A note on acyclic total coloring of plane graphs

Wei Dong 1*

¹School of Mathematics and Information Technology Nanjing Xiaozhuang University, Nanjing, 211171, China

Abstract

An acyclic total coloring is a proper total coloring of a graph G such that there are at least 4 colors on vertices and edges incident with a cycle of G. The acyclic total chromatic number of G, $\chi_a''(G)$, is the least number of colors in an acyclic total coloring of G. In this paper, we prove that for every plane graph G with maximum degree Δ and girth g(G), $\chi_a''(G) = \Delta + 1$ if (1) $\Delta \geq 9$ and $g(G) \geq 4$; (2) $\Delta \geq 6$ and $g(G) \geq 5$; (3) $\Delta \geq 4$ and $g(G) \geq 6$; (4) $\Delta \geq 3$ and $g(G) \geq 14$.

Keywords: total coloring, plane graph, acyclic coloring, acyclic total coloring.

AMS 2000 Subject Classifications: 05C15, 05C78.

1 Introduction

Graphs considered in this note are finite, simple and undirected. Unless stated otherwise, we follow the notations and terminology in [3].

For a plane graph G, we denote its vertex set, edge set, face set, minimum degree and maximum degree by V(G), E(G), F(G), $\delta(G)$ and $\Delta(G)$, respectively. For a vertex v, $d_G(v)$ and $N_G(v)$ denote its degree and the set of its neighbors in G, respectively. We use g(G) to denote the *girth* of G, i.e. the length of the shortest cycle of G.

We use b(f) to denote the boundary walk of a face f and write $f = [v_1v_2v_3\cdots v_n]$ if $v_1, v_2, v_3, \cdots, v_n$ are the vertices of b(f) in a cyclic order. The degree, d(f), of a face f is the number of edges in its boundary walk b(f), where

^{*}Email: weidong@njxzc.edu.cn.

cut edges are counted twice. A k (k^- or k^+)-vertex is a vertex of degree (at most or at least) k. A k (k^- or k^+)-face is defined similarly.

A proper vertex k-coloring of G is a mapping ϕ from V(G) to a set of size k such that $\phi(x) \neq \phi(y)$ for any adjacent vertices x and y. A graph is vertex k-colorable if it has a proper vertex k-coloring.

A proper vertex coloring of a graph G is called *acyclic* if there is no 2-colored cycle in G. The acyclic vertex chromatic number $\chi_a(G)$ is the smallest integer k such that G has an acyclic vertex k-coloring. Grünbaum [10] proved that every planar graph has an acyclic 9-coloring and conjectured that all planar graphs have acyclic 5-colorings. Borodin [4] finally proved the conjecture.

A mapping $C: E(G) \to \{1, 2, \dots, k\}$ is called an acyclic edge k-coloring of a graph G provided that any two adjacent edges receive different colors and there are no bichromatic cycles in G under the coloring G. In other words, for every pair of distinct colors i and j, the subgraph of G induced by all the edges which have either color i or j is acyclic. The smallest number k of colors such that G has an acyclic edge k-coloring is called the acyclic chromatic index of G and denoted by $\chi'_{\alpha}(G)$. It is certain that $\chi'_{\alpha}(G) \geq \Delta(G)$. The concept of acyclic edge coloring was first introduced by Fiamcik in [8]. In [1], Alon et al. proved that $\chi'_{\alpha}(G) \leq 64\Delta(G)$. In 2001, Alon et al. [1] conjectured that $\Delta(G) \leq \chi'_{\alpha}(G) \leq \Delta(G) + 2$ for any graph G and proved that the conjecture holds for almost all regular graphs. The conjecture is still open, even for planar graphs. For more information, interested readers are referred to [7], [9], [11], [14].

A proper total k-coloring of a graph G is a coloring of $V(G) \cup E(G)$ using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number $\chi''(G)$ is the smallest integer k such that G has a total k-coloring. Behzad [2] and Vizing [19] independently conjectured that $\Delta(G) + 1 \le \chi''(G) \le \Delta(G) + 2$. For a plane graph G, the conjecture is proved to be true except $\Delta(G) = 6$. Interested readers may see [5], [6], [12], [18] for more information.

An acyclic total k-coloring is a proper total k-coloring of a graph G such that there are at least 4 colors on vertices and edges incident with a cycle of G. The acyclic total chromatic number of G, $\chi_a''(G)$, is the smallest integer k such that G has an acyclic total k-coloring. The acyclic total coloring was introduced by Sun and Wu [16]. They conjectured that $\Delta(G) + 1 \leq \chi_a''(G) \leq \Delta(G) + 2$. In the same paper, they proved that the acyclic total chromatic number of a planar graph G is at most $\Delta(G) + 2$ if $\Delta(G) \geq 12$, or $\Delta(G) \geq 6$ and $\alpha(G) \geq 4$, or $\alpha(G) \geq 5$ and $\alpha(G) \geq 5$, or $\alpha(G) \geq 6$. Furthermore, they

proved that $\chi_a''(G) = \Delta(G) + 1$ if G is a series-parallel graph with $\Delta(G) \geq 3$. In [17], it is proved that the acyclic total chromatic number of a planar graph G of maximum degree at least k and without l cycles is at most $\Delta(G) + 2$ if $(k,l) \in \{(6,3),(7,4),(6,5),(7,6)\}$.

It is obvious that $\chi_a''(G) \geq \Delta(G) + 1$. In this paper, we mainly investigate the sufficient conditions for plane graphs to attain the lower bound. In fact, we prove that for every plane graph G with maximum degree Δ and girth g(G), $\chi_a''(G) = \Delta + 1$ if $(1) \Delta \geq 9$ and $g(G) \geq 4$; $(2) \Delta \geq 6$ and $g(G) \geq 5$; $(3) \Delta \geq 4$ and $g(G) \geq 6$; $(4) \Delta \geq 3$ and $g(G) \geq 14$.

2 Structure of $(\Delta + 1)$ -minimal graphs

A graph G is called k-minimal if G is not acyclic total k-colorable, but any proper subgraph of G does.

Note that if a graph G has maximum degree at most 2 and contains cycles, then G does not admit any acyclic total coloring using exactly $\Delta+1$ colors. Hence, in this section, we always assume that G is a $(\Delta+1)$ -minimal graph with $\Delta \geq 3$.

