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Abstract. Let %(n,a) be the set of bicyclic graphs on n vertices with
matching number a. In this paper, we characterize the extremal bicyclic
graph with minimal Hosoya index and maximal Merrifield-Simmons index
in B(n,a).

Keywords: bicyclic graph; matching; independent set
AMS subject classification: 05C69, 05C05

1. Introduction

Let G = (V, E) denote a simple connected graph with order n and size
m. If m =n—1+ ¢, then G is called a e-cyclic graph. If c = 0,1 and 2,
then G is a tree, unicyclic graph, and bicyclic graph, respectively.

Two edges of G are said to be independent if they are not adjacent in G.
A k-matching of G is a set of k mutually independent edges. We call the
number of edges in a maximum matching of G the matching number and
denote it by a(G), (or written as a for short). Denote by 2(G) the number
of matchings in a graph G, that is, z2(G) = Ekié 2(G, k), where z(G, k) is
the number of k-matchings of G for k > 1 and 2(G, 0) = 1. Two vertices of
G are said to be independent if they are not adjacent in G. An independent
k-set is a set of k vertices, no two of which are adjacent. Let i(G) be the
number of independent sets of G, then i(G) = Y _, (G, k), where i(G, k)
is the number of k-independent sets of G for k£ > 1 and i(G,0) = 1.

The index 2(G) (resp. i(G) ) is also called Hosoya index(resp. Merrifield-
Simmons indez) in graphic chemistry. It turned out to be applicable to
several questions of molecular chemistry, for example, the connections with
physico-chemical properties such as boiling point, entropy or heat of va-
porization are well studied (8, 17]. Up to now, many researchers have in-
vestigated these graphic invariants. An important direction is to determine
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the graphs with maximal or minimal Hosoya index {or Merrifield-Simmons
index, resp.) in a given class of graphs. For instance, it was observed
in [9, 14] that the star S, has the minimal Hosoya index and maximal
Merrifield-Simmons index, respectively, and the path P, has the maximal
Hosoya. index and minimal Merrifield-Simmons index amongst all trees on
n vertices, respectively. Hou [12] characterized the extremal tree with a
given matching number respect to Hosoya index. In [22], the present au-
thor obtained the extremal unicyclic graph with perfect matching with
respect to Hosoya index and Merrifield-Simmons index. Also n-vertex bi-
cyclic graphs have been the object of study of a series of articles by Deng
and his coauthors [3, 4, 5, 6]. In particular, Yu and Tian [21] characterized
the extremal graphs with minimal Hosoya index and Merrifield-Simmons
index, respectively, among all the connected graphs of order n and size
n+t—1with 0 < ¢t < a— 1. For further details, we refer readers to survey
papers (10, 11, 16, 18, 20}, especially, a recent paper by S. Wagner and
I. Gutman [19], which is a wonderful survey on this topic, and the cited
references therein.

2. Preliminaries

Let G be a bicyclic graph, the base of G, denote by B(G), is the
minimal bicyclic subgraph of G. Obviously, B(G) is the unique bicyclic
subgraph of G containing no pendant vertex, and G can be obtained from
B(G) by planting trees to some vertices of B(G). If a tree is attached
to a vertex u of B(G), denote it by T, and call u the root of the tree
T, or the root-vertex of G. It is well known that bicyclic graphs have the
following two types of bases: Q(p, !, q) and P(p,q,), where Q(p,!, q) is the
graph obtained by joining a new path ujug...u; between two cycles Cy
and C, with u) € V(Cy),w € V(C,), and P(p,q,r) is the bicyclic graph
consisting of three pairwise internal disjoint paths Ppi1, Pyi1, Pry1 with
common endpoints u,v (as shown in Figure 1). Let #&(n,a) be the set of
bicyclic graphs on n vertices with matching number a. Let

Bi(n) = {G € B(n,a)|B(G) = Q(p,l,9),p < g}

By(n) = {G € B(n,a)|B(G) = P(p,g,7),p < g <}

Then %B(n,a) = By(n)UBy(n). In this paper, we characterize the extremal
bicyclic graph with minimal Hosoya index and maximal Merrifield-Simmons
index in %&(n, o).
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Figure 1: The bases of bicyclic graphs: Q(p,!,q) and P(p,q,).

In order to state our results, we introduce some notation and terminol-
ogy. For other undefined notation we refer to Bollobés [1]. For a vertex v
of G, denote by dg(v) the degree of v, §(G) the minimum degree of G. Set
Ng(v) = {u|luv € E(G)}, Ng[v] = Ng(v) U {v}. If W C V(G), we denote
by G — W the subgraph of G obtained by deleting the vertices of W and
the edges incident with them. Similarly, if E C E(G), we denote by G — E
the subgraph of G obtained by deleting the edges of E. If W = {v} and
E = {zy}, we write G — v and G — zy instead of G — {v} and G - {zy},
respectively.

