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Abstract

An acyclic total coloring is a proper total coloring of a graph G such
that there are at least 4 colors on vertices and edges incident with a
cycle of G. The acyclic total chromatic number of G, x4 (G), is the least
number of colors in an acyclic total coloring of G. In this paper, we prove
that for every plane graph G with maximum degree A and girth g(G),
XH(G)=A+1if (1) A >9and g(G) = 4; (2) A > 6 and g(G) > 5; (3)
A >4 and g(G) > 6; (4) A > 3 and g(G) > 14.

Keywords: total coloring, plane graph, acyclic coloring, acyclic total
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1 Introduction

Graphs considered in this note are finite, simple and undirected. Unless stated
otherwise, we follow the notations and terminology in [3].

For a plane graph G, we denote its vertex set, edge set, face set, minimum
degree and maximum degree by V(G), E(G), F(G), 6(G) and A(G), respec-
tively. For a vertex v, dg(v) and Ng(v) denote its degree and the set of its
neighbors in G, respectively. We use g(G) to denote the girth of G, i.e. the
length of the shortest cycle of G.

We use b(f) to denote the boundary walk of a face f and write f =
[v1vavs - - - wp) if vy, v2,vs, - -+, v, are the vertices of b(f) in a cyclic order. The
degree, d(f), of a face f is the number of edges in its boundary walk b(f), where
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cut edges are counted twice. A k (k™ or kt)-vertez is a vertex of degree (at
most or at least) k. A k (k= or k*)-face is defined similarly.

A proper vertex k-coloring of G is a mapping ¢ from V(G) to a set of size
k such that ¢(x) # #(y) for any adjacent vertices z and y. A graph is vertex
k-colorable if it has a proper vertex k-coloring.

A proper vertex coloring of a graph G is called acyclic if there is no 2-colored
cycle in G. The acyclic vertex chromatic number x,(G) is the smallest integer
k such that G has an acyclic vertex k-coloring. Griinbaum [10] proved that
every planar graph has an acyclic 9-coloring and conjectured that all planar
graphs have acyclic 5-colorings. Borodin [4] finally proved the conjecture.

A mapping C : E(G) — {1,2,...,k} is called an acyclic edge k-coloring of
a graph G provided that any two adjacent edges receive different colors and
there are no bichromatic cycles in G under the coloring C. In other words,
for every pair of distinct colors 7 and j, the subgraph of G induced by all the
edges which have either color ¢ or j is acyclic. The smallest number & of colors
such that G has an acyclic edge k-coloring is called the acyclic chromatic index
of G and denoted by x,(G). It is certain that x,,(G) > A(G). The concept
of acyclic edge coloring was first introduced by Fiamcik in [8]. In [1], Alon et
al. proved that x,,(G) < 64A(G). In 2001, Alon et al. [1] conjectured that
A(G) £ x,(G) < A(G) + 2 for any graph G and proved that the conjecture
holds for almost all regular graphs. The conjecture is still open, even for planar
graphs. For more information, interested readers are referred to [7}, (9], [11],
[14].

A proper total k-coloring of a graph G is a coloring of V(G) U E(G) using
k colors such that no two adjacent or incident elements receive the same color.
The total chromatic number x"(G) is the smallest integer k such that G has
a total k-coloring. Behzad [2] and Vizing [19] independently conjectured that
A(G)+1 £ x"(G) < A(G) + 2. For a plane graph G, the conjecture is proved
to be true except A(G) = 6. Interested readers may see [5), [6], [12], [15], [18]
for more information.

An acyclic total k-coloring is a proper total k-coloring of a graph G such
that there are at least 4 colors on vertices and edges incident with a cycle of
G. The acyclic total chromatic number of G, x%(G), is the smallest integer
k such that G has an acyclic total k-coloring. The acyclic total coloring was
introduced by Sun and Wu [16]. They conjectured that A(G) + 1 < x/(G) <
A(G) + 2. In the same paper, they proved that the acyclic total chromatic
number of a planar graph G is at most A(G) + 2 if A(G) > 12, or A(G) > 6
and g(G) > 4, or A(G) > 5 and g(G) 2 5, or g(G) = 6. Furthermore, they
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proved that x7(G) = A(G) + 1 if G is a series-parallel graph with A(G) > 3.
In [17), it is proved that the acyclic total chromatic number of & planar graph
G of maximum degree at least k and without ! cycles is at most A(G) + 2 if
(k, ) € {(6,3),(7,4),(6,5),(7,6)}.

