4} U {Cg(Pg) uUcC;u Cj, Cs(Pz) uC;u Dj, Cs(Pg) uD;u Dj}, where
i+j =11,4 <1i,j < 7. By calculating the third invariant of these graphs, we
obtain that % Z [G]s.

Subcase 1.2.2 G, = Q(1,2) or G = Cy(B;).

From (3) of Theorem 4.2.4 and (3) of Lemma 4.2.4, we know that 8(G) =
B(G1) = B(Bn-9,1,5) if and only if n(G) = 20, which brings about G € ¥; =
{G1VC, G1UC;UC;, GLUC;UD;, GLUD;UD;, GLUC,UC,UC;, GLUC, U
C,UD,,G,UC,UD,UD,,G{UD,UD,UD,, }, wherei+j = 14,4 < 1,j < 10,
r+s+4t=14,4 <1,j < 7. By calculation, % ¢ [G]5.

Subcase 1.2.3 Gl = Bm_g_4,1't.

Subcase 1.2.3.1 1 <t < 5.

We only prove the case of t = 1, other cases can be similarly discussed by
Lemma 4.2.4 and Theorem 4.2.4. From (3) of Lemma 4.2.4, 3(G) = B(Bm-51,1)-
According to (6) of Theorem 4.2.4, B(Bp_s5,1,1) = $(Bn-9,1,5) if and only if
m = 6, n = 20. Note that h(By 1,1) = h(Cy4(P3)) = h(Q(1,2)), we can not find
adjoint equivalence class by the same method as Subcase 1.2.2.

Subcase 1.2.3.2 t > 6.

From (4) and (5) of Theorem 4.2.4 and (3) of Lemma 4.2.4, we arrive at
ﬁ(G) = ﬁ(Bm_g_4‘1,g) < ﬂ(Bn_gyl's), which contradicts to ﬁ(G) = ,B(Bn_g,l,5).

From the above arguments, we have ¢ = 5. From Lemma 4.1.7 and (4)
of Theorem 4.2.4, 3(G) = B(G1) = B(Bm—9,1,5), together this with 3(G) =
B(Bn-9,1,5) and (8) of Lemma 4.2.4, we arrive at m = n. S0 G = By, _g 1 .

Case2 s_; =1.

It follows, from (4.7), that s; + 2sp = 2, which implies the following sub-
cases:

Subcase 2.1 s; =1, 5; = 0.

Without loss of generality, let G; be the component such that R, (G;) =
—2. From Corollary 4.1.1, we know 8(G1) < —2 — /5, which contradicts
B(B _9,1,5) € [—2 - \/5, —4).

Subcase 2.2 55 =0, 5, = 2.



Without loss of generality, let

G = G1UG2UG3U(Use aCi)U(Uje B D;j)Uf DyUa K UbT1,1,1U(UTe7o Tl 1o 1s )
(4.13)
where G, € {Pz, Pq,C;;}, Rl(Gz) = RI(G3) =-1.
From Lemmas 4.2.2, 4.2.3 and Theorem 4.1.1, we arrive at

3
Ry(G) = Ra(Bn-9,5) = R2(G1)+ Y _ Ra(Gi)+|B|+a+|Ti|+2|T3| +3| T
=2
(4.14)

Subcase 2.2.1 Gl =] P2 or G1 = Pq.

Recalling that n(G) = m(G), we obtain that 1 < 3"5_,(n(G:) — m(G:)) <
2. Thus we have the following subcases to consider:

Subease 2.2.1.1 Y0, (n(G;) — m(G;)) = 1.

From Lemmas 4.1.4, 4.3.1 and (4.13), it follows that G2 2 F;,,, G3 € § and
a=b=|T| =T =|T| =0.1fG, = P, then4 = -1+ Y% _, Ro(G:)+|B|.
Combining this with (3) of Lemma 4.2.2, R3(G3) = 5 — Ra(Fm) — |B| <
1 —|B| < 1, which contradicts to G3 € £ by Corollary 4.2.1. If G = P, then
4=-2+Y"2  Ry(G;)+|B]. From this together this with (3) of Lemma 4.2.2,
Ry(G3) = 6 — Ra(Fn) — |B| £ 2 — |B| £ 2, which also contradicts to G3 € §.

