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Abstract

A graph is said to be a neighbourly irregular graph (or simply an NI
graph) if no two adjacent vertices have the same degree. In this paper we
introduce the neighbourly regular strength of a graph. Let G be a simple graph
of order n. Let NI(G) denote the set of all NI graphs in which G is an induced
subgraph. The neighbourly regular strength of G is denoted by NRS(G) and is
defined as the minimum k for which there is an NI graph NI(G) of order n+k in
NI(G). We prove that the NRS(G) is at most n-1, with possible equality only if
G is complete. In addition, we determine the NRS for some well known graphs.

Key words: Regular graph, irregular graph, neighbourly irregular graph and
neighbourly regular strength of a graph.
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1 Introduction

Throughout this paper we consider only finite and simple graphs.
Notations and terminology that we do not define here can be found in [8]. Let G
be any graph of order n. For 0 < i <n-1, V{(G) (or simply V;) is defined as the
set of all vertices having degree i in G. That is, Vi(G) = {vEV(G) I d(v) = i}.
Note that IV;| < n for every i, 0 <i <n-1. For any subset W of V(G) we denote
any maximum independent set of <W> (where <W> denotes the subgraph of G
induced by W) by (W) and for any I(W) we write [°(W) = W \ [(W). For any
two graphs G and H, the join G v H is the graph obtained by joining each vertex
in G to each vertex in H. A spanning 1-regular subgraph of G is called a 1-factor
of G and is denoted by F.

As far as regular graphs are concerned, a lot of work has been done and
plenty of results have been established. But in case of irregular graphs (graphs
which are not regular [3]), one may think of the density of the irregularity. Of
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course, we know that in any graph, all the degrees cannot be distinct, that is, any
graph has at least two vertices of the same degree.

Let I, denote the graph with vertex set V = {v|, vy, ..., vo} and edge set
E={vp4v 1 i 2 g] i <j<n-i}, (where | xJ denotes the largest integer which
is less than or equal to x) which has precisely two vertices with the same degree
[6]). In [11], the graph I; is referred to as pairlone graph and is denoted by PL;. It
has been proved in [11] that, for any n > 2, there exists a unique pairlone graph
of order n. For more types of irregular graphs one can refer to [1, 4,7, 9 and 12].

In [10], S.Gnaana Bhragsam and S.K.Ayyaswamy introduced a new
concept, namely neighbourly irregular graph. A simple graph G is said to be a
neighbourly irregular graph (or simply an NI graph) if no two adjacent vertices
of G have the same degree. For example, the graph I is NI for every odd n = 3.

In [6], it has been stated that a simple graph G is neighbourly irregular
if and only if for each i, 1 <i < n-1, Vi(G) is either empty or independent in G.
This means that G is not an NI graph if and only if there exists at least one V;
which is neither empty nor independent in G.

In [10], it has been proved that any graph of order n is an induced
subgraph of an NI graph of order at most n(n+1)/2. In this paper we reduced this
upper bound to 2n-1. This result motivated us to introduce a new concept called
the neighbourly regular strength of a graph.

2 Neighbourly regular strength of a graph

For a simples graph G of order n, the neighbourly regular strength
NRS(G) of G is the minimum number k for which there is an NI graph NI(G) of
order n+k in NI(G), where NI(G) denotes the set of all NI graphs in which G is
an induced subgraph. For example, NRS(P;) = 1, NRS(Cs) = 2 and NRS(W;) =
3. The graphs NI(P,), NI(Cs) and NI(W5) are shown in Figure 1.

NI(P,) NI(Cs) NI(W;)

Figure 1



Note that for any graph G, NI(G) need not be unique. For example, in
Figure 2 we have shown two graphs of order 8 which are in NI(Cs).

Figure 2
The following facts can be verified easily:
Fact 1 NRS(G) = 0 for any NI graph G.

Fact 2 NRS(G \v) =0 or 1 for any NI graph G. For example NRS(P; \ v) =0 or
1 depending on the degree of v is 1 or 2.

Fact 3 Let G be the disjoint union of the graphs G|, G,, ..., G,,. Then NRS(G) <
m
D NRS(G)).

i=]

Fact 4 H is a subgraph of G does not imply that NRS(H) < NRS(G). For
example, if H is a non-NI subgraph of an NI graph G, then NRS(G) = 0 whereas
NRS(H) > 1.