Now we give some lemmas that will be used in the proof of our main
results.

Lemma 2.1 ([9]). Let G = (V, E) be a graph.

(i) If wv € E(G), then 2(G) = 2(G — wv) + 2(G — {u,v});
(i) If ve V(G), then z(G) = 2(G — v) + Lyengw) 2(C — {u,v});
(iii) If G1,Gs,...,G; are the components of the graph G, then 2(G) =
IT;=1 2(Gy)-
Lemma 2.2 ([9]). Let G = (V, E) be a graph.

(i) If uv € E(G), then i(G) = i(G — wv) — i(G — Ng[u] U Ng[v));
(i) If v e V(G), then i(G) = i(G — v) + i(G — Ng[v]);
(iii) If G1,Ga,...,Gy are the components of the graph G, then i(G) =
IT;-. i(G5).

From Lemma 2.1 and 2.2, we have

2(G) > 2(G —wv), 2(G) > 2(G -v) (2.1)
{G) <i(G-w), iG)>i{G~-v) (2.2)
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Lemma 2.3 ([15]). Let H,X,Y be three connected graphs disjoint in pair.
Suppose that u,v are two vertices of H, v' is a verter of X, u' is a vertez
of Y. Let G be the graph obtained from H,X,Y by identifying v with v’
and u with u', respectively. Let G} be the graph obtained from H, X,Y by
identifying vertices v,v',u’ and G% be the graph obtained from H,X,Y by
identifying vertices u,v’,u’. Then

(i) 2(G})<z(G) or 2(G3) < z(G);

(1) HG})>iG) or i(G3) > i(G).

Lemma 2.4. [7] Let G be a graph in B(2c,a),a > 2.

(i) fa=2, G= P(2,1,2),2(G) =8,i(G) = 6;

(i) fa>3, 2(G) >4-2°1 4+ (a—3)-2%2 and i(G) < 2.3%71 42973,
the equalities hold if and only if G = H(2a, a), where H(2a, &) is the
graph obtained from Q(3,1,3) by attaching a pendent edge and o — 3
pendent paths of length 2 at the 4-degree vertez of Q(3,1,3).

Lemma 2.5. [13] Let G be a connected graph in the set of unicyclic graphs
on n vertices with matching number o and G 2 C,,, where n > 2c.. Then
there are an a-matching M and a pendent vertez v such that M does not
saturate v.

Lemma 2.6. [1] A matching M in G is a mazimum matching if and only
if G contains no M -augmenting path.

3. Main results

In order to prove our main result, we first give two useful lemmas.

Lemma 3.1. Let G be a graph in B(n,a),(n > 2o, > 3) and §(G) =
2, then there ezists a graph G’ in %B(n,a), satisfying the following three
conditions:

(M) &G =1,
(ii) there is a a-matching M of G’ and a pendent vertex v of G' such that
v is M -unsaturated;
(iii) 2(G) > 2(G") and i(G) < {(G').

Proof. Let G be a graph in #B(n,a) (n > 2a,a > 3) and §(G) = 2, then
G = B(G). 1t is easy to see that P, is a proper spanning subgraph of G.
Note that o > a(P,) = [§] = . Hence n = 2c + 1. We distinguish two
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cases as follows.

Case 1. Suppose G € By(n), then G = P(p, q,7), where p < ¢ < r and
p+q+r=n+1 (as shown in Figure 1).

Let w be the vertex of P.;) adjacent to u, u;(# u) the vertex adjacent
to won P.y). Since n = 2a+ 1 and & > 3, then n > 7. Furthermore,
r 2 3 and uuy ¢ E(G). Let G' = G — uyw + uu,. It is obvious to see that
P, is a proper subgraph of G’, then a(G’) > a. So G’ € B(n,a). Then
G’ satisfies (i) and (ii).

Now we prove that G’ also satisfies (iii). By Lemma 2.2, we have

2(G) = 2(G—wuy)+2(G—w—1uy),
2(G) = 2(G' —uu)+ 2(G' —u—uy);
i(G) = (G ~u)+iG— Nglu]),
‘L(G’) = Z(GI - ul) + 'I.(GI - NG' [u1]).
Obviously, A
G-wuy; G —uu;, G-—u =2G —uy.

Note that E(G’ — u — u;) is a proper subset of E(G —w —u,) and |V(G' —
u—u)| = |V(G — w —v,;)|, by (2.1), we have

2(G—w—u1) > 2(G —u—1).