It is obvious that x?(G) > A(G) + 1. In this paper, we mainly investigate
the sufficient conditions for plane graphs to attain the lower bound. In fact, we
prove that for every plane graph G with maximum degree A and girth g(G),
XN(G)=A+1if(1) A>9and g(G) >24;(2) A>6and g(G)>5;(3) A =>4
and g(G) > 6; (4) A > 3 and g(G) > 14.

2 Structure of (A + 1)-minimal graphs

A graph G is called k-minimal if G is not acyclic total k-colorable, but any
proper subgraph of G does.

Note that if a graph G has maximum degree at most 2 and contains cycles,
then G does not admit any acyclic total coloring using exactly A + 1 colors.
Hence, in this section, we always assume that G is a (A + 1)-minimal graph
with A > 3.

For convenience, we introduce the following terminology. Let ¢ be an acyclic
total (A + 1)-coloring of G. For each z € V(G), we use F(z) to denote the set
of the colors assigned to the edges incident with z. A k-thread is a graph which
we obtain from a path on k vertices, ¥ > 2, by adding at least two 1-vertices
to each of the end vertices of the path. The 3*-vertices of the k-thread we call
the end vertices of the k-thread. Let S = {1,2,---,A + 1} be the color set.

Lemma 2.1 G contains no 1-vertez.
Proof. It follows from (A + 1)-minimality of G.
Lemma 2.2 G contains no 2-vertex adjacent to (A — 1)~ -vertices if A > 4.

Proof. Suppose on the contrary that v is a 2-vertex of G adjacent toa (A-1)"-
vertex u. We consider the worst possibility. Let w be the other neighbor of v
and d(w) = A. Since G is (A + 1)-minimal, G — vw admits an acyclic total
(A + 1)-coloring ¢. Without loss of generality, assume that ¢(w) = A and
F(w) ={1,2,---,A — 1}. We will extend ¢ to the whole graph G. First, we
erase the colors of v, uv and color vw with A+1. Sinced(u) < A-1and A > 4,
we can properly color uv and v in sequence. If ¢(uv) # A or ¢(u) # A+1, then
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we obtain an acyclic total coloring of G, since |{$(v), p(w), $(vw), d(uv)}| =4
or |[{o(v), d(w), d(vw), d(u)}| = 4. If d(uv) = A and ¢(u) = A + 1, then we
check the color of v. Note that d(u) < A — 1 and |S\(F(u) U {¢(u)})| > 1.
Hence, if ¢(v) € S\(F(u) U {#(u)}), then it is not difficult to verify that ¢
is an acyclic total coloring of G. Otherwise, we recolor v with some color
a € S\(F(u)U{o(u)}). Thus, we obtain a contradiction to (A + 1)-minimality
of G

Lemma 2.3 G contains no 3-thread.

Proof. If A(G) > 4, then the lemma holds by-Lemma 2.2. So we assume that
A(G) =3.

Suppose on the contrary that zuvwy is a 3-thread with d(u) = d(v) =
d(w) = 2. By the choice of G, G ~ v admits an acyclic total coloring ¢ using
at most 4 colors. For convenience, assume that ¢(z) = 3 and ¢(zu) = 4. We
erase the colors of v and w. We will show that we can extend ¢ to the whole
graph G, which is a contradiction to the choice of G. We have the following
cases.

Case 1. ¢(wy) € {3,4}. If #(wy) = 4, then we can color u,uv,v and vw
with 2, 1, 4 and 3, respectively. If ¢(wy) = 3, then we can color u, uv, v and
vw with 2, 1, 3 and 4, respectively. Moreover in both cases, if ¢(y) = 1, then
¢(w) = 2, otherwise ¢(w) = 1.

Case 2. ¢(wy) € {1,2}. If ¢(wy) = 1, then we can color u, uv and vw with
2, 1 and 2, respectively. If ¢(wy) = 2, then we can color u,uv and vw with 1,
2 and 1, respectively. Moreover in both cases, if ¢(y) = 3, then ¢(w) = 4 and
&(v) = 3, otherwise ¢(w) = 3 and ¢(v) = 4.

Lemma 2.4 G does not contain a 3-verter u such that u is the end vertez of
two 2-threads.

Proof. If A(G) > 4, then the lemma holds by Lemma 2.2. So we assume that
A(G) =3.

Suppose on the contrary that u is a 3-vertex adjacent to two 2-threads,
named uzx;T and uz;2; 2, respectively. Let y2 be the other neighbor of u. By
the choice of G, G — 122 admits an acyclic total coloring ¢ using at most 4
colors. We erase the colors of z; and z,. Without loss of generality, assume that
#(z) = 3 and ¢(zz,) = 4. It is not difficult to verify that ¢ can be extended
from G — z;z3 to the whole graph G except ¢(u) = 4 and ¢(uzz) = 3.