Fact 5 NRS(K, ) = {f ;ft;;w::e
0ifn =1or3

Fact 6 NRS(Py) = {1 otherwise

Fact7 NRS(Cy) = {5/ 1S evenandn = 6

1foranyevenn > 4
Fact 8 NRS(W,;) =12 foranyoddn = 5
3forn = 3.

0ifnisodd

Fact9 NRS(I,) = {1 otherwise



Let G be any NI graph with clique number o(G) = k. Since the k
vertices in the clique must have distinct degrees in G, A(G) > 2k-2. This forces
that

Fact 10 Any NI graph with clique number k has at least 2k-1 vertices.
Since w(K,) = n, by Fact 10, it is easy to observe that
Fact 11 NRS(K,) > n-1 forany n > 1.

In this paper we prove that NRS(G) < n-1 for any graph G of order n.
We also prove that NRS(G) = n-1 if and only if G is isomorphic to K. In
addition, we find NRS of the graphs P,(K,), K, \e, Ky \ {e), €2} and K;\ {¢), &;,
..., €&} where €}, e, ..., e have a common end vertex. Moreover we show that
NRS(G) < n-3 for any connected irregular graph G. We also establish the result
that NRS(G v K,) is either NRS(G) or NRS(G)=1 for any graph G. Finally, for
any two integers s and n, 0 <s < n-3, we construct a connected graph G, of order
n with NRS(G) =s.

3 Main results
First we prove a lemma which is useful for further discussion.

Lemma 1 Let G be a non-complete connected graph. If IVl > i, for some i,
1 <i < n-2, then G has at least two non-adjacent vertices of degree i, that is,
(vl = 2.

Proof Let IVl = m. Since V; is non-empty, II(V;)l z 1. It is enough to prove that
{[(V))l = 1. Suppose not, then any vertex w in V; is adjacent to the remaining
vertices of V;, that is, < V; >« K. Consequently i = d(v) = m-1 for any vertex v
in <V;>. But since m > i, then m = i+1. Therefore, the vertices of V; cannot be
adjacent to any vertex in G \ V;. This means that as G is connected, G = K,,. This
is a contradiction to our assumption that G is not complete. Hence lI(V;)|>2. B

Let G be a connected graph of order n. Now we construct a new graph
from G by the following algorithm:

Algorithm

Step1 If G is NI, STOP. Otherwise, let a be the least positive integer such that
V, is neither empty nor independent in G. Construct a new graph H
from G by joining a new vertex u to all vertices in I(V,).

Step2 Take G =H. Goto Step 1.



Theorem 1 The algorithm terminates at an NI graph of order at most 2n-1 in
which G is an induced subgraph.

Proof If G itself is an NI graph, then there is nothing to prove. Suppose G is not
an NI graph.

It is easy to verify the result when n =2, Let n > 3. For i > 0, at the i"
iteration of the algorithm, let G; be the resultant graph, a; be the corresponding
least positive integer such that V,, is neither empty nor independent in G; and
u;,; be the newly introduced vertex. Obviously, we may assume that a, > 2.
Consider the graph G;,,. If Gi,, is not an NI graph, then a;,, > g;. Indeed, note
that V¢, (Gi,1) is nothing but I(V;,(G;)) with the possible inclusion of u;.;. Thus
V, in G, is either empty or independent for each a < a;.

If A(G;)) <n foralli>0, then 2 £ g; < n-2 and so the algorithm
terminates after the execution of at most n-3 iterations. Hence the NI graph
obtained by the above algorithm has at most 2n-3 vertices.

Suppose j is the least positive integer such that A(Gj,)) = n. It is easy to
observe that if G is complete, then d(u;.) < a; for each i > 0. Therefore, d(u;,;) >
a; for some i only if G is non-complete. If d(u;,;) > g;, then Vgl > aj in G;. Now
by Lemma 1, lI(Vy,)I > 2 in G;. Suppose G, is not an NI graph. If d(u,) > ay, then
as discussed earlier [I(Vy,(Go))! = 2. On the other hand, if d(u;) < aq, then

a
(Voo (Go))! 2 1. Therefore, IV(G;) \ UVJ (Gy)I <n-1. In general, foreach i > 1,
j=l
4
VG \ |V (G < n-i. Consequently, 1V, (Gl < n-i for each i > 0. Hence
j=1
d(u;) < n-i for each i > 1. Therefore, A(G;) = n-1. This implies that a; = n-1 and
80, IVo.(G))l £ n-j. Clearly V(G;.,) is a proper subset of V,.(G;). If V4(G;.y) is
not independent, then by the next iteration, V,,i(G;j,2) is a proper subset of
Va(Gj.1). This sequence of proper subsets terminates after, say, t iterations with
Vau1(Gj.0 being independent. That is, Gj,, is the required NI graph with n+j+t

vertices. Clearly Va, +t = Vajpeoy 41 is independent in Gj... As discussed earlier,
Vay,| < n-(j+1). But Vg, 2 1. Therefore, j+t <n-1. Hence n+j+t <2n-1. ]