For convenience, we introduce the following terminology. Let ϕ be an acyclic total $(\Delta+1)$ -coloring of G. For each $x \in V(G)$, we use F(x) to denote the set of the colors assigned to the edges incident with x. A k-thread is a graph which we obtain from a path on k vertices, $k \geq 2$, by adding at least two 1-vertices to each of the end vertices of the path. The 3^+ -vertices of the k-thread we call the end vertices of the k-thread. Let $S = \{1, 2, \dots, \Delta + 1\}$ be the color set.

Lemma 2.1 G contains no 1-vertex.

Proof. It follows from $(\Delta + 1)$ -minimality of G.

Lemma 2.2 G contains no 2-vertex adjacent to $(\Delta - 1)^-$ -vertices if $\Delta \geq 4$.

Proof. Suppose on the contrary that v is a 2-vertex of G adjacent to a $(\Delta-1)^-$ vertex u. We consider the worst possibility. Let w be the other neighbor of v and $d(w) = \Delta$. Since G is $(\Delta + 1)$ -minimal, G - vw admits an acyclic total $(\Delta + 1)$ -coloring ϕ . Without loss of generality, assume that $\phi(w) = \Delta$ and $F(w) = \{1, 2, \dots, \Delta - 1\}$. We will extend ϕ to the whole graph G. First, we erase the colors of v, uv and color vw with $\Delta+1$. Since $d(u) \leq \Delta-1$ and $\Delta \geq 4$, we can properly color uv and v in sequence. If $\phi(uv) \neq \Delta$ or $\phi(u) \neq \Delta+1$, then

we obtain an acyclic total coloring of G, since $|\{\phi(v),\phi(w),\phi(vw),\phi(uv)\}|=4$ or $|\{\phi(v),\phi(w),\phi(vw),\phi(u)\}|=4$. If $\phi(uv)=\Delta$ and $\phi(u)=\Delta+1$, then we check the color of v. Note that $d(u)\leq \Delta-1$ and $|S\setminus (F(u)\cup \{\phi(u)\})|\geq 1$. Hence, if $\phi(v)\in S\setminus (F(u)\cup \{\phi(u)\})$, then it is not difficult to verify that ϕ is an acyclic total coloring of G. Otherwise, we recolor v with some color $\alpha\in S\setminus (F(u)\cup \{\phi(u)\})$. Thus, we obtain a contradiction to $(\Delta+1)$ -minimality of G.

Lemma 2.3 G contains no 3-thread.

Proof. If $\Delta(G) \geq 4$, then the lemma holds by Lemma 2.2. So we assume that $\Delta(G) = 3$.

Suppose on the contrary that xuvwy is a 3-thread with d(u) = d(v) = d(w) = 2. By the choice of G, G - v admits an acyclic total coloring ϕ using at most 4 colors. For convenience, assume that $\phi(x) = 3$ and $\phi(xu) = 4$. We erase the colors of u and w. We will show that we can extend ϕ to the whole graph G, which is a contradiction to the choice of G. We have the following cases.

Case 1. $\phi(wy) \in \{3,4\}$. If $\phi(wy) = 4$, then we can color u, uv, v and vw with 2, 1, 4 and 3, respectively. If $\phi(wy) = 3$, then we can color u, uv, v and vw with 2, 1, 3 and 4, respectively. Moreover in both cases, if $\phi(y) = 1$, then $\phi(w) = 2$, otherwise $\phi(w) = 1$.

Case 2. $\phi(wy) \in \{1,2\}$. If $\phi(wy) = 1$, then we can color u, uv and vw with 2, 1 and 2, respectively. If $\phi(wy) = 2$, then we can color u, uv and vw with 1, 2 and 1, respectively. Moreover in both cases, if $\phi(y) = 3$, then $\phi(w) = 4$ and $\phi(v) = 3$, otherwise $\phi(w) = 3$ and $\phi(v) = 4$.

Lemma 2.4 G does not contain a 3-vertex u such that u is the end vertex of two 2-threads.

Proof. If $\Delta(G) \geq 4$, then the lemma holds by Lemma 2.2. So we assume that $\Delta(G) = 3$.

Suppose on the contrary that u is a 3-vertex adjacent to two 2-threads, named ux_2x_1x and uz_2z_1z , respectively. Let y_2 be the other neighbor of u. By the choice of G, $G-x_1x_2$ admits an acyclic total coloring ϕ using at most 4 colors. We erase the colors of x_1 and x_2 . Without loss of generality, assume that $\phi(x)=3$ and $\phi(xx_1)=4$. It is not difficult to verify that ϕ can be extended from $G-x_1x_2$ to the whole graph G except $\phi(u)=4$ and $\phi(ux_2)=3$.

Hence, we assume that $\phi(u) = 4$ and $\phi(ux_2) = 3$. In all the cases we want to recolor some vertices to get the case $\phi(u) \neq 4$ or $\phi(ux_2) \neq 3$. By symmetry,

let $\phi(uz_2) = 1$ and $\phi(uy_2) = 2$. If $\phi(z_2) \neq 3$ and $\phi(y_2) \neq 3$, then we can exchange the colors of u and ux_2 . It is easy to extend ϕ to the whole graph G. Now, we assume that $\phi(z_2) = 3$. We have the following possibilities.

Case 1. $\phi(y_2) = 3$.

Case 1.1 First, we assume that $\phi(z_2z_1) = 4$. If $\phi(z_1) = 2$, then we first exchange the colors of z_2 and uz_2 , and next recolor x_2u with 1. Otherwise, if $\phi(z_1) = 1$, we first recolor z_2 with 2. Next, we exchange the colors of z_2u and x_2u .

Case 1.2 If $\phi(z_2z_1)=2$, then we exchange the colors of u and uz_2 .

Case 2. $\phi(y_2) = 1$.

Case 2.1 If $\phi(z_2z_1)=4$, then we recolor y_2 with 3 and reduce this case to Case 1.1.

Case 2.2 Now, suppose $\phi(z_2z_1)=2$. First, assume that $\phi(z_1)=1$. If $\phi(z_1z)=3$, then we recolor z_1z_2 with 4 and reduce this to Case 2.1. Otherwise, if $\phi(z_1z)=4$, then we first exchange the colors of z_2, z_1z_2 , and next recolor u with 3 and ux_2 with 4.

