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Abstract

A word has a shape determined by its image under the Robinson-
Schensted-Knuth correspondence. We show that when a word w
contains a separable (i.e., 3142- and 2413-avoiding) permutation o as
a pattern, the shape of w contains the shape of o. As an application,
we exhibit lower bounds for the lengths of supersequences of sets
containing separable permutations.

The Robinson-Schensted-Knuth (RSK) correspondence associates to a
word w a pair of Young tableauz, each of equal partition shape A. We say
that w has shape sh(w) = X and that the partition A = (A1, \z,...) contains
the partition g = (uy, po,...) if s < A; for all i > 1. It is natural to expect

that if o is a subsequence of w, then sh(o) C sh(w). However, this is not
necessarily the case: If o = 2413 and w = 24213, then

(P(@),Q(0)) = (3], H2]) and (P(w), Q) = (

1[2]3][1]2]5]
20 .3 |
4] 4]

We see that sh(w) = (3,1,1) 2 (2,2) = sh(s). The main theorem of this
paper is that the inclusion does hold when o is a separable permutation.

Furthermore, o need only be contained as a pattern rather than as an actual
subsequence.
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Theorem 1. If a word w contains a separable permutation o as a pattern,
then sh(w) 2 sh(o).

Our discovery of Theorem 1 was motivated by an application involving
lower bounds for shortest containing supersequences. Such supersequences
arise in bioinformatics [13, 14] through the design of DNA microarrays,
in planning (5] and in data compression [15]. This application to superse-
quences is described in Section 3. Section 1 introduces the notation required
for the proof of Theorem 1 appearing in Section 2. Section 2.1 discusses
the relationship between Greene’s Theorem, separable permutations, and
the contents of this paper.

Remark 2. It is not true that if o is not separable, then there exists a word
w containing it for which sh(w) 2 sh(c): Let o = 24513 with sh(o) = (3,2).
The permutation o contains the pattern 2413 and hence is not separable.
If w contains ¢ but not its shape then sh(w) is a hook. In other words,
w is the shuffle of one increasing and one decreasing subsequence. The
restriction to 24513 should, therefore, also split into two sequences — one
decreasing and one increasing. This is impossible.

1 Background and setup

Let [n]* denote the set of finite-length words on [n] := {1,2,...,n} and
let [n]® denote the subset of length-a words. The set of permutations of
length n is denoted by S, (here a subset of [n]*). Permutations will be
denoted by Greek letters and written in one-line notation. For example,
the permutation 7 € S; defined by 7(1) = 3, 7(2) = 1 and 7(3) = 2 is
written 312. When referring to a subsequence of a permutation 7 we make
no distinction between the actual subsequence and the corresponding subset
of elements; the subsequence can be reconstructed by the positions in 7.
The length of a word u is denoted |u|.

Given a word w € [n]* and a permutation 7 € S;,, m < a, we say that
w contains the pattern w if there exist indices 1 < i; < is < -+ <inp <a
such that, for all 1 < j, k < m, w(i;) < w(ix) if and only if 7(j) < w(k) and
w(i;) > w(ix) if and only if 7(j) > w(k). If w does not contain the pattern
7, then we say w avoids .

It is important to note that Theorem 1 considers the relationship be-
tween a word w and a permutation o. The word w is assumed to contain ¢
as a pattern. In turn, the permutation o is assumed to be separable. One
characterization of the class of separable permutations (see {4]) is as those
permutations that simultaneously avoid the patterns 3142 and 2413.

Given a permutation m € Sp, let Pr denote its inversion poset. Pr
has elements (i,7(i)) for 1 < i < n under the partial order <, in which
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(a,b) < (c,d) if and only if a < c and b < d. Increasing subsequences
in m correspond to chains in P;. A longest increasing subsequence of 7
corresponds to a maximal chain in Pr. In the pictorial representations of
posets in this paper, we indicate (a, b) < (c,d) (as opposed to (¢, d) < (a, b))
by placing (a,b) lower on the page than (c, d).

(2,4) (4,3)
Example 3. The inversion poset of 2413 is | / | and that of
(1,2) (3,1)
(3,4) (4,2)
3142 is | \ l
(1,3) (2,1)

Example 3 above immediately gives the following fact.