We illustrate the proof of Theorem 1 in Figure 3. Consider the graph G
shown in Figure 3. Here ay = 2. In G, V, = {v, v, v, V7, Vg, Vio} and I°(V;) =
{vy, v7, Vo}. InGy, a;, =3, V3= {v,, v3, vg, u; } and I°(V3) = {u,}. Again in G,, a,
=4,V = {u, v, v4} and [°(V,) = {v4}. G5 is the resultant NI graph.

Theorem 1 means that



Corollary 1.1 NRS(G) <n-1, for any graph G of order n. [ |

v Va V3 V4 Vs
®
Ve Vs Vg Vo Vio
G
! \) V3 Vs Vs
9
Ve Vg 9 Vio
u; uz
G;

a;.
Notation We denote V(G;) \
jul

Vi V2 V3 Vs Vs
\[3 Vo Vio
u;
G,
vy Va2 V3 V4 Vs
®
Ve 7 Ve~ Vo Vio
uy u u3
G,
Figure 3

V; (G) by R[V,_,(G))].

From the proof of Theorem 1, we obtain the following results which are
used for further discussion. Let G, be an NI graph obtained as in the algorithm

corresponding to a connected graph G.

Result 1 If i > 1 and IR[V,,_ (G)]} < (n-i)-c for some integer ¢ > 0, then s <

(n-1)-c.



For, while proving Theorem 1, we have !R[Vn]_l(Gi)ll < n-i for each
i> 1. Now if IR[V,,_, (G < (n-i)-c for some i > 1, then IR[V,, _, (Gl < (n-k)-c
for all k > i. Consequently IR[Vq,_, (GJ)]l < (n-s)-c. Hence IV, (Gy)l < (n-s)-c,
where a, = a,..+1. But IV, (G)| = 1. Therefore, s <n-1-c.

Result 2 If d(u;) = a;., forsome i, | <i <s, then IR[Va,_ 1(G;)]l <n-i-1.

For, if d(v;) = a;,, for some i, | <i <s, then Vy,_ (Gi.)! > ;.. Thus by
Lemma 1, (Vy,_, (Gi.))! = 2 and hence IR[V,,;_, (G)]l < n-i-1.

Result 3 If d(u)) > .1, V,,_, +1 is not independent in G; and d(u;,1) < g; for some
i, 1 <i <s-1, then IR[Vy,(Giv)ll < n-(i+1)-1.

For, d(u;) > a;.; means that II"(Va‘_l(Gi.l))l > aj.;. Since the vertices in
l‘(Va‘_l(GM)) have degree a;, in G, by Lemma 1, I(I°(V,,_,(Gi.))))l = 2. Note
that a; = a;,+1 and I(V,_, (Gi.)) & Vg (Gi). Thus II(V,(Gy)l > 2 and so
IR[V;, (Gis )1 < n-(i+1)-1.

Next we prove that the upper bound for NRS attained in Corollary 1.1
is sharp only when the graph G is complete.

Theorem 2 NRS(G) = n-1 if and only if G = K,, for any graph G of order n.

Proof Let G be a non-complete graph of order n. If G is disconnected, then by
Theorem 1 together with Fact 3, NRS(G) < n-2. Therefore, assume that G is
connected. Let G, be an NI graph obtained as in the algorithm corresponding to
G. We claim that s = n-1. The result is obvious if A(G,) < n. Hence assume that
A(Gy) = n.

If Vi(Gy) is non-empty for some i < aq, then IR[Vao(G,)]l < (n-1)-1 and
hence by Result 1, s <n-2. Otherwise V; (Gy) is empty for each i < ay.

Case(i) Suppose Vy,_, 4+, is independent in G, for some t, | st <s-1.

Since I°(Vg,_, (Gi1)) € Va,_,+1(G), Va,_,+1 is non-empty in G,. Since
Va,_,+1 is independent in G,, u.; which we introduce in G, must correspond to
Vg, for some a, > a1 +1. Thus IR[Vy (Gl < n-(t+1)-1 and hence by Result 1,
s <n-2.