Let G’ — Ng/[u1] = PyUA, where A is the component of G’ — Ng-[u1] which
isn’t containing w. Then

G = Ner[w]) = 2i(A),
(G - Ng[w]) = (G — Nelw] —u) +i(G — Nefu1) U No-Nguy[u])
= i(A4) +i(G — Nelu1] U No-nNgu)(ul),

and V(G — Ng(u1] U Ng_ngu,)[u]) is a proper subset of G — Ng[u] — u,
by (2.2), we have

i(A) > i(G — Ng[u1] U No_Nguy) [1])s

then
i(G - Nc[ul]) < i(G' — Ng» [ul]).

Hence z(G) > 2(G’) and i(G) < i(G').

Case 2. Suppose G € Bj(n), then G = Q(p,!,q), where p < ¢ (as
shown in Figure 1).

121



(a) fl=1,then p+ ¢g=n+1. Then ¢ > 4. Let G' = G — wyw + vyu;.
(b) Ifl>2and g >4. Let G' =G — wyw + viuy.
(c) Ifl>2and p=q=3. Let G' = G — vou3 + 1103.

Similar to the discussion of case 1, we can prove that G’ satisfies (i), (ii)
and (iii). 0O

Lemma 3.2. Let G be a graph in B(n,a) (n > 20,a > 3) and 6(G) =1,
then there is an a-matching M of G and a pendent vertez v of G such that
v is M-unsaturated; or there exists a groph G' in B(n,a), satisfying the
following two conditions:

(i) 2(G) > 2(G") and i(G) < i(G'),
(ii) there is an a-matching M of G’ and a pendent vertez v of G’ such that
v is M-unsaturated.

Proof. Let G be a graph in #B(n,a) (n > 2a) with 6(G) =1 and M be
an a-matching of G. If there is a pendent vertex v of G such that v is
M-unsaturated, the result holds immediately. So we suppose each pendent
vertex of G is M-saturated.

Let B(G) be the base of G, then §(B(G)) = 2. Let u be a vertex of
B(G) with dpg(g)(u) > 3, then u must be a vertex of a cycle, denote it
by Cg(cy, in B(G). Among two edges in E(Cp(g)) incident with u, there
must be one edge belonging to E(G) \ M. we denote this edge by uu,,
then G — uu, is a n-vertex unicyclic graph with an a-matching M. Then
a(G —uuy) > o. Note that G —uuy C G, we have a(G —vuy) < a(G) = o
So a(G —uu;) = a. By Lemma 2.5, there are an a-matching M’ of G —uwy
and a pendent vertex v’ of G — uu, such that v’ is M’-unsaturated.

If v/ # u,, then v’ is also a pendent vertex of G. Noting that M’ is also
an a-matching of G. Then G and M’ satisfy the requirements.

If v/ = u,, we distinguish the following two cases.

Case 1. There exists a vertex v” of some tree T, such that v" is
M’'-unsaturated.

If v" is a pendent vertex of G, then G and M’ satisfy the requirements.

If v” isn’t a pendent vertex of G, we can find a maximal M’-alternating
path P which stars from v” and terminates at a pendent vertex v of G.
By Lemina 2.6, we know that v is M’-saturated. Then the symmetric
difference M’ @ P is an a-matching of G. Then G and M’ @ P satisfy the
requirements.

Case 2. For any root-vertex w of G, each vertex of T,, is M'-saturated.
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Let u3 be the unique vertex of B(G) — uu; adjacent to u;, obviously ug
must be M'-saturated. We can construct a maximal M’-alternating path
P =ujuy... ugug 4y of G — uuy, obeying the following principal:

For each j (1 < j < ¢), if ugj,ugj+1 € V(B(G)) and Ng(ugjr1) \
B(G) # 0, we choose a vertex from Ng(ugz;+1) \ B(G) as ugj42.
By Lemma 2.6, we know that ug;y; is M’-saturated.

If uge41 is a pendent vertex of G, then G and M’ @ P satisfy the re-
quirements.

Otherwise, P is a spanning subgraph of B(G). Then u; is the unique
M'-unsaturated vertex of G and ug;j+1 (1 < j < t) is not the root-vertex
of G. Note that the order of P is odd, that is, the order of B(G) is odd.

If B(G) # B(3,1,3), we can choose an appropriate vertex ugj+1 (0 <
J £ t) and get a graph G’ = G — ugj41ugj42 + ugjugj+2. Noting that
ugj1u2j42 € M’, M’ is also an a-matching of G’, then G’ € B(n,a).
Furthermore,

z2(G) = 2(G —ugjp1ujs2) + 2(G — ugjy1 — uzj42),

Z2(G') = z2(G' —ugjugjta) + 2(G' — ugj — upj42);
i(G) = UG —uzjs1) +i(G — Ngluzj41]),

i(G') = (G —ugjt1)+i(G' — No[uzjr]).