Finally, we assume that $\phi(z_1) = 4$. If $\phi(z_1z) = 1$, then we first exchange the colors z_2, z_1z_2 , and next recolor u with 3 and ux_2 with 4. Otherwise, if $\phi(z_1z) = 3$, then we recolor z_1z_2, z_2, uz_2, uz_2 with 1, 2, 3, 1, respectively.

Hence, ϕ can be extended to the whole graph G, which is impossible.

Lemma 2.5 If $\Delta \geq 4$, then G contains no even cycle $C = v_1 v_2 \cdots v_{2n}$ such that $d(v_1) = d(v_3) = \cdots = d(v_{2n-1}) = 2$ and $n \geq 2$.

Proof. Suppose on the contrary that $C = v_1 v_2 \cdots v_{2n}$ is an even cycle with $d(v_{2i-1}) = 2$ for $1 \le i \le n$. By Lemma 2.2, $d(v_{2i}) = \Delta$, for $1 \le i \le n$. Assume $N(v_{2i}) = \{u_{2i,j} | j = 1, 2, \cdots, \Delta - 2\} \cup \{v_{2i-1}, v_{2i+1}\}$, where the index i is taken module 2n. Since G is $(\Delta + 1)$ -minimal, $G - E(C) - \{v_{2i-1} | 1 \le i \le n\}$ admits an acyclic total $(\Delta + 1)$ -coloring ϕ .

For each $v_{2i-1}v_{2i} \in E(C)$, $L(v_{2i-1}v_{2i}) = S \setminus (F(v_{2i}) \cup \{\phi(v_{2i})\})$, where $i = 1, 2, \dots, n$. We can properly color E(C), since $|L(v_{2i-1}v_{2i})| = 2$ for $1 \le i \le n$, and each even cycle is 2-edge choosable. Let $T(v_{2i}) = F(v_{2i}) \setminus \{\phi(v_{2i-1}v_{2i}), \phi(v_{2i}v_{2i+1})\}$.

Lastly, we color each 2-vertex v_{2i-1} of C for $i=1,2,\cdots,n$, (we assume that $v_0=v_n$) according to the following rules.

(a) If $|F(v_{2i-1}) \cup \{\phi(v_{2i-2}), \phi(v_{2i})\}| \ge 3$, then we color v_{2i-1} with a color $\alpha \in S \setminus (F(v_{2i-1}) \cup \{\phi(v_{2i-2}), \phi(v_{2i})\})$.

- (b) If $|F(v_{2i-1}) \cup \{\phi(v_{2i-2}), \phi(v_{2i})\}| = 2$ and $T(v_{2i-2}) = T(v_{2i})$, then we color v_{2i-1} with a color $\alpha \in S \setminus (T(v_{2i-2}) \cup \{\phi(v_{2i-2}), \phi(v_{2i-2}v_{2i-1})\})$.
- (c) If $|F(v_{2i-1}) \cup \{\phi(v_{2i-2}), \phi(v_{2i})\}| = 2$ and $T(v_{2i-2}) \neq T(v_{2i})$, then we color v_{2i-1} with a color $\alpha \in T(v_{2i-2}) \setminus T(v_{2i})$.

We will show that after coloring each 2-vertex from v_1 to v_{2i-1} in sequence, we can extend ϕ to the whole graph G, which contradicts the choice of G.

First, we claim that the color assigned to each 2-vertex is proper. If we use (a), since $|F(v_{2i-1}) \cup \{\phi(v_{2i-2}), \phi(v_{2i})\}| \le 4$, $|(F(v_{2i-1}) \cup \{\phi(v_{2i-2}), \phi(v_{2i})\})| \le \Delta$, then α is available. If we use (b), since $|(T(v_{2i-2}) \cup \{\phi(v_{2i-2}), \phi(v_{2i-2}v_{2i-1})\})| \le \Delta$ and $\alpha \notin F(v_{2i-1})$, then α is available, too. Otherwise, if we use (c), then we can color v_{2i-1} with some color $\alpha \in T(v_{2i-2}) \setminus T(v_{2i})$.

Now, we show that in the coloring of each 2-vertex v_{2i-1} , $i=1,2,\cdots,n$, there is no cycle for which at most 3 color are used with the exception of C.

Consider a 2-vertex v_{2k-1} of C, where $k=1,2,\cdots,n$. If v_{2k-1} is colored according to (a), then it is easy to check that $|F(v_{2k-1}) \cup \{\phi(v_{2k-1}),\phi(v_{2k-2}),\phi(v_{2k})\}| \in \{4,5\}$, and no 3-colored cycle will go through the segment $v_{2k-2}v_{2k-1}v_{2k}$. If v_{2k-1} is colored according to (b), then $|\{\phi(v_{2k-1})\} \cup F(v_{2k-1})| = 3$. Note that $T(v_{2k-2}) = T(v_{2k})$ and $\phi(v_{2k-1}) \notin T(v_{2k})$, thus at least 4 colors appear on the segment $u_{2k-2,p}v_{2k-2}v_{2k-1}v_{2k}$ $u_{2k,q}$, where $1 \leq p,q \leq \Delta-2$. Hence, no cycle assigned at most 3 color will be established, except C itself. Otherwise, if v_{2k-1} is colored according to (c), then $|\{\phi(v_{2k-1})\} \cup F(v_{2k-1})| = 3$. Note that $T(v_{2k-2}) \neq T(v_{2k})$ and $\phi(v_{2k-1}) \notin T(v_{2k})$, thus at least 4 colors appear on the segment $v_{2k-2}v_{2k-1}v_{2k}u_{2k,q}$, where $1 \leq q \leq \Delta-2$. Hence, no cycle assigned at most 3 color will be established passing through $u_{2k-2,p}v_{2k-2}v_{2k-1}\cdots v_{2l}u_{2l,q}$, where $1 \leq p,q \leq \Delta-2$ and $k \leq l \leq n$, except C itself.

Finally, we show that after completing coloring all 2-vertices of C, if at most 3 colors appear on C, then we can recolor C such that at least 4 colors appear on C and this recoloring will not induce new 3-colored cycles.