Case(ii) Suppose Vg,_, 41 is not independent in G, forany t, | st <s-1.

If d(v) = a;., for some i, 1 £i <s, then by Result 2 and Result 1,
s <n-2.



Suppose d(u;) > a;., for some i, 1 <i <s. Let k be the largest positive
integer such that d(uy) > @y, in Gy. If k <5, then by Result 3, IR[V,, (Gy.)]l < n-
(k+1)-1 and hence by Result 1, s <n-2. If k = s, then 2 < a,,) < IR[Vg,_,(G))]l <
n-s and hence s < n-2.

Suppose d(u;) < a; foralli, 1 <i<s. If ll(Va,(Gi))I =2forsomei,0<i
<s-1, then IR[Vy, (Gi,)]l < n-(i+1)-1 and hence by Result 1, s < n-2. Therefore, it
is enough to prove that (V,,(G;)l = 2 for some i, 0 =i <s-1. Since G is non-
complete, there are at least two non-adjacent vertices in G. Fix a vertex v in
Voo (Go). Let w & N[v] such that d(w) = d, where d = min{d(u) | u & N[v]}.
Clearly ay <d <n-1. Thus d = g for some j, 0 s j <s-1.

If I(V4o(Go))l = 2, then the result follows. Otherwise 1(Va,(Go))t = 1.
Now choose 1(V,,(Go)) such that v & 1(Va,(Go)). Clearly d(v) = ag+1 = a, in G,
and V,_ is neither empty nor independent in G,. If I(V,,(Gy))l = 2, then the
result follows. Otherwise choose 1(V,, (G))) such that v & I(Va, (G1)). Now d(v)
= ai+1 = a; in G, and V,, is neither empty nor independent in G,. Continue the
process of choosing I(Vy,(G)) such that v & 1(V,,(G;)) until we get I[(V;,(G)l =
2. Note that while continuing the process, II(Va’(Gj)I = 2 if d(v) becomes a;. This
means that s < n-2. Therefore, NRS(G) < n-2 if G is non-complete.

The converse follows from Fact 11 and Corollary 1.1. B

Note that NI(K,) obtained by the algorithm is unique and is isomorphic
to Ix.;. For example, NRS(Ks) = 4 and the corresponding NI(Ks) = Iy is shown
in Figure 4.

NI(Ks) = Iy

Figure 4

Corollary 2.1 For any graph G, NRS(G) > max {u{< V; >)}-1, where maximum
runs overi, 2 <i <n-l.
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Proof Let i be an integer such that 2 < i < n-1 and V; is non-empty. Suppose
w(<V;>)=j.Clearly 1 <j<n.If j=n, theni=n-1. That is, G = K,. Hence the
result is obvious by Theorem 2. Therefore, assume that j < n-1. Clearly < V; >
contains K. Since the vertices in K; are adjacent to each other in G, at least one
vertex in K; must be of degree at least i+j-1 in NI(G). Thus NI(G) must have at
least j-1 vertices which are not in G and hence NRS(G) > j-1. Since i is arbitrary,
the result follows. a

Clearly in K; \ e, < V,,; > o K,,2. Therefore, by the above corollary,
NRS(K, \ e) > n-3. Also K, \ e is an induced subgraph of the NI graph I,,3 and
so NRS(K, \ e) < n-3. Thus we have

Corollary 2.2 NRS(K,,\ €) = n-3 for any n > 3. [ ]

Lemma 2 Let G be a connected irregular graph of order n. Suppose Va(G) is
non-independent in G and for all i < A(G),Vi(G) is independent if it exists. Then
NRS(G) <n-3.

Proof If G is NI, then obviously the result is true. Let us assume that G is non-
NI. Let G, be an NI graph obtained as in the algorithm corresponding to G.
Since G is irregular, IV, (Go)l < n-1. If IV, (Go)! < n-2, then IR[Vy (G)]l < n-3
and hence by Result 1, s <n-3. Next assume that [V, (Go)l = n-1. Clearly 2 <a,
= A <n-2. Then by Lemma 1, II(V,,(Go))! 2 2. Since IVi(G)! = 1 for some i < ay,
if H(Vgy(Go))l > 2 or d(uy) < ay, then IR[Vao(G.)]I < n-3 and hence by Result 1,
NRS(G) < n-3. Suppose l[(Vy,(Go))) = 2 and d(u;) > ao. Clearly a, = ap+1 in Gy.
In general, foreach i, 1 <i <s-1, ¢;=a;.,+1 and Va,_,+1 is not independent in G;.
Let k be the largest positive integer such that d(uy) > ax.) in Gy. If k=5, then 2 <
asy < IR[Vg,_, (G)) < n-s and hence s < n-2. If k < s, then by Result 3,
IR[Vg, (Gx1)]! < n-(k+1)-1. But since IVi(G)l = 1 for some i < a, IR[Vg, (o)1l <
n-(k+1)-2. Hence the result follows from Result 1. | |

Theorem 3 Let G be a connected irregular graph of order n. Then NRS(G) <
n-3.