Fact 4. A permutation 7 is separable if and only if its inversion poset Py
* *

has no (induced) subposet isomorphic to | /| .
*

We write our partitions with parts in decreasing order and make no
distinction between the positive and zero parts. Given a partition A =
(A1, A2,...) of n (denoted A F n), the associated Ferrers diagram consists
of \; left-justified cells in the i-th row from the top. A semistandard Young
tableau of shape A is a filling of the cells in this diagram with positive inte-
gers such that the rows weakly increase from left to right and the columns
strictly increase from top to bottom. The set of such tableaux with entries
from [n] is denoted by ssYT,()). A tableau T € SSYT,()) with A F n, is
standard if each number from 1 to n appears in its filling. The set of all
such tableaux is denoted by sYT(\). Given a semistandard tableau T', the
reading word of T, rw(T'), is the word obtained by reading off the rows from
left to right starting with the bottom row. For A |- n, define the superstan-
dard tableau T € SYT()) by filling in the rows from top to bottom. That
is, by placing 1,2,...,; in the first row, \; + 1, A1 +2,..., A1 + A2 in the
second row, etc.

The RSK correspondence yields a bijection between the set of length-a
words [n]? and Ux-oSSYTn(A) x SYT(A) [9]. We give a brief description of
how to compute the pair (P(w),Q(w)) to which a word w € [n]* corre-
sponds. Write w = w'z with w’ € [n]°~!. By induction, we know that
w’ maps to some pair (P(w’), Q(w’)). We row insert z in the first row of
P(w') as follows: If £ = z; is greater than or equal to all elements in this
row, place z; at the end of the row. Otherwise, find the leftmost entry,
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I3, in the row that is strictly greater than z;. Place z; in this position
and “bump” z, to be inserted into the next row. This process generates
a finite sequence z,,..., s of bumped elements and ends by adding zx at
the end of the k-th row, creating a new semistandard tableaux P(w). Set
Q(w) to have an a in the new box (end of row k) created by the bumping
process. The shape of w, sh(w), is the shape of P(w) (or, equivalently, of
Q(w)). Throughout this paper ¢ will denote a separable permutation with

sh(o) = p = (p1, p2, .. -

Example 5. The permutation 7 = 7135264 contains the pattern 4231
but avoids 3412. Under the RSK correspondence, w = 2214312 maps to

11112} (1[2]4
(P(w),Q(w)) = | [2]2]3],[3]5]7]| with rw(P(w)) = 4223112. Finally,
4] 6
1/12(3
the superstandard tableau of shape (3,3,2) is{4|5[6]
718

2 Proof of Theorem 1

Many properties of a word w translate to natural properties of the asso-
ciated tableaux. For example, the length of the longest weakly increasing
subsequence of w equals the length of the first row of P(w). In fact, the
minor generalization of Greene’s Theorem (7] to words with repetitions
(see [16, Theorem 4.8.10]) gives a much more precise correspondence.

Theorem 6 (Greene’s Theorem). Let w be a word of shape A. For any
d > 0 the sum A} + - - - + Aq equals the maximum number of elements in a
disjoint union of d weakly increasing subsequences of w.

In order to prove Theorem 1, we will combine the insight afforded by
Greene’s Theorem with the ability to exchange collections of disjoint in-
creasing subsequences with other collections for which the number of inter-
sections has, in a certain sense, been reduced. (We will take the adjective
“weakly” to be understood.) Lemma 7, which is the only place separability
explicitly appears in our proof, allows us to perform these exchanges.

Lemma 7. Let 4, o, and 8 be increasing subsequences of a separable
permutation . Assume further that a and 3 are disjoint. Then there exist
two disjoint increasing subsequences 7 and 4, such that yUd = o U 8 and
yNu=~0.

Proof. Write u = ug Uu; with ygN(aUB) =0 and u; C U B. Since
¥ C a U B, the requirement that v and u; be disjoint ensures that v and »
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are disjoint as well. Hence, without loss of generality, we may restrict our
attention in the proof to the case in which u C a U S.

We prove by contradiction. Consider the inversion poset P, of the
separable permutation o. Increasing subsequences are in correspondence
with chains and we will regard them as such. Assume there is no chain
d C (aUB) such that u C § and (aU B)\ 4 is also a chain. Let w C (aUB)
be a maximal chain such that « C w. Then there exist two incomparable
points z,y € (aUB) \w. (We will write z|jy to indicate the incomparability
of these two elements.) Then z and y belong to the two different chains,
e.g ¥ € a, y € f. By maximality, z Uw and y U w are not chains. Hence
there exist a,b € w for which z||a, y||b, so we must have a € 8 and b € a.
Without loss of generality, assume a > b. Then we must have z >~ b and

T a
y < a. We have | /| with z||a, z||y, and y||b. This is a subposet of P,
b ¥

* *
isomorphic to | /| , contradicting Fact 4. O
* *

Lemma 7 can also be proved constructively.
Algorithm UNRAVEL
INPUT: (0,u,a,3). A separable permutation o along with increasing subse-
quences o, B and u. The sequences & and S are disjoint.
OUTPUT: (v,d). Disjoint increasing subsequences v and & of o satisfying
yUd=aUpB and ynu=40.