Suppose at most 3 colors $\Delta-1,\Delta,\Delta+1$ appear on C. Above discussion shows that all 2-vertices are colored according to (b) and $\{\phi(u_{2i,j})|1\leq j\leq \Delta-2\}=\{1,2,\cdots,\Delta-2\}$, for $1\leq i\leq n$. Hence, $|F(v_{2i-1})|=2$ for $1\leq i\leq n$. We arbitrarily choose a segment $v_{2k-2}v_{2k-1}v_{2k}v_{2k+1}$ of C. Without loss of generality, assume that $\phi(v_{2k-2})=\Delta$, $\phi(v_{2k-2}v_{2k-1})=\Delta-1$, $\phi(v_{2k-1})=\Delta+1$, $\phi(v_{2k-1}v_{2k})=\Delta$, $\phi(v_{2k})=\Delta-1$, $\phi(v_{2k}v_{2k+1})=\Delta+1$, $\phi(v_{2k+1})=\Delta$. Now, we recolor v_{2k-1} and v_{2k+1} with 1, $v_{2k-1}v_{2k}$ with $\Delta+1$ and $v_{2k}v_{2k+1}$ with Δ . It is not difficult to check that at least 4 colors appear on C and no new 3-colored cycles are induced. Hence, we have a contradiction.

Lemma 2.6 If $\Delta \geq 6$, then G contains no 3-vertex v with $N(v) = \{x, y, z\}$ and $d(x) \leq d(y) \leq d(z)$ such that $d(x) + d(y) \leq \Delta$.

Proof. Assume by a contradiction that v is a 3-vertex of G, $N(v) = \{x, y, z\}$ and $d(x) \leq d(y) \leq d(z)$ such that $d(x) + d(y) \leq \Delta$. We consider the worst case that $d(z) = \Delta$. By Lemma 2.2, $d(x) \ge 3$. Since G is $(\Delta + 1)$ -minimal, G-vz admits an acyclic total coloring ϕ using $\Delta+1$ colors. For convenience, assume that $F(z) = \{1, 2, \dots, \Delta - 1\}$ and $\phi(z) = \Delta$. Now, we will extend ϕ from G - vz to the whole graph G to obtain a contradiction. First, we erase the color of v, vx, vy and color vz with $\Delta + 1$. Note that $d(x) + d(y) \leq \Delta$ and $\lfloor \frac{\Delta}{2} \rfloor \geq d(x) \geq 3, \ |(F(x) \cup \{\Delta, \Delta+1, \phi(x)\}| \leq \Delta - 1 \ \text{and} \ |(F(y) \cup \{\Delta, \Delta+1, \phi(x)\}| \leq \Delta - 1$ $|1,\phi(y)| \leq \Delta - 1$. Thus, we can properly color vy and vx in sequence, with colors distinct from Δ , and next properly color v. For convenience, assume that $\phi(vx) = \alpha$, $\phi(vy) = \beta$ and $\phi(v) = \gamma$. Since $|\{\phi(vx), \phi(v), \phi(vz), \phi(z)\}| = 4$ and $|\{\phi(vy),\phi(v),\phi(vz),\phi(z)\}|=4$, no 3-colored cycle will be induced except $\phi(vx) = \phi(y), \ \phi(vy) = \phi(x)$ and $\gamma \in F(x) \cap F(y)$. In this situation, we choose a color $\delta \notin \{\Delta, \Delta + 1, \alpha, \beta, \gamma\} \cup F(x)$ to vx. Since $d(x) \leq \lfloor \frac{\Delta}{2} \rfloor$, $\Delta \geq 6$ and $\gamma \in$ F(x), δ always exists. It is easy to verify that $|\{\phi(x),\phi(xv),\phi(v),\phi(vz),\phi(z)\}| \geq 1$ 4 and $|\{\phi(x), \phi(xv), \phi(v), \phi(vy), \phi(y)\}| \ge 4$, thus no 3-colored cycles will be induced. The obtained coloring of G is an acyclic total $(\Delta + 1)$ -coloring, which is impossible.

Lemma 2.7 If $\Delta \geq 9$, then G contains no 3-vertex v with $N(v) = \{x, y, z\}$ and $d(x) \leq d(y) \leq d(z)$ such that $d(x) + d(y) \leq \Delta + 2$.

Proof. The proof of this lemma is quite similar to that of Lemma 2.6. Assume by a contradiction that v is a 3-vertex of G, $N(v) = \{x,y,z\}$ and $d(x) \leq d(y) \leq d(z)$ such that $d(x) + d(y) \leq \Delta + 2$. We consider the worst case that $d(z) = \Delta$. By Lemma 2.2, $d(x) \geq 3$. Since G is $(\Delta + 1)$ -minimal, G - vz admits an acyclic total coloring ϕ using $\Delta + 1$ colors. For convenience, assume that $F(z) = \{1,2,\cdots,\Delta-1\}$ and $\phi(z) = \Delta$. Now, we will extend ϕ from G - vz to the whole graph G to obtain a contradiction. First, we erase the color of v,vx,vy and color vz with $\Delta + 1$. Note that $d(x) + d(y) \leq \Delta + 2$, $|F(x) \cup \{\Delta, \Delta + 1, \phi(x)\}| \leq \Delta - 1$ and $|F(y) \cup \{\Delta + 1, \phi(y)\}| \leq \Delta$. Thus we can properly color vy and vx in sequence, and next properly color v. For convenience, assume that $\phi(vx) = \alpha$, $\phi(vy) = \beta$ and $\phi(v) = \gamma$. Since $|\{\phi(vx), \phi(v), \phi(vz), \phi(z)\}| = 4$, no 3-colored cycle will be established passing through zvx. Moreover, if $\phi(y) \neq \Delta + 1$, then no 3-colored cycle will be established passing through zvy. If $\phi(y) = \Delta + 1$, then $|F(y) \cup \{\Delta + 1, \phi(y)\}| \leq \Delta - 1$ and $|F(x) \cup \{\Delta, \Delta + 1, \phi(x)\}| \leq \Delta - 1$, and we can

recolor vy and vx with proper colors distinct from Δ in sequence and finally properly recolor v, which is quite similar to the case in Lemma 2.6. Hence, no 3-colored cycle will be induced except $\phi(vx) = \phi(y)$ and $\phi(vy) = \phi(x)$. If $\phi(vx) = \phi(y)$ and $\phi(vy) = \phi(x)$, we choose a color $\delta \notin \{\Delta, \Delta+1, \alpha, \beta, \gamma\} \cup F(x)$ to vx. Since $d(x) \leq \lfloor \frac{\Delta+2}{2} \rfloor$ and $\Delta \geq 9$, δ always exists. It is easy to verify that $|\{\phi(x), \phi(xv), \phi(v), \phi(vz), \phi(z)\}| \geq 4$ and $|\{\phi(x), \phi(xv), \phi(v), \phi(vy), \phi(y)\}| \geq 4$, and no 3-colored cycles will be induced. The obtained coloring of G is an acyclic total $(\Delta+1)$ -coloring, which is impossible.