Hence, we assume that ¢(u) = 4 and ¢(uz;) = 3. In all the cases we want
to recolor some vertices to get the case ¢(u) # 4 or ¢(uzxz) # 3. By symmetry,
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let ¢(uz2) = 1 and @{uya) = 2. If ¢(22) # 3 and ¢(y2) # 3, then we can
exchange the colors of u and uz,. It is easy to extend ¢ to the whole graph G.
Now, we assume that ¢(zz) = 3. We have the following possibilities.

Case 1. ¢(y2) =3.

Case 1.1 First, we assume that ¢(z221) = 4. If ¢(2;1) = 2, then we first
exchange the colors of 23 and uzs, and next recolor zou with 1. Otherwise, if
&¢(z1) = 1, we first recolor z; with 2. Next, we exchange the colors of 2pu and
ToU.

Case 1.2 If ¢(2221) = 2, then we exchange the colors of » and uzs.

Case 2. ¢(y2) = 1.

Case 2.1 If ¢(222) = 4, then we recolor y; with 3 and reduce this case to
Case 1.1.

Case 2.2 Now, suppose ¢(z2z1) = 2. First, assume that ¢(z;) = 1. If
&(212) = 3, then we recolor z; z3 with 4 and reduce this to Case 2.1. Otherwise,
if ¢(z;2) = 4, then we first exchange the colors of zs, 222, and next recolor u
with 3 and uz, with 4.

Finally, we assume that ¢(z;) = 4. If ¢(212) = 1, then we first exchange
the colors z3, 2122, and next recolor u with 3 and uz, with 4. Otherwise, if
@(z1z) = 3, then we recolor z)zg, z2, uze, uzz with 1, 2, 3, 1, respectively.

Hence, ¢ can be extended to the whole graph G, which is impossible.

Lemma 2.5 If A > 4, then G contains no even cycle C = vivg - - vg, such
that d(v)) = d(v3) = - =d(van-1) =2 and n > 2.

Proof. Suppose on the contrary that C = vvy-- - ve, is an even cycle with
d(vgi—1) =2 for 1 € i < n. By Lemma 2.2, d(vy;) = A, for 1 <7 < n. Assume
N(vg) = {u2ijli = 1,2, -+, A — 2} U{va2i—1, v9:41}, Where the index 7 is taken
module 2n. Since G is (A + 1)-minimal, G — E(C) — {v;_1|1 < i < n} admits
an acyclic total (A + 1)-coloring ¢.

For each vg;_jve; € E(C), L(vgi~1v2:) = S\(F(v2;) U {@(vai)}), where ¢ =
1,2,---,n. We can properly color E(C), since |L(vai—1v2:)| =2 for 1 < i < n,
and each even cycle is 2-edge choosable. Let T(vy;) = F(ve:)\{#(v2i-1v2:),
A(v2ivaig1)}-

Lastly, we color each 2-vertex vg;—; of C fori = 1,2, .- -, n, (we assume that
vp = vy ) according to the following rules.

(a) If |[F(vgi-1) U {¢(v2i-2), #(v2:)} = 3, then we color vy;_; with a color
a€ S\(F(’vzi_l) U {4’(‘”21’—2)» ‘35(”2:)})
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(b) If |F(vzi_1) v {¢(‘U2.‘_2),¢(‘02,‘)}| = 2 and T(‘Uzi_z) = T(‘vz.'), then we
color vg;_3 with a color a € S\(T'(vai—2) U {(ﬁ(‘vg.'_z), ¢(v2,~_2v2,-_1)}).

(¢) If |F(vai-1) U {p(v2i-2),d(v2:)}| = 2 and T(vai-2) # T(vai), then we
color vg;_1 with a color a € T(ve;—2)\T'(ve;).

We will show that after coloring each 2-vertex from v; to v, in sequence,
we can extend ¢ to the whole graph G, which contradicts the choice of G.

First, we claim that the color assigned to each 2-vertex is proper. If we use
(a), since | F(vgi—1)U{$(v2i-2), p(vai)} < 4, [(F(v2i-1)U{d(v2i-2), d(v2:i)})| <
A, then a is available. If we use (b), since |(T(vai-2)U{d(v2i-2), #(vai_av2i—1)})}
< A and a ¢ F(v2;—1), then « is available, too. Otherwise, if we use (c), then
we can color vy;—3 with some color o € T'(vg;—2)\T'(vas)-

Now, we show that in the coloring of each 2-vertex vp;—q, i = 1,2,---,n,
there is no cycle for which at most 3 color are used with the exception of C.