Proof If G is NI, then obviously the result is true. Let us assume that G is non-
NI Let G, be an NI graph obtained as in the algorithm corresponding to G.
Since G is non-complete, obviously by Theorem 2, s < n-2. Let us assume that s
= n-2. This implies that A(G,) = n.

First we claim that d(u,) = 1. Suppose d(u;) > 2, that is, Il“(Vas_l(Gs_,))l
> 2. Note that IV,__ (Gs.)l s IR[Vg,_,(Gs.1))l < n-(s-1) = 3. Since I°(V,,_, (G,.1))
C Vg, ,+1(Gy), it is independent in G,. Therefore, I(Vg,_, (G,,)) is an
independent set in <V, _, (G,,)>. But since I(V, _, (G,,)) is a maximum

11



(Gs)> M(Vg,_, (G))l = 2. This implies that
(Gs.1)! s 3. Therefore, d(u,) = 1.

independent set in <V, _,

IVa,_,(Gs.1)1 = 4. This is a contradiction to Vg, _,

Case(i) Suppose Vy,_, 4, is independent in G, for somet, l st s s-1.

Since l”(Vat_;(G;.l)) C Va,_,+1(G), Va,_,+1 is non-empty in G, Since
Va,_,+1 is independent in G,, u,,; which we introduce in G, must correspond to
Vg, for some a, > a.+1. If Wg,_,4+1(Gol 2 2, then IR[V, (G )]l < n-(t+1)-2 and
so s = n-3. This is a contradiction to s = n-2. Thus IV, ;,(Gy)!l = 1 and hence
d(u) = 1. Now fuse u, and u; in G;. Clearly the resultant graph is an NI graph of
order 2n-3 in which G is an induced subgraph. Hence NRS(G) = n-3.

Case(ii) Suppose V,,_, 41 is notindependent in G, forany t, I stss-1.

Let ap = a. Clearly a, = a+1. In general, foreach i, 0 s i s s-1, a+i is the
least positive integer such that V,,; is neither empty nor independent in G;. Note
that A(G;) = a+s. If a = A(G), then by Lemma 2, s < n-3. Therefore, assume that
a# A(G). That is, a s n-2.

Suppose d(u;) = a. Then as discussed in Result 2, IV (Go))l = 2. If
H(VA(Go))l > 2, then IR[V(G))]l £ n-3 and so s < n-3, a contradiction to s = n-2.
Thus I(V,(Gg))! = 2 and hence IR[V,(G,)]| = n-2. Next we claim that d(y;) <
a+i-1 for all i, 2 <i <s-1. For, if d(u;) = a+i-1 for some i > 2, then by Resuit 2,
IR[Va4i.1(G)I £ n-i-1. But IR[V(G)))l = n-2. Thus IR[V,.i.1(G)) < n-i-2. This
results to a contradiction to s = n-2. Suppose d(u;) > a+i-1 for some i > 2. Let k
be the largest positive integer such that d(ug) > a+k-1. Thus by Result 3,
IR[V24k(Gie 1) < n-(k+1)-1. But since IR[V,(G)]l = n-2, IR[V,(Gg, )]} < n-
(k+1)-2, which leads to a contradiction to s = n-2. Therefore, d(u;) < a+i-1 for all
i,2<i<s-1.

Now if H(V,,i(Gi))l > 2 for some i, 1 <i <s-1, then IR[V,,i(G;, )] < n-
(i+1)-2, which leads to a contradiction to s = n-2. Thus lI[(V,,i(G:)) = 1 for all i,
1 £i <s-1. Let u and v be any two vertices in R[V,G))]. If u and v are non-
adjacent, then take i = max{d(u), d(v)}. Then we can find an independent set
I(Vai(G;)) such that {u, v} C I(V,i(G;)), that is, II(V,i(Gi)l = 2. This is a
contradiction to H(V,,i(G;))l = 1. Therefore, any two vertices in R[V,(G,)] must
be adjacent to each other in G;. Let w € I{(V,(Gy)). Since I(V,(G)) C
R[VAG)], d(w) = n-3 in <R[V(G,)]>. But w must adjacent to at least one
vertex in I(V,(Gg)). Therefore, d(w) > n-2 in Gy. Thus a = n-2 and hence d(u,) =
IR[V.(G))]l. Consequently IV,(Go)l = n. This is a contradiction to the irregularity
of G. Therefore, d(u;) #a.