Step O: Initialize variables.

Set z = aUp and let £ and n denotes the lengths of uNz = u; - - - uz and
2 =2y -+ zn, respectively. (As was the case for Lemma 7, the elements
of u not in awU B are irrelevant to the construction of vy and §.) There
exist indices 7; < 4; < --- < ig such that u; = z;; foreach 1 <j < 2.
Augment the two sequences by prepending a uo = zo < min{z;}1<i<n
and appending a ugy; = Zn41 > max{z;}1<i<n.

Step 1: Determine 6.
For each 1 < j < £, let 67 be the sequence of left-to-right maxima
from z;, ---z;;,, 1 whose values are greater than or equal to u; and
less than u;4;. Define §° analogously except with values greater than
up and less than u;. Define § = 6°. .. §¢.

Step 2: OUTPUT v = (aUB)\ d and 4.
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Lemma 8. Let o be a separable permutation. The sequences ¥y = (aUB)\d
and J returned by UNRAVEL (o, u, o, ) are increasing sequences that satisfy
YyUd=cUBand yNu=20.

Proof. That yUé = a U B and that § is increasing follow directly by
construction. (Note that § does not include ug or us4,.) Furthermore, each
u; = 2;; is a left-to-right maximum of the sequence z;; - -- z;;,, and hence
is part of 6. SoyNu =90.

It remains to show that v is increasing. Suppose not. Then there exist
indices a and j such that v; = z, > 7;j4+1. Let m be the unique value such
that i,, < @ < i;m41. Note that since z is a shuffle of two increasing disjoint
words, z also avoids the pattern 321.

We now split into cases in order to obtain a contradiction by arguing
that z must contain one of the three patterns 321, 3142 or 2413.

1. Suppose 7; > Um41- This implies m < £ (and hence that u.,41 is an
element of z). We argue according to the region in which the point
v;+1 lies (see Figure 1).

Q

. R .

ie . Yie Yie , Yie

; 0
.Ypl .!/#/
e 3, e | e [ IO
LYY A %0 P Umed Umai Umel
o ¥ .Y_nl
® 't
e A B C _..D

Figure 1: The cases in the proof of Lemma 8 for which v; > u.,+1. Points
are labeled by their y-values.

A) Then v;v;+1%m41 forms a 321 pattern.

B) Since «;41 is not a left-to-right maximum, there must be some
element J; lying to the northwest of ;4 yet below u,41. If 8
lies to the left of 7;, then 8kv;vj4+1Um41 forms a 2413 pattern.
Otherwise, v;0x7;4+1 forms a 321 pattern.

C) Since v;41 is not a left-to-right maximum, there must be some
element &, lying to the northwest of 7;41 yet to the right of
Um+1. If O lies above vj, then Yjumi10k7v;41 forms a 3142
pattern. Otherwise, v;0x7;4+1 forms a 321 pattern.

D) Then vyjum417v;+1 forms a 321 pattern.
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2. Suppose v; < Um41. Since v; is not a left-to-right maximum, there
must be some element d; (possibly %,,) lying to the northwest of ;.
Hence 6x7;7v;+1 forms a 321 pattern.

O

Example 9. Figure 2 illustrates the sequences v and § that arise from
Algorithm UNRAVEL. The two original sequences shuffled together are con-
nected by dotted lines. The elements of u are illustrated by open circles.
The boxes indicate the regions in which the elements of § (other than those
of u itself) are required to lie. Finally, the sequence § is connected by the
thick, dashed line.
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Figure 2: Example application of Algorithm UNRAVEL.