Consider a 2-vertex vgx—; of C, where k = 1,2,---,n. If var_1 is colored
according to (a), then it is easy to check that |F(vox—1) U {@(vor—1), d(vak~2),
o(v2k)} | € {4,5}, and no 3-colored cycle will go through the segment vor_ovax_;
vag. If vor—) is colored according to (b), then |{¢(vax—1)}UF(v2k—1)| = 3. Note
that T(vok—2) = T(vax) and ¢(vak—1) € T(ver), thus at least 4 colors appear
on the segment ugx_2 pU2k—2V2k—1V2k Ugk,q, Where 1 < p,g < A — 2. Hence, no
cycle assigned at most 3 color will be established, except C itself. Otherwise, if
vk 1 is colored according to (), then |{¢(vox—1)} U F(vak-1)| = 3. Note that
T(vak-2) # T(var) and ¢(vag—1) ¢ T(vak), thus at least 4 colors appear on the
segment vzk—oU2k—1V2kU2k,q, Where 1 < ¢ < A — 2. Hence, no cycle assigned at
most 3 color will be established passing through k-2 pvor—_2v2k—1 - - - Vot q,
where 1 < p,g < A -2 and k <! < n, except C itself.

Finally, we show that after completing coloring all 2-vertices of C, if at
most 3 colors appear on C, then we can recolor C such that at least 4 colors
appear on C and this recoloring will not induce new 3-colored cycles.

Suppose at most 3 colors A —1,A, A + 1 appear on C. Above discussion
shows that all 2-vertices are colored according to (b) and {@(us )|l < j <
A-2}={1,2,---,A -2}, for1 <i<n. Hence, |F(vgi—1)|=2for1 <i<n.
We arbitrarily choose a segment vaog_svok-1v9kvary) of C. Without loss of
generality, assume that ¢(vak-2) = A, d(vak-2v2x-1) = A — 1, d(var—y) =
A+1, ¢(vak-1v2k) = B, (var) = A — 1, p(vakvors1) = A + 1, (vors1) = A.
Now, we recolor va_1 and wvgeqy with 1, vax_1vex with A 4+ 1 and vorvaryy
with A. It is not difficult to check that at least 4 colors appear on C and no
new 3-colored cycles are induced. Hence, we have a contradiction.
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Lemma 2.6 If A > 6, then G contains no 3-vertez v with N(v) = {z,y, z}
and d(z) < d(y) < d(z) such that d(z) + d(y) < A.

Proof. Assume by a contradiction that v is a 3-vertex of G, N(v) = {z,y, z}
and d(z) < d(y) < d(z) such that d(z) + d(y) < A. We consider the worst
case that d(z) = A. By Lemma 2.2, d(z) > 3. Since G is (A + 1)-minimal,
G — vz admits an acyclic total coloring ¢ using A + 1 colors. For convenience,
assume that F(z) = {1,2,---,A — 1} and ¢(z) = A. Now, we will extend ¢
from G — vz to the whole graph G to obtain a contradiction. First, we erase
the color of v, vz, vy and color vz with A + 1. Note that d(z) + d(y) < A and
2] 2 d(z) 2 3, (Fz)U{A,A+1,¢(x)} <A-1and [(Fly)u{A A+
1,é(y)}} € A — 1. Thus, we can properly color vy and vz in sequence, with
colors distinct from A, and next properly color v. For convenience, assume
that ¢(vz) = o, ¢(vy) = B and ¢(v) = 7. Since [{$(vz), $(v), $(v2), ()} = 4
and |{¢(vy), ¢(v), $(vz), #(2)}| = 4, no 3-colored cycle will be induced except
d(vz) = ¢(y), ¢(vy) = ¢(z) and v € F(z) N F(y). In this situation, we choose
a color 6 ¢ {A,A+1,a,8,7} UF(z) to vz. Since d(z) < | 4], A>6andy €
F(z), § always exists. It is easy to verify that |{¢(z), #(zv), #(v), ¢(v2), (z)}] >
4 and |{¢(z), ¢(zv), d(v), d(vy), #(¥)}| 2 4, thus no 3-colored cycles will be in-
duced. The obtained coloring of G is an acyclic total (A + 1)-coloring, which
is impossible.

Lemma 2.7 If A > 9, then G contains no 3-vertez v with N(v) = {=z,y, z}
and d(z) < d{y) < d(z) such that d(z) +d(y) <A+ 2.