Lemma 2.8 If $\Delta \geq 9$, then G contains no 4-vertex v with $N(v) = \{v_1, v_2, v_3, v_4\}$ and $d(v_1) \leq d(v_2) \leq d(v_3) \leq d(v_4)$ such that $d(v_1) \leq \Delta - 4$, $d(v_2) \leq \Delta - 3$ and $d(v_3) \leq \Delta - 2$.

Proof. Assume to the contrary that v is such a 4-vertex. By the choice of G, $G - \{vv_1, vv_2, vv_3\}$ admits an acyclic total coloring ϕ using $\Delta + 1$ colors. We consider the worst case that $d(v_4) = \Delta$ and assume that $F(v_4) = \{1, 2, \dots, \Delta\}$, $\phi(vv_4) = \Delta$ and $\phi(v_4) = \Delta + 1$. To extend ϕ to the whole graph G, we first recolor v with $\alpha \in S \setminus \{\Delta, \Delta + 1, \phi(v_1), \phi(v_2), \phi(v_3)\}$. Next, we assign a color $\beta \in S \setminus \{\{\Delta, \phi(v), \phi(v_3)\} \cup F(v_3)\}$ to vv_3 if $\phi(v_3) \neq \Delta$. Otherwise, we assign $\beta \in S \setminus \{\{\Delta, \Delta + 1, \phi(v), \phi(v_3)\} \cup F(v_3)\}$ to vv_3 . Since $d(v_3) \leq \Delta - 2$, β always exists, and it is not difficult to verify that no 3-colored cycles will be induced passing through the segment v_3vv_4 .

Similarly, we color vv_2 with a color $\gamma \in S \setminus (\{\Delta, \phi(v), \phi(vv_3), \phi(v_2)\} \cup F(v_2))$ if $\phi(v_2) \notin \{\Delta, \phi(vv_3)\}$. Otherwise, if $\phi(v_2) = \Delta$, then we choose $\gamma \in S \setminus (\{\Delta, \Delta+1, \phi(v), \phi(vv_3)\} \cup F(v_2))$ and if $\phi(v_2) = \phi(vv_3)$, then we choose $\gamma \in S \setminus (\{\Delta, \phi(v_3), \phi(v), \phi(vv_3)\} \cup F(v_2))$.

Finally, we color vv_1 with a color δ from S with the following rules.

- (1) $\delta \in S \setminus (\{\Delta, \phi(v), \phi(vv_3), \phi(vv_2), \phi(v_1)\} \cup F(v_1))$ if $\phi(v_1) \notin \{\Delta, \phi(vv_3), \phi(vv_2)\}.$
- (2) $\delta \in S \setminus (\{\Delta, \phi(v_i), \phi(v), \phi(vv_3), \phi(vv_2)\} \cup F(v_1))$ if $\phi(v_1) = \phi(vv_i)$, for some $i \in \{2, 3, 4\}$.

The obtained coloring of G is an acyclic total $(\Delta + 1)$ -coloring, a contradiction.

Lemma 2.8 shows that if some 4-vertex v in $(\Delta + 1)$ -minimal graph with $\Delta \geq 9$ is adjacent to a $(\Delta - 4)^-$ -vertex, then v is adjacent to at least two $(\Delta - 2)^+$ -vertices.

Lemma 2.9 If $\Delta \geq 9$, then G contains no 5-vertex v adjacent to exactly five 3-vertices.

Proof. Let $N(v) = \{v_1, v_2, \cdots, v_5\}$. Suppose on the contrary that $d(v_i) = 3$, for all $1 \le i \le 5$. By the choice of G, $G - vv_1$ admits an acyclic total coloring ϕ using $\Delta + 1$ colors. We first recolor v with a color $\alpha \notin F(v) \cup \{\phi(v_i) | 1 \le i \le 5\}$. We will show that by a proper adjustment, the obtained coloring is also an acyclic total coloring of $G - vv_1$. If no 3-colored cycle is established, then we are done. Otherwise, suppose a 3-colored cycle is induced passing through v_5vv_4 . It follows that $\phi(v_5) = \phi(vv_4)$ and $\phi(v_4) = \phi(vv_5)$. We can recolor v with $\beta \notin F(v) \cup \{\phi(v_i) | 1 \le i \le 5\} \cup F(v_5)$, since $|F(v) \cup \{\phi(v_i) | 1 \le i \le 5\} \cup F(v_5)| \le \Delta$. Therefore, no 3-colored cycle will be established unless $\phi(v_2) = \phi(vv_3)$, $\phi(v_3) = \phi(vv_2)$ and $\phi(v) \in F(v_2) \cap F(v_3)$. In this situation, we recolor v with a color $\gamma \notin F(v) \cup \{\phi(v_i) | 1 \le i \le 5\} \cup F(v_5) \cup F(v_5)$.

Now, we extend the obtained acyclic total coloring of $G-vv_1$ to the whole graph. If $\phi(v_1) \notin F(v)$, we properly color vv_1 . This is possible since at most eight colors are forbidden and $\Delta \geq 9$. The obtained coloring is an acyclic total coloring of G. Otherwise, Without loss of generality, assume that $\phi(v_1) = \phi(vv_2)$. We choose a color $\eta \notin F(v) \cup F(v_1) \cup \{\phi(v_1), \phi(v_2), \phi(v)\}$ to vv_1 . The obtained coloring of G is an acyclic total coloring, a contradiction.

3 Main results

Theorem 3.1 Let G be a plane graph with maximum degree Δ and girth g(G), then $\chi_a''(G) = \Delta + 1$ if one of the followings holds:

- (1) $\Delta \geq 9$ and $g(G) \geq 4$;
- (2) $\Delta \geq 6$ and $g(G) \geq 5$;
- (3) $\Delta \geq 4$ and $g(G) \geq 6$;
- (4) $\Delta \geq 3$ and $g(G) \geq 14$.

Proof. Since it is trivial that $\chi_a''(G) \ge \Delta + 1$ for all graphs, we only prove that $\chi_a''(G) \le \Delta + 1$. Assume by a contradiction that $\chi_a''(G) > \Delta + 1$. Let G be a $(\Delta + 1)$ -minimal plane graph with maximum degree $\Delta \ge 3$. By Lemma 2.1, $\delta(G) \ge 2$.