Proposition 10. Let ¥ > 0 and u!,...,u* be disjoint (possibly empty)
increasing subsequences of the separable permutation o. Then there exists
an increasing subsequence u**!, disjoint from each u', 1 < i < k such that
[+ > ey

Proof. Let V = (v!,...,v**1) be a sequence of k + 1 disjoint, increasing
subsequences of o of maximum total length. Let m = m(V) < k+ 1 be
the largest value such that if p < m then w* N v/ = P for all i,j with
1<i<p<j<k+1. Such a value of m exists since the requirement is
vacuous for p = 1. Suppose m = k + 1; in particular, v**! is disjoint from
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each ‘. Since the elements of V are of maximum total length, |v!|+---+
[vk+l| = py + -+ + pigr. If [uF+1] were less than pg4q, then v?,... 0%
would have total length greater than p; + --- + px. This is impossible.
Hence |v**!| > pi4q as desired.

Therefore, it suffices to show that given any such V' and associated
value m = m(V) < k + 1, we can transform V into a new sequence V" (still
of maximal total length) with m(V’) > m + 1. We do this by repeated
applications of Algorithm UNRAVEL. (These applications will corral all of
the elements of v™ U --- Uv**! that are also in 4™ into a single sequence
(Sk_m+1.) Set

(71,8,) = UNRAVEL (g, u™, v™,v™*1),
(v2,82) = UNRAVEL (g, u™, 61,v™+?),

(Ve—m+1:Ok—ma1) = UNRAVEL(g, u™, 8k—m, v**1).

We will set V' = (v},...,9™ Y, 0k_ms1, M- - - » Yo-m+1). 1t follows from
the definition of Algorithm UNRAVEL and the inputs given to it that each
7; is an increasing subsequence of ¢ that is disjoint from u™. Consider the
intermediate (k + 1)-tuples:

V=V =@},..., o™ o™ o™t Rt
1 -1 2 3 k+1
Vi = (v,..., 0™ 6, m, o™ TR 0™ oY)
1 -1 3 k+1
‘/2=('U,...,’Um ,62,")’1,72,1)"”- 1"'|v+)
1 — (a1 -1
|4 —Vk—m+l —('U 1"')vm »5k—m+1,71,’72,---,’Yk—m+1)~

We still need to show that V' satisfies the following properties:
L (U Uu™ )N (Skeme1 UM U -Ukemt1) = 0 (ie., m(V') > m),

2. Ny =0forl<i<j<k-m+1,and
3. Skemer Nyi=0for1<i<k-m+1.
By the definition of V' and m(V'), we know that
(@'u---uum) N muU- Ukt =0

The definition of Algorithm UNRAVEL implies that v™ U .-+ U v**! =
Ok—m+1 UM U - UYk—ms1. This yields Property 1.
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Vo = V consists of disjoint sequences by hypothesis. Let 1 < ¢ <
k —m+1. We will prove by induction that V; consists of disjoint sequences
as well. (Write o for v™.) V; differs from Vip_; only in that d,_; and
v™+¢ have been replaced by the two disjoint sequences &, and ~y,. Since
Algorithm UNRAVEL ensures that 6, U v, = 8,y Uv™+¢ and §, Nye = 0,
it follows immediately that V; consists of disjoint sequences as well. This
shows that Properties 2 and 3 also hold.

Properties 1 through 3 ensure that V' is a sequence of k + 1 disjoint
increasing subsequences of ¢ of maximum total length with m(V"’) > m(V).
By construction, each +; is disjoint from v™. Hence, m(V') > m(V) +1 as
required. This concludes the proof of the proposition.

a

Example 11. Consider ¢ = 10652438ba97 (where we use a for 10 and
b for 11). The shape of o is (5,3,2,2). Suppose we have ul = 0248,
u? = 167 and u® = 5a and wish to find a disjoint increasing subsequence u4
of length 2. We could, of course, simply use the remaining two elements,
3 and 9. However, in order to illustrate the proofs of Proposition 10 and
Theorem 13, we show how to generate this sequence from an arbitrarily
chosen 4-tuple of disjoint increasing subsequences of maximum total length:
V = {68b,049, 237, 15a}.

Set k = 3. Consider the argument of Proposition 10. m = m(V) = 1.
Let u = u!, & = 68b and B8 = 049. Algorithm UNRAVEL yields y = 69
and & = 048b. Applying the algorithm again with o = 048b and 8 = 237
yields v = 37 and § = 0248b. Since 15a is already disjoint from u?!, a
third application of Algorithm UNRAVEL trivially sets § = a = 0248b and
v = B =15a. This produces the new 4-tuple V' = {0248b, 69, 37, 15a} with
m(V') = 2.

Now set u = u?. Once again, an application of the algorithm with
a = 69 and 3 = 15a yields ¥ = 59 and § = 16a, while a following application
to a = 16a and B = 37 yields v = 3a and § = 167. This produces the new
4-tuple V" = {0248b,167,59, 3a} with m(V") = 3.