Proof. The proof of this lemma is quite similar to that of Lemma 2.6. Assume
by a contradiction that v is a 3-vertex of G, N(v) = {z,y, 2z} and d(z) < d(y) £
d(z) such that d(z) + d(y) < A +2. We consider the worst case that d(z) = A.
By Lemma 2.2, d(z) > 3. Since G is (A +1)-minimal, G — vz admits an acyclic
total coloring ¢ using A + 1 colors. For convenience, assume that F(z) =
{1,2,---,A—-1} and ¢(z) = A. Now, we will extend ¢ from G —vz to the whole
graph G to obtain a contradiction. First, we erase the color of v, vz, vy and color
vz with A +1. Note that d(z)+d(y) < A+2, |[F(z)U{A,A+1,¢(z)} < A-1
and |F(y) U {A + 1,¢(y)}] £ A. Thus we can properly color vy and vz in
sequence, and next properly color v. For convenience, assume that ¢(vz) = a,
¢(vy) = B and ¢(v) = . Since |{$(vz), #(v), #(vz), #(2)}| = 4, no 3-colored
cycle will be established passing through zvz. Moreover, if ¢(y) # A + 1, then
no 3-colored cycle will be established passing through 2vy. If ¢(y) = A+1, then
[F(y)u{A+1,é(y)} < A—1and |F(z)U{A,A+1,é(z)}| < A-1, and we can
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recolor vy and vz with proper colors distinct from A in sequence and finally
properly recolor v, which is quite similar to the case in Lemma 2.6. Hence,
no 3-colored cycle will be induced except ¢(vz) = ¢(y) and ¢(vy) = ¢(z). If
¢(vz) = ¢(y) and ¢(vy) = ¢(x), we choose a color § ¢ {A,A+1,a,B,7}UF(zx)
to vz. Since d(z) < LQ#J and A > 9, 4 always exists. It is easy to verify that
[{¢(z), #(zv), 6(v), $(vz), $(2)}| > 4 and [{¢(z), 6(zv), $(v), (vy), 6(y)}] = 4,
and no 3-colored cycles will be induced. The obtained coloring of G is an
acyclic total (A + 1)-coloring, which is impossible.

Lemma 2.8 If A > 9, then G contains no 4-vertex v with N(v) = {v1, v2, vs,
vs} and d(vy) < d(ve) < d(vs) < d(vg) such that d(v1) < A —4,d(ve) <A -3
and d(va) < A -2.

Proof. Assume to the contrary that v is such a 4-vertex. By the choice of G,
G — {vv1,vvy,vv3} admits an acyclic total coloring ¢ using A + 1 colors. We
consider the worst case that d(v4) = A and assume that F(vq) = {1,2,---,A},
d(vvg) = A and ¢(vy) = A+ 1. To extend ¢ to the whole graph G, we first
recolor v with a € S\{A, A + 1, ¢(v1), $(v2), #(v3)}. Next, we assign a color
B € S\({A, ¢(v), ¢(v3)} U F(v3)) to vug if #(vs) # A. Otherwise, we assign
B € S\({A, A +1,¢(v), #(v3)} U F(vs)) to vvs. Since d(vs) < A — 2, B always
exists, and it is not difficult to verify that no 3-colored cycles will be induced
passing through the segment vzvvy.

Similarly, we color vv; with a color y € S\({A, ¢(v), #(vvs), d(v2) } UF(v3))
if ¢(v2) € {A, #(vus)}. Otherwise, if ¢(vz) = A, then we choose v € S\({A,
A+1,9(v), (vvz) }U F(ve)) and if ¢(vz) = ¢(vvs), then we choose v € S\({A,
#(v3), $(v), $(vvs)} U F(vz)).

Finally, we color vv; with a color § from S with the following rules.

D 9 € S\, 00, 8ovs), o), 6u0)} O Flun) I () ¢ {6 8ove)

y@lVV2) .

(2) 6 € S\({A, $(u:), $(v), $lvvs), d(vv2)} U F(v1)) if $(v1) = (vwy), for
some i € {2,3,4}.

The obtained coloring of G is an acyclic total (A + 1)-coloring, a contradic-
tion.

Lemma 2.8 shows that if some 4-vertex v in (A + 1)-minimal graph with
A > 9 is adjacent to a (A — 4)~-vertex, then v is adjacent to at least two
(A - 2)*-vertices.

Lemma 2.9 If A > 9, then G contains no 5-vertez v adjacent to exactly five
3-vertices.
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Proof. Let N(v) = {v1,v2,-,vs}. Suppose on the contrary that d(v;) = 3,
for all 1 < i < 5. By the choice of G, G —vv; admits an acyclic total coloring ¢
using A +1 colors. We first recolor v with a color a ¢ F(v)U{¢(v;)|1 < i < 5}.
We will show that by a proper adjustment, the obtained coloring is also an
acyclic total coloring of G — vv;. If no 3-colored cycle is established, then
we are done. Otherwise, suppose a 3-colored cycle is induced passing through
vsvvg. It follows that ¢(vs) = ¢(vvs) and ¢(vs) = ¢(vvs). We can recolor
v with 8 ¢ F(v) U {¢(v:)]1 < i < 5} U F(vs), since |[F(v) U {p(»)|1 < i <
5} U F(vs)] < A. Therefore, no 3-colored cycle will be established unless
d(v2) = d(vvs), ¢(vs) = ¢(vve) and ¢(v) € F(v2) N F(v3). In this situation,
we recolor v with a color v ¢ F(v) U {¢(v;)|1 < ¢ < 5}U F(vs) U F(v2).