12



Suppose d(u;) > a. Let k be the largest positive integer such that d(uy) >
a+k-1. Then by Result 3, IR[V (G, D) < n-(k+1)-1. If d(u;) < a+i-1 for some i,
1 <i <k, then by Result 3, IR[V,;.i(Gi)]l < n-i-1. Consequently IR[V 5,x(Gy )1l £
n-(k+1)-2, which leads to a contradiction to s = n-2. Therefore, d(u;) > a+i-1 for
all i, 1 <i < k. Suppose I(V,.i(G;))! > 2 for some i, i <k. Then IR[V i (Gr)ll <
n-(k+1)-2. This results to a contradiction to s = n-2. Therefore, I(V,,i(G)) = 2
foralli,0<i<k.

If d(u;) = a+i-1 for some i, k < i <, then by Result 2, IR[V,,i(G;, )} <
n-(i+1)-1. But since IR[V (Gl € n-(k+1)-1, IR[Vi(Gi. )l € n-(i+1)-2,
which leads to a contradiction to s = n-2. Therefore, d(u;) < a+i-1 forall i, i > k.
H II(Vai(G))! = 2 for some i, k+1 <i < s-1, then IR[V,,i(G;.)] £ n-(i+1)-2,
which leads to a contradiction to s = n-2. Therefore, [1(V,,i(Gi. )| = | for all i,
k+1 <i<s-1.

If d(v) > a+k in Gy for a vertex v in V(Gy) \ N[ugl, then choose
I(Vauk(Gy)) such that 1(Ve,(Gw)) € I(Vau1(Gia)). Now take i = max{d(uy),
d(v)}. Then we can find an independent set I(V,.i(G;)) such that {u, v} C
I(V..i(G3)), that is, II(V,.i(G)) = 2. This is a contradiction to II(V,,;(G))! = 1 for
all i, k+1 <i < s-1. Therefore, in Gy, d(v) < a+k-1 for any vertex v in V(Gy) \
N[uy]. Suppose k = 1. Since a # A(Gy), there exists a vertex v in V(G;) \ N[u;]
such that d(v) = a+1 in G,. Therefore, k > 1.

Consider the vertex ug.,. Since d(ux.;) > a+k-2 in Gy, d(uy,) = a+k-1
in Gy.,. But d(uy) > a+k-1 and [I(V4x.1(Gx.1))l = 2. This means that IV . (G )
> a+k+2. Also we have N[ux] € Vari(Gky) and IN[ug,]l = a+k and so
IVaek-1(Gi1) \ N[ug ]l > 2. Let u and v be any two vertices in V. (Giy) \
N[ug.]. If u and v are non-adjacent in Gy.;, then choose I(V,x.1(Gy.;)) such that
{u, v, uy} € I(Vaer1(Gyx1)). This forces that (V. (G)) > 2. This is a
contradiction to [I(V,,i(Gi)! = 2 for all i <k. Therefore, u and v must be adjacent
in Gy.;. Thus either u or v must be non-adjacent to at least one vertex in N(u).
Let w be a vertex in N(u;) such that w is not adjacent to u. Since any vertex x
in N(ug.;) must be adjacent to at least one vertex in V,,;.2(Gy.), we have d(x) <
a+k-3 in <N(uy.;)>. Clearly IN(uy.y) \ wi = a+k-2. Now by Lemma 1, II(N(ug.,) \
w)l 2 2. Choose I(Va.1(Gi1))y I(Vaur(Gy)) and I(V,uk.1(Gi.1)) such that they
contain I(N(ux.;) \ w), {u, w} and {v, ui.,} respectively. That is, II(Vss1(Gre1))!
> 2, which is a contradiction to II(V,,;(Gi. D=1 forall i > k.