If $\Delta \geq 4$, then let G_2 be the subgraph induced by the edges incident with 2-vertices of G. By Lemma 2.2 and Lemma 2.5, each 2-vertex is adjacent to Δ -vertices and we have no even cycle $G_2 \supseteq C = v_1v_2\cdots v_{2n}$ such that $d(v_1) = d(v_3) = \cdots = d(v_{2n-1}) = 2$. Thus G_2 is a forest. Hence, one can find a matching M in G saturating all 2-vertices. If $uv \in M$ and d(u) = 2, v is called the 2-master of u. Each 2-vertex has a 2-master and each vertex of degree Δ can be the 2-master of at most one 2-vertex.

Case 1: $\Delta \geq 9$ and $g(G) \geq 4$.

A 3-vertex v with $N(v) = \{x, y, z\}$ and $d(x) \le d(y) \le d(z)$ is called bad if the followings hold: (1): v is not incident with any 5⁺-face; (2): $d(z) = \Delta$; (3): x is a 3-vertex. For a vertex v, we use $n_k(v)$ to denote the number of k-vertices adjacent to v.

In the beginning, we assign a weight w(v) = d(v) - 4 to each vertex v and a weight w(f) = d(f) - 4 to each face f. By applying Euler's formula |V| + |F| - |E| = 2 for plane graphs, we have $\sum_{x \in V(G) \cup F(G)} w(x) = -8$. If we obtain a new weight $w^*(x)$ for all $x \in V \cup F$ by transferring weights from one element to another, then we also have $\sum w^*(x) = -8$. Hence, if $w^*(x) \ge 0$ for all $x \in V(G) \cup F(G)$, then we get a contradiction and Case 1 is proved.

The new weight w^* is obtained by the following discharging rules.

- $(R_{1,1})$ Each 2-vertex receives 2 from its 2-master.
- $(R_{1,2})$ Each Δ -vertex transfers $\frac{1}{2}$ to each adjacent bad 3-vertex, $\frac{3}{8}$ to each adjacent non-bad 3-vertex.
- $(R_{1,3})$ Each vertex v with $6 \le d(v) \le \Delta 1$ transfers $\frac{d(v)-4}{d(v)}$ to each adjacent 3-vertex.
- $(R_{1,4})$ Each vertex v with $d(v) \in \{4,5\}$ transfers $\frac{1}{4}$ to each adjacent 3-vertex.
- $(R_{1,5})$ Each $(\Delta 2)^+$ -vertex v transfers $\frac{1}{4}$ to each adjacent 4-vertex.
- $(R_{1,6})$ Each 5⁺-face f transfers its positive charge to each incident 3-vertex equally.

Since $g(G) \ge 4$, $w^*(f) \ge 0$ for each face. Let v be a k-vertex. We have $k \ge 2$, since G has no 1-vertex.

If k=2, then w(v)=-2. By $(R_{1,1})$, $w^*(v)=-2+2=0$.

If k=3, then w(v)=-1. Assume that $N(v)=\{x,y,z\}$ with $d(x)\leq d(y)\leq d(z)$. By Lemma 2.2, $d(x)\geq 3$. First, assume that d(x)=3, then by Lemma 2.7, $d(z)\geq d(y)\geq 9$. If $d(z)<\Delta$, then by $(R_{1,3}), w^*(v)\geq -1+2\times\frac{5}{9}\geq 0$. Now, assume that $d(z)=\Delta$. If v is incident with a 5⁺-face f, then by Lemma 2.7, f is incident with at most three 3-vertices. By $(R_{1,2}), (R_{1,3})$ and $(R_{1,6}), w^*(v)\geq -1+\frac{3}{8}+\min\{\frac{3}{8},\frac{5}{9}\}+\frac{1}{3}\geq 0$. So we assume that v is incident with three 4-faces. Then v is a bad 3-vertex. By $(R_{1,2})$ and $(R_{1,3}), w^*(v)\geq -1+\frac{1}{2}+\min\{\frac{1}{2},\frac{5}{9}\}=0$. If d(x)=4, then $d(z)\geq d(y)\geq 8$. By $(R_{1,2}), (R_{1,3})$ and $(R_{1,4})$, we have $w^*(v)\geq -1+2\times\min\{\frac{3}{8},\frac{1}{2}\}+\frac{1}{4}\geq 0$. If d(x)=5, then $d(z)\geq d(y)\geq 7$. By

 $(R_{1,2}), (R_{1,3}) \text{ and } (R_{1,4}), w^*(v) \ge -1 + \frac{1}{4} + \min\{\frac{1}{2}, \frac{3}{8}, \frac{3}{7}\} \times 2 \ge 0.$ Otherwise, if $d(x) \ge 6$, then by $(R_{1,2})$ and $(R_{1,3}), w^*(v) \ge -1 + \min\{\frac{1}{2}, \frac{3}{8}, \frac{1}{3}\} \times 3 \ge 0.$

If k=4, then w(v)=0. Note that, by Lemma 2.8, $n_3(v)\leq 2$ and v is adjacent to at least two $(\Delta-2)^+$ -vertices. Then by $(R_{1,4})$ and $(R_{1,5})$, $w^*(v)\geq 2\times \frac{1}{4}-2\times \frac{1}{4}\geq 0$.

If k=5, then w(v)=1. Lemma 2.9 implies that v is adjacent to at most four 3-vertices. Hence, by $(R_{1,4}), w^*(v) \ge 1-4 \times \frac{1}{4} \ge 0$.

If $6 \le k \le \Delta - 1$, then w(v) = k - 4. The facts that $\Delta - 2 \ge 7$, $\frac{k-4}{k} \ge \frac{3}{7}$, for $k \ge 7$, $\max\{\frac{3}{7}, \frac{1}{4}\} = \frac{3}{7}$, and rules $(R_{1,3})$ and $(R_{1,4})$ imply that $w^*(v) \ge k - 4 - k \times \frac{k-4}{k} \ge 0$.

Suppose $k = \Delta \geq 9$. Let $N(v) = \{v_i | i = 1, 2, \dots, \Delta\}$. We first prove the following claims.

Claim 3.1 If v_i, v_{i+1} and v_{i+2} are the three consecutive 3-vertices adjacent to v, then v_{i+1} is not a bad 3-vertex.