Now, we extend the obtained acyclic total coloring of G — vv; to the whole
graph. If ¢(v,) ¢ F(v), we properly color vv;. This is possible since at most
eight colors are forbidden and A > 9. The obtained coloring is an acyclic total
coloring of G. Otherwise, Without loss of generality, assume that ¢(v;) =
#(vv2). We choose a color 7 ¢ F(v) U F(v;) U {¢(v1), ¢(v2), #(v)} to vuy. The
obtained coloring of G is an acyclic total coloring, a contradiction.

3 Main results

Theorem 3.1 Let G be a plane graph with mazimum degree A and girth g(G),
then x"!(G) = A + 1 if one of the followings holds:

(1)'A > 9 and 9(G) > 4;

(2) A>6 and g(G) > 5;

(3) A >4 and g(G) 2 6;

(4) A 2 3 and g(G) > 14.

Proof. Since it is trivial that x2(G) > A 41 for all graphs, we only prove
that x”(G) < A + 1. Assume by a contradiction that xJ(G) > A +1. Let G
be a (A + 1)-minimal plane graph with maximum degree A > 3. By Lemma
2.1, 6(G) = 2.

If A > 4, then let G; be the subgraph induced by the edges incident with
2-vertices of G. By Lemma 2.2 and Lemma 2.5, each 2-vertex is adjacent
to A-vertices and we have no even cycle G 2 C = wvvs---vg, such that
d(v1) = d(v3) = - - - = d(v2n-1) = 2. Thus G is a forest. Hence, one can find a
matching M in G saturating all 2-vertices. If uv € M and d(u) = 2, v is called
the 2-master of u. Each 2-vertex has a 2-master and each vertex of degree A
can be the 2-master of at most one 2-vertex.
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Case 1: A > 9 and ¢g(G) > 4.

A 3-vertex v with N(v) = {z,y, z} and d(z) < d(y) < d(2) is called bad if
the followings hold: (1): v is not incident with any 5*-face; (2): d(z) = A; (3):
z is a 3-vertex. For a vertex v, we use ni(v) to denote the number of k-vertices
adjacent to v.

In the beginning, we assign a weight w(v) = d(v) — 4 to each vertex v
and a weight w(f) = d(f) — 4 to each face f. By applying Euler’s formula
[V| + |F| — |E| = 2 for plane graphs, we have L.cv(cyurc)w(z) = —8. If we
obtain a new weight w*(z) for all z € V U F by transferring weights from one
element to another, then we also have )~ w*(z)=-8. Hence, if w*(z) > 0 for
all z € V(G) U F(G), then we get a contradiction and Case 1 is proved.

The new weight w* is obtained by the following discharging rules.

(Ry,1) Each 2-vertex receives 2 from its 2-master.

Ry 2) Each A-vertex transfers % to each adjacent bad 3-vertex, 2 to each ad-
1 2 8
jacent non-bad 3-vertex.

(R1,3) Each vertex v with 6 < d(v) < A — 1 transfers d—(}’();‘r“ to each adjacent
3-vertex.

(R1,4) Each vertex v with d(v) € {4,5} transfers 1 to each adjacent 3-vertex.
(Ra5) Each (A — 2)*-vertex v transfers § to each adjacent 4-vertex.

(Ry1,6) Each 5%-face f transfers its positive charge to each incident 3-vertex
equally.

Since g(G) > 4, w*(f) > 0 for each face. Let v be a k-vertex. We have
k > 2, since G has no 1-vertex.

If k =2, then w(v) = -2. By (Ry,1), w*(v) = -2 +2=0.