A final application of Algorithm UNRAVEL with u = 43 = 5a, a = 59
and B = 3a yields the sought for u® = v = 39.

Proof of Theorem 1. Let sh(w) = A = (A1,)2,...). Let ¢’ be any subse-
quence of w in the same relative order as the elements of o; i.e., w con-
tains o at the positions of ¢’. By Greene’s Theorem applied to w, for
any k > 1 there exist k disjoint increasing subsequences w!,...,w* with
|w!| + -+ + Jw*| = A\; + -+ + . The intersection ¢’ Nw' induces a sub-
sequence of o we denote by u’. These u' are then k disjoint increasing
subsequences of o. By Proposition 10, there is an increasing subsequence u
of o, disjoint from the u's, with length at least u;4;. The mapping o +— o'

111



induces a corresponding map of u to a subsequence u’ of w. It follows
then that v’ is disjoint from each w' as well. Then w!,...,w*, v’ are k+1
disjoint increasing subsequences in w. By Greene’s Theorem,

[w!| + - + [w*] + | < A4+ A+ A

Hence |u/| € Agy1. We also know by construction that pxi1 < |yl
|u/|. Combining these equalities and running over all k yields 4 C A
desired.

ag

2.1 Relationship to Greene’s Theorem

Greene’s Theorem only tells us about the maximum sum of lengths of
disjoint increasing sequences. It is not generally true that one can find d
disjoint increasing subsequences u!,u?,...,u? of ¢ with u’ of length p; for
each i. In other words, the shape of a permutation does not tell us the
lengths of the subsequences in a set of d disjoint increasing subsequences of
maximum total length; it just tells us the maximum total length.

Example 12. Consider the permutation o = 236145 of shape (4,2). The
only increasing subsequence of length four is 2345. However, the remaining
two entries appear in decreasing order. Greene’s Theorem tells us that we
should be able to find two disjoint increasing subsequences of total length
6. Indeed, 236 and 145 work.

Nonetheless, such a collection of subsequences {u‘} does exist when o
is a separable permutation.

Proposition 13. Let o be a separable permutation of shape u. For any
d > 1, there exist didisjoint, increasing subsequences u!,...,u® such that
the length of each u* is given by u;.

Theorem 1 and Proposition 13 are superficially similar. We have already
shown how Theorem 1 follows from Proposition 10 (and Greene’s Theorem).
Proposition 13 follows even more immediately.

Proof of Proposition 13. We can construct such a sequence via d appli-
cations of Proposition 10. In particular, given the u!,...,u* for some
0 <i < d, produce u't! by applying the proposition with k = i. O

Proposition 13 has a very simple proof relying on the recursive definition
of a separable permutation as one that can be built up by direct and skew
sums [4]. (The proof follows directly from Proposition 4 of [2].) However,
we have been unable to follow a correspondingly direct proof of Theorem 1.
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3 Supersequences

Let B C S,, be a set of permutations. A word w is a supersequence of B if,
for all o € B, o is a subsequence of w. Note that for w to be a supersequence
of {o}, the actual entries of 0 must occur (in the same order) in w; this is
in contrast to pattern containment in which we need only find elements of
w in the same relative order.

Example 14. The word w = 2214312 is a supersequence of 132 but not of
321. In fact, w is a supersequence of the set B = {132,312, 213}.

Let scs,(B) denote the minimum length of a supersequence of the set
B. An upper bound of $¢s,(S,) < n? — 2n + 4 has been proven by a
number of different researchers in various contexts and generalities. See in
particular [1, 6,710, 11, 12, 17]. Recently, an upper bound of n? — 2n + 3
was proven constructively for n > 10 by Zilinescu [18]. Kleitman and
Kwiatkowski (8] have shown that SCS,(S,) > n? — Cn"/4+¢ where € > 0
and C depends on ¢.

For the remainder of the paper, we will think of the shape of a per-
mutation as a Ferrers diagram. As such, taking the “union” of several
shapes will amount to overlaying their Ferrers diagrams (This is in con-
trast to the usual notion of union for integer partitions in which all parts
get interleaved.) More precisely, take shapes p! = sh(oy),..., u* = sh(ox)
corresponding to k permutations oy, ...,0;. We define the union U; sh(o;)
to be v = (v1,vs,...) where v; = max{u},u?,...,u¥}.

It turns out that for certain sets B, we can construct a lower bound for
SCS,(B) by considering the union of sh(c) as o runs over the elements of
B. To do this, we need the following fact.