Subcase 22.1.2 32 ,(n(G:) - m(G;)) = 2.

It is obvious that G; & F,(i = 2,3)and a + b+ |T1| + |To| + |T3| = 1
by Lemmas 4.1.4, 4.3.1 and (4.13). From these together with (4.14), we have
|72| = |T3| = 0 and 4 = R2(G,) + 2Ry(F,) + | B| + a + |Ty|. Thus R2(G;) =
—4 — |B] —a — |T1| € —4, which contradicts to —2 < R3(G1) < =1 by (5) of
Lemma 4.2.2.

Subcase 2.2.2 G; = Cj.

Recalling that 7(G) = m(G), it follows that 0 < 3°3_,(n(G;) — m(G;)) <
2. If Z?=2(n(G,-) — m(G;)) = 0, then we have, from Lemma 4.1.4, 4.3.1 and
(4.6), that G; € £(i = 2,3)and a = b = |T;| = |T2| = |T3] = 0. Then
4= —2+Z?=2 R2(Gi)+|Bj|, which contradicts to G; € §(i = 2, 3) by Corollary
4.2.1. Other two subcases can be similarly discussed.

Case3 s_; =2.

It follows, from (4.7), that s; + 2s3 + 3s3 = 3. We have the following
subcases to consider:

Subcase 3.1 83 = 1, 80 =81 = 0.

Without loss of generality, let the component G such that Ry (G;) = 3.
From Corollary 4.1.1, we have 8(G) < —2 — /5, which contradicts to B(G) €
[-2 — v/5,-4).

Subcase3.2 s, =1,51 =1,83=0.

With the same method as that of Subcase 3.1, we get a contradiction.

Subcase 3.3 s; =3,82 =53 = 0.
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Without loss of generality, let

4
G = PUG1U(| Gi)U(UieaCi)U(Uje8D;)Uf DaUbT1,1,1U(Urets Thy i)
i=2
(4.15)
where Gy € {Py,C3}, R1(G;) = -1(i = 2,3,4).
From Lemmas 4.2.2, 4.2.3 and Theorem 4.1.1,

4
Ry(G) = Ra(Bn-9,15) = —1+Rz(G1)+Z Ro(Gi)+|Bl+a+|Th |+2| T2 |+3| T3

=2
(4.16)

Subcase 3.3.1 G| & P,.

Recalling that n(G) = m(G), we get 2 < Yi_,(n(G:) — m(Gy)) < 3.
If S0, (n(Gi) — m(Gi)) = 2, then G; = F(i = 2,3), G4 € £anda =
b = |T;| = |Tz| = |T3]| = 0. Combining these with (4.16), we have Rz(G4) =
7—2Ry(Fn)—|B| £ —1-|B| £ —1by (3) of Lemma 4.2.2, which contradicts to
G4 € £ by Corollary 4.2.1. We can get a similar contradiction for Zfzz(n(Gi) -
m(G;)) = 3.

Subcase 3.3.2 G, = Cs.

From (4.6), it follows that 1 < 37 _,(n(G;) — m(G;)) < 3. We only prove
the case of ngz(n(G,-) — m(G;)) = 1, other two cases can be discussed simi-
larly. Applying Lemmas 4.1.4, 4.3.1 and (4.15), it follows that G, & F,,, G; €
&(i = 3,4)and a = b = |T;| = |T2| = | 73| = 0. From these together with (4.16),
4=-3+ 2:‘;2 Ry(G;) + | B|, which results in Ry(G3) + R2(G4) = 3 — | B| by
(3) of Lemma 4.2.2. It contradicts to G; € £(i = 3, 4) by Corollary 4.2.1.

This completes the proof of the theorem. O

Corollary 4.3.1 If n > 10, graph B,_g 1 5 is adjoint uniqueness if and only
if n # 18.

Corollary 4.3.2 If n > 10, the chromatic equivalence class of B, _g 1 5 only
contains the complements of graphs that are in Theorem 4.3.2.

Corollary 4.3.3 If n > 10, graph B,,_g 1 5 is chromatic uniqueness if and
only if n # 18.
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