Ifk = 3, then w(v) = ~1. Assume that N(v) = {z,y, z} with d(z) < d(y) <
d(z). By Lemma 2.2, d(z) > 3. First, assume that d(z) = 3, then by Lemma
27,d(2) 2 d(y) 2 9. If d(z) < A, then by (Ry,3), w*(v) > —=1+2x § > 0. Now,
assume that d(z) = A. If v is incident with a 5*-face f, then by Lemma 2.7, f
is incident with at most three 3-vertices. By (Ry 2), (R 3) and (R ), w*(v) >
-1+ 2+min{2, 3} +1 > 0. So we assume that v is incident with three 4-faces.
Then v is a bad 3-vertex. By (R;,2) and (R 3), w*(v) > —-1+3+min{},§} =0.
If d(z) = 4, then d(z) > d(y) > 8. By (Ri2), (R1,3) and (R;4), we have
w*(v) > -1+ 2xmin{}, 3} + § > 0. If d(z) = 5, then d(z) > d(y) > 7. By
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(R1,2), (Ry,3) and (Ry4), w*(v) > —1+ 3+min{}, 2,3} x 2 > 0. Otherwise, if
d(z) > 6, then by (Ry2) and (Ry3), w*(v) > —1+min{}, 3,1} x3>0.

If k = 4, then w(v) = 0. Note that, by Lemma 2.8, nz(v) < 2 and v
is adjacent to at least two (A — 2)*-vertices. Then by (Ri4) and (Ris),
w*'(v) >2xi-2x1>0.

If k = 5, then w(v) = 1. Lemma 2.9 implies that v is adjacent to at most
four 3-vertices. Hence, by (R1.4), w'(v) >1-4x 3 >0.

If6 <k<A-1,then w(v) =k —4. The facts that A -2 2> 7, -"—;i > %,
for k > 7, max{3,%} = 2, and rules (R1,3) and (R1,4) imply that w*(v) >
k-4-kx52>0.

Suppose k = A > 9. Let N(v) = {wili = 1,2,---,A}. We first prove the
following claims.

Claim 3.1 If v;,v;41 and v;.2 are the three consecutive J-vertices adjacent to
v, then viy) is not a bad 3-vertez.

Proof. Suppose v;4 is a bad 3-vertex, then v;4, is incident with three 4-faces.
Therefore, there exist two vertices = and y such that = € N(v;) N N(vi41) and
y € N(vi41)NN(vi42). By Lemma 2.7, d(z) > 4 and d(y) > 4. A contradiction
to the definition of a bad vertex.

Claim 3.2 Let v;,viy1 and vito are the three consecutive vertices adjacent to
v. If 2 < d(v;) €8, d(vig1) = 3 and viy1 s a bad 3-vertez, then d(viq2) = A.

Proof. Suppose v;; is a bad 3-vertex, then v, is incident with three 4-faces.
Therefore, there exist two vertices 2 and y such that z € N(v;) N N(v;41) and
¥ € N(vig1) N N(vig2). If d(v;) = 2, then by Lemma 2.2, d(z) = A. We have
d(y) = 3. By Lemma 2.7 and the definition of bad 3-vertex, d(viz2) = A.
Otherwise, if d(v;) = 3, then by Lemma 2.7, d(z) > 4. We have d(y) = 3.
Hence, by Lemma 2.7, it follows that d(vi32) = A.

Now, let us check the final charge of v. If v is not a master of some 2-vertex,
then w*(v) > A -4 - A x } > 0by (R;2). So we assume that v is a master.
We have the following cases.

First, we assume that n3(v) < A — 4. Here, we can only use rules (R;,1),
(Ry,2) and (Ry5). Since 2 < 3 < 1, the worst case is when na(v) = A - 4
and ng(v) =3. f A> 10, thenw*(v) >A—-4-2—-(A-4)x 3 -3x}>0.
Hence, we assume that A = 9. If v is adjacent to at least one 5%-vertex,
then w*(v) > 9~-4-2-5x L —2x % > 0. Otherwise, there exist four
consecutive neighbors of v, named v;, v;, vk and v, such that d(v;) = d(vi) = 3
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and {d(v;),d(w)} C {2,3,4}. By our claims, at least two 3-vertices adjacent to
v are not bad 3-vertices. We have w*(v) 29-4-2-3x1-3x$-2x3>0.

Let n3(v) = A — 3. Let v, and v; be the other two ne1ghbors of v. If

(vk) > 5 and d(v;) > 5, then w*(v) > A-4-2—(A-3)x £ > 0. Otherwise,

v is adjacent to at most two bad 3-vertices, w*(v) > A — 4 2-2x3-2x
i-(a-5) x>0

Now, we assume that nz(v) = A - 2. Let v be the other adjacent vertex
of v, d(vx) = 2 or d(vx) 2 4. If d(vx) 2 5, then at most Ve_1 and Uk4+1 mMay be
bad 3-vertices, we have w*(v) > A-4-2—(A-4)x § —2x 3 > 0. Otherwise,
w)2A-4-2-(A-2)x3-1>0

Finally, we assume that ng(v) = A — 1. By Claim 3.1 and Claim 3.2, v is
not adjacent to any bad 3-vertices. Hence, w*(v) > A-4-2—-(A-1)x3 >0

Observe that for any vertex v, w*(v) 20,0 < 3" .y p w(z) = —8 This
contradiction completes the proof of this case.