Therefore, d(u;) < a in G,. Since V,(G) is non-empty for some b > a,
we can find a G, such that N[u,] N N(us) = ¢. Now fuse u; and u, in G,. Clearly
the resulting graph is in NI(G) and have order 2n-3. Hence NRS(G) = n-3. B

Clearly Corollary 2.2 shows the tightness of the bound attained in
Theorem 3. Note that Lemma 2 and Theorem 3 do not hold, if the condition that
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G is connected is dropped. For example, consider G = K, U K. Clearly G is a
disconnected graph of order n+1 whereas NRS(G) = n+1-2.

When we think of regular graphs, it has been proved that

%x(G) fG=K,,\Fforn = 3

) , for any connected
%(G)- 1 otherwise

Theorem A [5] NRS(G) ={
regular graph G.

It has also been proved that
Theorem B [5] NRS(G) < 2, for any bipartite graph G.
Theorem C [5] For any tree T, NRS(T) =0 or 1.

Next we consider the edge deleted subgraph K, \ {e;, e;}. Clearly K4\
{ei, e} = 14 or C,; dependent on whether e, is adjacent to e, or not, and so
NRS(K4\{e;, e2}) = 1.

Let G = K\ {ey, €3}, n >4 and let NI(G) be in NI(G). If e, is adjacent
to e;, then w(G) = n-1. Hence the clique number of NI(G) is greater than or
equal to n-1. Then by Fact 10, NI(G) must be of order at least 2n-3 and so
NRS(G) 2 n-3. But since G is irregular, NRS(G) < n-3 and hence NRS(G) = n-3.

If e, is not adjacent to e;, then w(G) = n-2. Since the vertices in the
clique must have distinct degrees in NI(G) and all the n-2 vertices in the
corresponding clique have degree at least n-2 in G, there must be a vertex have
degree at least 2n-5 in NI(G). This forces that NI(G) must have at least 2n-4
vertices and hence NRS(G) = n-4.

Let V(G) = {vy, v2, ..., v,} and let ) = v|v; and e, = v;3v,. Clearly the
degree sequence of G is n-2, n-2, n-2, n-2, n-1, n-1, ... n-1. Construct G, from G
by adding the vertices uj, uz, ..., Una, the edges u;vs, uvs, ..., v, and uv; for
2 <i<n+4,j>i+4. Now the degrees of the vertices vy, v,, ..., Vo, Uy, Uy, ..., Upy
are n-2, n-2, n-1, n-1, n, n+1, ..., 2n-5, n-2, n-5, n-6, ..., 1 respectively in G;.
Note that for 1 <i <2n-5, V(G,) is either empty or independent. Thus G is in
NI(G) and hence NRS(G) < n-4. Therefore, NRS(G) = n-4. Hence we can state
that

n — 3 if e;and e, are adjacent

Theorem 4 For any n > 4, NRS(K, \ {e, &,}) = {n o
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Of course, it is much harder to find the NRS(K, \ {e,, e, ..., &}) for
arbitrary edges ey, e, ..., €. But if we assume that e,, e, ..., ex have a common
end vertex, it is not much more difficult to find the NRS(K, \ {e,, e, ..., &}),
which is established in the following theorem.

Theorem 5 For any n > 3, NRS(K;, \ {e;, €2, ..., &}) =n-3 if ] <k <n-2 and the
edges ey, €, ..., & have a common end vertex.

Proof Let G =K\ {e,,&3, ..., &}, where e, €, ..., € have a common end vertex
and, let NI(G) be in NI(G). Clearly o(G) = n-1. Hence the clique number of
NI(G) is at least n-1. Then by Fact 10, NI(G) must be of order at least 2n-3 and
so NRS(G) = n-3. But since G is irregular, NRS(G) < n-3. Thus NRS(G) =
n-3. |

Next we show that the difference between the NRS’ of G and G v K;,
is at most 1.

Theorem 6 NRS(G v K,) = NRS(G) or NRS(G)=1, for any graph G.

Proof Let G be a graph of order n with vertex set {v,, vy, ..., v} and NRS(G) =
k. Let NI(G) be any graph of order n+k in NI(G). Take H = G v K, and let v be
the newly added vertex. Clearly dy(v;) = dg(v;)+1 for each i, 1 i <n. Let NI(H)
€ NI(H) and have order n+1+NRS(H). Clearly NI(H) is also in NI(G). Thus
NRS(G) < 1+NRS(H) and hence NRS(G)-1 £ NRS(H).

If there is an NI graph NI(G) of order n+k in NI(G) such that
Vauk1{NI(G)) is empty, then H is an induced subgraph of the NI graph NI(G) v
K. Hence NRS(H) < NRS(G).