Proof. Suppose v_{i+1} is a bad 3-vertex, then v_{i+1} is incident with three 4-faces. Therefore, there exist two vertices x and y such that $x \in N(v_i) \cap N(v_{i+1})$ and $y \in N(v_{i+1}) \cap N(v_{i+2})$. By Lemma 2.7, $d(x) \ge 4$ and $d(y) \ge 4$. A contradiction to the definition of a bad vertex.

Claim 3.2 Let v_i, v_{i+1} and v_{i+2} are the three consecutive vertices adjacent to v. If $2 \le d(v_i) \le 3$, $d(v_{i+1}) = 3$ and v_{i+1} is a bad 3-vertex, then $d(v_{i+2}) = \Delta$.

Proof. Suppose v_{i+1} is a bad 3-vertex, then v_{i+1} is incident with three 4-faces. Therefore, there exist two vertices x and y such that $x \in N(v_i) \cap N(v_{i+1})$ and $y \in N(v_{i+1}) \cap N(v_{i+2})$. If $d(v_i) = 2$, then by Lemma 2.2, $d(x) = \Delta$. We have d(y) = 3. By Lemma 2.7 and the definition of bad 3-vertex, $d(v_{i+2}) = \Delta$. Otherwise, if $d(v_i) = 3$, then by Lemma 2.7, $d(x) \geq 4$. We have d(y) = 3. Hence, by Lemma 2.7, it follows that $d(v_{i+2}) = \Delta$.

Now, let us check the final charge of v. If v is not a master of some 2-vertex, then $w^*(v) \ge \Delta - 4 - \Delta \times \frac{1}{2} \ge 0$ by $(R_{1,2})$. So we assume that v is a master. We have the following cases.

First, we assume that $n_3(v) \leq \Delta - 4$. Here, we can only use rules $(R_{1,1})$, $(R_{1,2})$ and $(R_{1,5})$. Since $\frac{1}{4} \leq \frac{3}{8} \leq \frac{1}{2}$, the worst case is when $n_3(v) = \Delta - 4$ and $n_4(v) = 3$. If $\Delta \geq 10$, then $w^*(v) \geq \Delta - 4 - 2 - (\Delta - 4) \times \frac{1}{2} - 3 \times \frac{1}{4} \geq 0$. Hence, we assume that $\Delta = 9$. If v is adjacent to at least one 5+-vertex, then $w^*(v) \geq 9 - 4 - 2 - 5 \times \frac{1}{2} - 2 \times \frac{1}{4} \geq 0$. Otherwise, there exist four consecutive neighbors of v, named v_i , v_j , v_k and v_l , such that $d(v_j) = d(v_k) = 3$

and $\{d(v_i), d(v_l)\} \subseteq \{2, 3, 4\}$. By our claims, at least two 3-vertices adjacent to v are not bad 3-vertices. We have $w^*(v) \ge 9 - 4 - 2 - 3 \times \frac{1}{2} - 3 \times \frac{1}{4} - 2 \times \frac{3}{8} \ge 0$.

Let $n_3(v) = \Delta - 3$. Let v_k and v_l be the other two neighbors of v. If $d(v_k) \geq 5$ and $d(v_l) \geq 5$, then $w^*(v) \geq \Delta - 4 - 2 - (\Delta - 3) \times \frac{1}{2} \geq 0$. Otherwise, v is adjacent to at most two bad 3-vertices, $w^*(v) \geq \Delta - 4 - 2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{4} - (\Delta - 5) \times \frac{3}{8} \geq 0$.

Now, we assume that $n_3(v) = \Delta - 2$. Let v_k be the other adjacent vertex of v, $d(v_k) = 2$ or $d(v_k) \ge 4$. If $d(v_k) \ge 5$, then at most v_{k-1} and v_{k+1} may be bad 3-vertices, we have $w^*(v) \ge \Delta - 4 - 2 - (\Delta - 4) \times \frac{3}{8} - 2 \times \frac{1}{2} \ge 0$. Otherwise, $w^*(v) \ge \Delta - 4 - 2 - (\Delta - 2) \times \frac{3}{8} - \frac{1}{4} \ge 0$.

Finally, we assume that $n_3(v) = \Delta - 1$. By Claim 3.1 and Claim 3.2, v is not adjacent to any bad 3-vertices. Hence, $w^*(v) \ge \Delta - 4 - 2 - (\Delta - 1) \times \frac{3}{8} \ge 0$.

Observe that for any vertex v, $w^*(v) \ge 0$, $0 \le \sum_{x \in V \cup F} w(x) = -8$. This contradiction completes the proof of this case.

Case 2: $\Delta \geq 6$ and $g(G) \geq 5$.

In the beginning, we assign a weight w(v) = 3d(v) - 10 to each vertex v and a weight w(f) = 2d(f) - 10 to each face f. By applying Euler's formula |V| + |F| - |E| = 2 for plane graphs, we have $\sum_{x \in V(G) \cup F(G)} w(x) = -20$. If we obtain a new weight $w^*(x)$ for all $x \in V \cup F$ by transferring weights from one element to another, then we also have $\sum w^*(x) = -20$. Hence, if $w^*(x) \ge 0$ for all $x \in V(G) \cup F(G)$, then we get a contradiction and this case is proved.

The new weight w^* is obtained by the following discharging rules.

- $(R_{2,1})$ Each 2-vertex receives 4 from its 2-master.
- $(R_{2,2})$ Each 3-vertex receives $\frac{1}{2}$ from each adjacent 4⁺-vertices.

Since $g(G) \ge 5$, $w^*(f) \ge 0$ for each face. Let v be a k-vertex. We have $k \ge 2$, since G has no 1-vertex.

If k = 2, then w(v) = -4. By $(R_{2,1})$, $w^*(v) = -4 + 4 = 0$.

If k=3, then w(v)=-1. Assume that $N(v)=\{x,y,z\}$ with $d(x)\leq d(y)\leq d(z)$. By Lemma 2.2, $d(x)\geq 3$. If d(x)=3, then by Lemma 2.6, $d(z)\geq d(y)\geq \Delta-2\geq 4$. By $(R_{2,2}), \ w^*(v)=-1+2\times \frac{1}{2}\geq 0$. If $d(x)\geq 4$, then $w^*(v)\geq -1+3\times \frac{1}{2}\geq 0$ by $(R_{2,2})$.