Note that

7 !
G —ugjpiuzjre = G' —ugjugjra, G —ugj —ugjpa C G — ugjyy — Ugjqa,
/2 !
G —ugj1 = G —ugj4, G — Ngluzj+1] C G' — Nor[uzjpl,

and

#(G’ — Nor[ugj41])
(G’ — Ner[uzj41] — uz5) + (G’ — Nor[ugj41) U Nor— Ny, fug; 401 [425])
= (G - Nglugjt1]) + i(G' — Nor[u2j41] U Nor— Ny, fus; ) [125])
> l(G - NG[U2j+1]).
Then 2(G) > 2(G’) and i(G) < i(G’). Let P/ = wyug... ugjuzj11 (055 <
t), obviously u2;41 is M’ @ P’-unsaturated. Then G’ and M’ @ P’ satisfy
the requirements.
If B(G) = Q(3,1,3), it is easy to get an a-matching M” and an M"-
unsaturated pendent vertex. Then G and M” satisfy the requirements.
This completes the proof. ]
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Let H(n, ) be the graph obtained from Q(3, 1, 3) by attaching n—2a-+1
pendent edges and a — 3 pendent paths of length 2 at the 4-degree vertex
of Q(3,1,3) (as shown in Figure 2). For convenience, let ' be the unique
4-degree vertex in Q(3,1,3) and v’ be a pendent vertex which is adjacent
to ¢’ in H(n, c).

n-2a+1

Figure 2: The graph H(n,a).

Theorem 3.3. Let G be a graph in B(n,a) (n > 2a,0 > 3), then 2(G) >
(n—20+4)-2°=1 + (a—3) - 2972 and i(G) < 3%-1.9n-20+1 | 9a=3  The
equalities hold if and only if G = H(n,a).

Proof. Let G be a graph in #(n,a) (n > 2a,a > 3) and G # H(n,a). We
prove the results by induction on n.

If n = 2a, the results hold by Lemma 2.4.

Now we suppose n > 2a and the results hold for all the graphs in
%B(n — 1,a) which are not isomorphic to H(n — 1,a). By lemmas 3.1 and
3.2, we can distinguish two cases as follows.

(a) There is a maximum matching M of G and a pendent vertex v of
G such that v is M-unsaturated. Let u be the vertex of G adjacent to v.
By Lemma 2.1 and Lemma 2.2, we have

2(G) = z(G-wv)+z2(G—u-—v)
= z2(G-v)+2(G—-u-v),

z(H(n,@)) = z(H(n,a)—v'v')+2(H(n,a) —u' —')
= z(H(n,a)—7)+ z(H(n,a) —u' - v');
{G) = i(G—v)+i(G— Nglv))
= (G-v)+i(G—u—v),
i(H(n,a)) = i(H(n,a)—1")+i(H(n,a)— Ng[v'])

i(H(n,a) —v') +i(H(n,a) —u' — ).
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It is easy to see that G —v € #(n—1,a) and H(n,a) —v' 2 H(n - 1,a).
By the induction hypothesis, we have

2(G—v) > z(H(n,a) —v') and i(G-v) <i(H(n,a) ).
Note that
H(n,a)—u —v' =2 (a— 1)K U (n — 20)K,,
G 2 H(n,a), and G—u—v has an (o —1)-matching, then H(n,a) —u'—v'
is a proper spanning subgraph of G — v — v. Then
2(G—u—-v) > z(H(n,a)—u —7)
(G—u—v) < i(H(na)—u —).

Hence z(G) > z(H(n,«)) and i(G) < i(H(n,a)).

(b) If there exists a graph G’ in %B(n, a), satisfying the following two
conditions:
(i) 2(G) > z(G") and (G) < i(G");
(ii) there is a maximum matching M of G’ and a pendent vertex v of G’
such that v is M-unsaturated.

Similar to (a), we can obtain z(G’) > z(H(n,a)) and i(G') < i(H(n,a)).
By Lemma 2.1 and Lemma 2.2, we have

(Hme) = Hmoe)-w)+ Y  x(Hno)-v -2)
ZENH(n,a) (v)
= (n—2a+4)-2°' 4 (a—3) 2272

i(H(n,a)) = z(H(n,a)—u')+i(H(n,a) — Ny(nov'])
ga—1 gn-—2a+l + 20:-—3.
Then we obtain the desirable results. O
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