Case 2: A > 6 and g(G) > 5.

In the beginning, we assign a weight w(v) = 3d(v) — 10 to each vertex v
and a weight w(f) = 2d(f) — 10 to each face f. By applying Euler’s formula
[V +|F| = |E| = 2 for plane graphs, we have L cv(cyur(cyw(z) = —20. If we
obtain a new weight w*(z) for all z € V U F by transferring weights from one
element to another, then we also have }~ w*(x)=-20. Hence, if w*(z) > 0 for
all z € V(G) U F(G), then we get a contradiction and this case is proved.

The new weight w* is obtained by the following discharging rules.

(R2,1) Each 2-vertex receives 4 from its 2-master.

(Ra,2) Each 3-vertex receives % from each adjacent 4*-vertices.

Since g(G) > 5, w*(f) > 0 for each face. Let v be a k-vertex. We have
k > 2, since G has no 1-vertex.

If k = 2, then w(v) = —4. By (Rp,1), w*(v) = ~4+4=0.

If k = 3, then w(v) = —1. Assume that N(v) = {z,y,2} with d(z) <
d(y) < d(z). By Lemma 2.2, d(z) > 3. If d(z) = 3, then by Lemma 2.6,
d(z) 2 d(y) 2 A-22 4. By (Rpp), w*(v) = =1+2x 3 > 0. If d(z) > 4,
then w*(v) > ~1+3 x § > 0 by (Rp2).

{4 < k< A1, then by (Ryz), w*(v) > 3k — 10— 3k > 0.

Suppose k = A > 6. Then, by (Rz,;) and (Rz3), w*(v) > 3k - 10 — 4 —
ik-1)>0.

Observe that for any vertex v, w*(v) 20,0< Y., ,r w(z) = —20. This
contradiction completes the proof of this case.
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Case 3: A >4 and g(G) > 6.

In the beginning, we assign a weight w(v) = 2d(v) — 6 to each vertex v
and a weight w(f) = d(f) — 6 to each face f. By applying Euler’s formula
[V| +|F| — |E| = 2 for plane graphs, we have Z;cv(gur(gyw(z) = —12. If we
obtain a new weight w*(z) for all z € V U F by transferring weights from one
element to another, then we also have ) w*(z)=-12. Hence, if w*(z) > 0 for
all z € V(G) U F(G), then we get a contradiction and this case is proved.

The new weight w* is obtained by the following discharging rule.

(Ra,1) Each 2-vertex receives 2 from its 2-master.

Since g(G) > 6, w*(f) > 0 for each face. Let v be a k-vertex. We have
k > 2, since G has no 1-vertex.

If k = 2, then w(v) = —-2. By (R3;1), w*(v) =-2+4+2=0.

If3<k<A-1, then w*(v) = w(v) > 0.

Suppose k = A > 4. By (Rs,1), w*(v) 2 w(v) - 2> 0.

Observe that for any vertex v, w*(v) 20,0< 3" vy r w(z) = —12. This
contradiction completes the proof of this case.

Case 4: A > 3 and g(G) > 14.

If A > 4, then this case is solved. Hence, we assume that A = 3.

In the beginning, we assign a weight w(v) = 6d(v) — 14 to each vertex v
and a weight w(f) = d(f) — 14 to each face f. By applying Euler’s formula
[V|+ |F| — |E| = 2 for plane graphs, we have Z;cv(c)ur(cyw(z) = —28. If we
obtain a new weight w*(z) for all z € V U F by transferring weights from one
element to another, then we also have 3 w*(z)=-28. Hence, if w*(z) > 0 for
all z € V(G) U F(G), then we get a contradiction and this case is proved.

The new weight w* is obtained by the following discharging rule.

(R41) Let v be a 2-vertex. If v is adjacent to exactly one 3-vertex, then v
receives 2 from the adjacent 3-vertex. Otherwise, if v is adjacent to two
3-vertices, then v receives 1 from each adjacent 3-vertex.

Since g(G) > 14, w*(f) > O for each face. Let v be a k-vertex. We have
k > 2, since G has no 1-vertex.

If k = 2, then w(v) = —2. Lemma 2.3 implies that v is adjacent to at least
one 3-vertex. Then by (Ry4,;) we have w*(v) =-2+2=0.

If k = 3, then by Lemma 2.4 and (Rq,1), w*(v) >24-2-2x12>0.

Observe that for any vertex v, w*(v) 20,0 < Yy r w(z) = —28. This
contradiction completes the proof of this case.
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