Suppose V. 1(NI(G)) is non-empty for any NI graph NI(G) of order
n+k in NI(G). Then construct a new graph H; from NI(G) v K, by introducing a
new vertex w and joining it with v. Clearly H, is an NI graph in which H is an
induced subgraph. Thus NRS(H) < k+1 and hence the result follows. ]

As an illustration, consider the graphs Cq, P; and C,. Clearly NRS(Cyg)
=2, NRS(Cs v K;) =1, NRS(P3) =0, NRS(P; v K;) =1 and NRS(Cy) = 1 =
NRS(C,; v K,). Note that when G is an NI graph, NRS(G v K;) is 0 or 1
depending on whether the set V,,,(G) is empty or non empty.

For m = 2 and n > 1, let Py(K,) be the graph obtained from G by
identifying a pendent vertex of the path Py, with a vertex of K,,. Clearly P,(K,) is
a path when n = | or 2. Suppose n = 3 and m = 2. NRS(P(K,)) = 2 if m = 4,
otherwise NRS(P.(K,)) = 1. It is easy to verify that NRS(P,(K,)) = 2 for any
m 2 2 and n = 4. The remaining cases are discussed in the following theorem.
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Theorem 7 NRS(P(K,)) =n-2,form=2andn=z=5.

Proof Let vy, v, ..., v, be the vertices of K,, n = 5 and let uy, uy, ..., u, be the
vertices of Py, m 2 2. Let G = P(K,) be the graph obtained by fusing v, with u;.
Clearly the order of G is n+m-1. Note that in G, <V,.;(G)> = K,.,. Then by
Corollary 2.1, NRS(G) = n-2.

Construct G, from G by introducing new vertices w;, wa, ... W, and
joining w; to v for all i+1 < j=s n, 1 si=n-2. In Gy, the degrees of v, v3, ..., v,
are n-1, n, ..., 2n-2 respectively and the degrees of wy, wy, ..., Wa are n-1, n-2,
..., 2 respectively. If m < 3, then G, is in NI(G) and have order (n+m-1) + (n-2).
Hence NRS(G) s n-2.

Suppose m > 3. Since d(u;) = 2 for each i, 2 £ i < m-1, G, will become
an NI graph if we raise the degree of alternate vertices in the sequence uz, u, ...,

-1 . .
Un.; to at least three. Choose at least lﬁz—l alternate vertices in the sequence up,

s, ..., Up.g. Let the number of vertices chosen be t. Now for each i, 1 =i < n-2,
w; is adjacent to the vertices vi,q, Vis2, ..., Vo which are of degrees n+i-1, n+i, ...,
2n-2 respectively. Note that d(w;) #d(v)) foralliandj, 1 <i<n-2,i+1 <j<n
even if the degree of every vertex w; is raised to (at most) n-14+2(i-1) by joining
it with some of the vertices from {u,, u;, ..., Uy, }. Hence we can raise the
degrees of w,;, wa, ..., wo2 by 0, 2, ..., 2(n-3) respectively. Clearly 2(n-4) +
2(n-3)>nforn=35.

Suppose t = 1. Then construct G, from G, by joining the chosen vertex
with w3, If 1 <t <2(n-3), then construct G, from G, by joining the t vertices
with wy,. If 2(n-3) < t < n, then construct G, from G, by joining 2(n-3) vertices
with w,, and the remaining vertices with w,3. If t > n, then construct G, from
G, by joining all the t vertices with wy. Then in G,, d(w;) = n-1 + t > 2n-2 =
A(G)). Clearly G, is in NI(G) in all the cases. Hence NRS(G) s n-2, Therefore,
NRS(G) = n-2. ]

Note that Theorem 3 means that for any connected irregular graph G of
order n, 0 < NRS(G) < n-3. Next we show the existence of a connected graph of
order n such that NRS(G) = s for a given s > 0 and for all n > s+3.

Theorem 8 For any non-negative integer s and for all n = s+3, there exists a
connected graph G of order n with NRS(G) =s.

Proof For s = 0, consider the graph K, 4, n = 3. Clearly NRS(K,.;,;) =0.
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If s = 1, consider the path P,, n = 4, for which NRS is 1.When s = 2, for
all n = 5 the cycle C, when n is odd and the graph K= \ F when n is even are the
2'2

required graphs with NRS = 2.

Finally when s = 3, consider the graph P(K,,,). Clearly its order is
s+m+1 = s+3 and by Theorem 7 its NRS(G) is s. ]
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