If $4 \le k \le \Delta - 1$, then by $(R_{2,2})$, $w^*(v) \ge 3k - 10 - \frac{1}{2}k \ge 0$.

Suppose $k = \Delta \ge 6$. Then, by $(R_{2,1})$ and $(R_{2,2})$, $w^*(v) \ge 3k - 10 - 4 - \frac{1}{2}(k-1) \ge 0$.

Observe that for any vertex $v, w^*(v) \ge 0, 0 \le \sum_{x \in V \cup F} w(x) = -20$. This contradiction completes the proof of this case.

Case 3: $\Delta \geq 4$ and $g(G) \geq 6$.

In the beginning, we assign a weight w(v) = 2d(v) - 6 to each vertex v and a weight w(f) = d(f) - 6 to each face f. By applying Euler's formula |V| + |F| - |E| = 2 for plane graphs, we have $\sum_{x \in V(G) \cup F(G)} w(x) = -12$. If we obtain a new weight $w^*(x)$ for all $x \in V \cup F$ by transferring weights from one element to another, then we also have $\sum w^*(x) = -12$. Hence, if $w^*(x) \ge 0$ for all $x \in V(G) \cup F(G)$, then we get a contradiction and this case is proved.

The new weight w^* is obtained by the following discharging rule.

 $(R_{3,1})$ Each 2-vertex receives 2 from its 2-master.

Since $g(G) \ge 6$, $w^*(f) \ge 0$ for each face. Let v be a k-vertex. We have $k \ge 2$, since G has no 1-vertex.

If k=2, then w(v)=-2. By $(R_{3,1})$, $w^*(v)=-2+2=0$.

If $3 \le k \le \Delta - 1$, then $w^*(v) = w(v) \ge 0$.

Suppose $k = \Delta \ge 4$. By $(R_{3,1}), w^*(v) \ge w(v) - 2 \ge 0$.

Observe that for any vertex $v, w^*(v) \ge 0$, $0 \le \sum_{x \in V \cup F} w(x) = -12$. This contradiction completes the proof of this case.

Case 4: $\Delta \geq 3$ and $g(G) \geq 14$.

If $\Delta \geq 4$, then this case is solved. Hence, we assume that $\Delta = 3$.

In the beginning, we assign a weight w(v) = 6d(v) - 14 to each vertex v and a weight w(f) = d(f) - 14 to each face f. By applying Euler's formula |V| + |F| - |E| = 2 for plane graphs, we have $\sum_{x \in V(G) \cup F(G)} w(x) = -28$. If we obtain a new weight $w^*(x)$ for all $x \in V \cup F$ by transferring weights from one element to another, then we also have $\sum w^*(x) = -28$. Hence, if $w^*(x) \ge 0$ for all $x \in V(G) \cup F(G)$, then we get a contradiction and this case is proved.

The new weight w^* is obtained by the following discharging rule.

 $(R_{4,1})$ Let v be a 2-vertex. If v is adjacent to exactly one 3-vertex, then v receives 2 from the adjacent 3-vertex. Otherwise, if v is adjacent to two 3-vertices, then v receives 1 from each adjacent 3-vertex.

Since $g(G) \ge 14$, $w^*(f) \ge 0$ for each face. Let v be a k-vertex. We have $k \ge 2$, since G has no 1-vertex.

If k=2, then w(v)=-2. Lemma 2.3 implies that v is adjacent to at least one 3-vertex. Then by $(R_{4,1})$ we have $w^*(v)=-2+2=0$.

If k = 3, then by Lemma 2.4 and $(R_{4,1})$, $w^*(v) \ge 4 - 2 - 2 \times 1 \ge 0$. Observe that for any vertex v, $w^*(v) \ge 0$, $0 \le \sum_{x \in V \cup F} w(x) = -28$. This

Observe that for any vertex $v, w^*(v) \ge 0, 0 \le \sum_{x \in V \cup F} w(x) = -28$. This contradiction completes the proof of this case.

Acknowledgements: The author acknowledges the valuable comments and suggestions of the referees.

References

- N. Alon, B. Sudakov, A. Zaks, Acyclic edge colorings of graphs, J. Graph Theory 37 (2001) 157-167.
- [2] M. Behzad, Graphs and their chromatic number, Doctoral Thesis, Michigan State University, 1965.
- [3] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, New York: Macmillan Ltd. Press, 1976.
- [4] O. V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979) 211-236.
- [5] O. V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180–185.
- [6] O. V. Borodin, A.V. Kostochka, D.R. Woodall, Total colourings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53-59.
- [7] M. Borowiecki, A. Fiedorowicz, Acyclic edge colouring of planar graphs without short cycles, Discrete Math. 310 (2010) 1445-1455.
- [8] I. Fiamcik, The acyclic chromatic class of a graph, Math. Slovaca 28 (1978) 139–145.
- [9] A. Fiedorowicz, M. Haluszczak, N. Narayanan, About acyclic edge colourings of planar graphs, Inform. Process. Lett. 108 (2008) 412-417.
- [10] B. Grünbaum, Acyclic colorings of planar graphs, Israel J. Math. 14 (1973) 390-408.
- [11] J. Hou, J. Wu, G. Liu, B. Liu, Acyclic edge colorings of planar graphs and seriesparallel graphs, Science in China Series A: Mathematics 51 (2009) 605-616.
- [12] J. Hou, Y. Zhu, G. Liu, J. Wu, M. Lan, Total colorings of planar graphs without small cycles, Graphs Combin. 24 (2008) 91-100.

- [13] M. Molloy, B. A. Reed, Further algorithmic aspects of the local lemma, in: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998) 524-529.
- [14] R. Muthu, N. Narayanan, C. R. Subramanian, Improved bounds on acyclic edge coloring, Discrete Math. 307 (2007) 3063-3069.
- [15] D. P. Sanders, Y. Zhao, On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67-73.
- [16] X. Y. Sun, J. L. Wu, Acyclic total colorings of planar graphs. Submitted.
- [17] X. Y. Sun, J. L. Wu, Acyclic total colorings of planar graphs without l cycles, Acta Mathematica Sinica, English Series 27 (2011) 1315-1322.
- [18] W. Wang, Total chromatic number of planar graphs with maximum degree ten, J. Graph Theory 54 (2007) 91–102.
- [19] V. G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117-134 (in Russian).