Lemma 15. If 4 is a partition then there exists a separable permutation
0 with sh(d) = u.

Proof. Let T be the superstandard tableau of shape u. For i < j, the entries
in row j are greater than, and precede, the entries in row i. It follows that
rw(T’) avoids the pattern 213 and hence that rw(7T’) is a 2413,3142-avoiding
permutation (i.e., is separable). By construction sh(rw(T")) = u. Hence we
can set ¢ = rw(T).

Fix k > 0 and B = {0},...,0} with each o; separable. It follows then
from Proposition 13 that for any supersequence w of B, sh(w) 2 U;sh(o;).
Hence, if we choose the o; so that the Ferrers diagrams of shapes sh(o;)
overlap as little as possible, we force any supersequence w to be relatively
long.
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Example 16. Let n = 9 and k = 5. Choose the permutations B =
{o1,...,05} as

o1 = 123456789, sh(e1) = (9),

oo = 678012345, sh(as) = (5, 4),

o3 = 789456123, sh(oz) = (3,3,3),

o4 = 978563412, sh(o4) = (2,2,2,2,1),

05 = 987654321, sh(os) = (1,1,1,1,1,1,1,1,1).

IHRENN|
J

The union of the corresponding Ferrers diagrams is [~ ; we see that

|U2_,sh(o;)| = 23. A computer search provides the length-23 supersequence
60787596543123456789123,

thereby showing that this bound is optimal.

Let v(n) be the Ferrers diagram obtained by taking the union of all
Ferrers diagrams of size n.

Proposition 17. Let 7(i) denote the number of divisors of i. Then |v(n)| =
>, 7(i) and the number of corners (i.e., distinct row lengths of v(n)) is

given by |v4n +1] — 1.

d times

e e,
Proof. For each divisor d of n, the shape (n/d,...,n/d) will be contained
in v(n). Furthermore, the cells (d,n/d) are the only corners that are not
part of v(n — 1). The result |v(n)| = Y7, 7(%) then follows by induction.
(In fact, the nested sequence of Ferrers diagrams v(1) C ¥(2) C --- C v(n)
can be thought of as a semistandard Young tableau of shape v(n) in which
the label ¢ occurs 7(%) times.)

We now prove that the number of corners of |v(n)| is |[V4n +1] — 1.
Let k be the largest integer for which a k x k square is contained in the
diagram of v(n), that is, k is the number of cells on the main diagonal
in v(n). We have that k2 < n. The cell (k,k) is a corner of v(n) if and
only if k(k + 1) > n, i.e. (k,...,k) is not contained in any diagram of size

k+1
n. We claim that the rows 1,...,k of v(n) will each contain a corner of
v(n). For 1 < i < k, row i ends at (i,|n/i¢]) while the row below ends
at (i + 1,|n/(i + 1)]). Using the fact that k < y/n, a short algebraic
computation shows that |n/(i + 1)] < [n/i]. Hence we have a corner in
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the i-th row for 1 < i < k. We also have a corner in the k-th row by choice
of k. The same argument holds for the first k£ columns, so the total number
of corners is 2k — 1 if (k, k) is a corner and 2k otherwise.

Now we need to show that our above formulas for the number of corners
(i.e., 2k — 1 or 2k) can be expressed in terms of n as [v/4n+1| — 1. For
reference, note that (2k)2 = 4k2, (2k +1)2 = 4k® + 4k + 1 and (2k +
2)? = 4k? + 8k + 4. Suppose (k, k) is a corner. As mentioned above, this
implies that k(k + 1) > n. Son = k% + a for some 0 < a < k. Then
|[Van+1] —1 = |\/4(k2+a)+ 1] — 1 = 2k — 1, as desired. Similarly, if
(k, k) is not a corner, then n > k(k + 1) and, by choice of &, (k + 1)% > n.
Son = k? + a for some k < a < 2k. In this case, [vVAn +1) — 1 =

|VARZ+a) +1) —1 = (2k + 1) — 1 = 2k as desired.
|

It is a standard fact that >}, ; 7(i) = n(logn + 2y — 1) + O(y/n) where
v =~ 0.57721 ... is the Euler-Mascheroni constant (see, e.g., [3, Theorem
3.3]). Hence, for any n we can find |v4n + 1| — 1 permutations whose
supersequence is of length at least n(Inn + 2y + ---). Compare this with
n! permutations having a supersequence of length O(n?2).
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