ON THE SEQUENTIAL NUMBER AND SUPER
EDGE-MAGIC DEFICIENCY OF GRAPHS
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ABSTRACT. A graph G is called edge-magic if there exists a bijective
function f : V(G)U E(G) = {1,2,...,|V(G)| + |E(G)|} such that
f () + f(v) + f(uv) is a constant for each uv € E(G). Also, G is
called super edge-magic if f (V(G)) = {1,2,...,lV (G)|}. Moreover,
the super edge-magic deficiency, ps (G), of a graph G is defined to
be the smallest nonnegative integer n with the property that the
graph G U nKj is super edge-magic or +oo if there exists no such
integer n. In this paper, we introduce the notion of the sequential
number, o (G), of a graph G without isolated vertices to be either
the smallest positive integer n for which it is possible to label the
vertices of G with distinct elements from the set {0,1,...,n} in such
a way that each uv € E(G) is labeled f(u) + f(v) and the resulting
edge labels are | E (G)| consecutive integers or 400 if there exists no
such integer n. We prove that o (G) = us (G) + |V (G)| — 1 for any
graph G without isolated vertices, and o (Km,n) = mn for every two
positive integers m and n, which allows us to settle the conjecture
that pus (Km,n) = (m — 1) (n — 1) for every two positive integers m
and n.

1. INTRODUCTION

To formalize this presentation, we introduce some necessary definitions
and refer the reader to Chartrand and Lesniak [1] for all other graph theory
terminology and notation not provided in this paper.

We let V (G) and E (G) denote the sets of vertices and edges of a graph
G, respectively. For the sake of brevity, we will denote [a, b] N Z by simply
writing [a, b], where Z denotes the set of integers.

In 1970, Kotzig and Rosa [11] initiated the study of magic valuations.
These labelings are currently referred to as either edge-magic labelings or
edge-magic total labelings; these terms were coined by Ringel and Lladé [13],
and Wallis [15], respectively. In this paper, we will use the former for the
sake of brevity. A graph G of order p and size g is called edge-magic if
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there exists a bijective function f : V(G) U E(G) — [1,p+ g] such that
f(u) + f(v) + f(uv) is a constant (called the valence) for each uv € E (G).
Such a function is called an edge-magic labeling.

In 1998, Enomoto et al. [2] defined an edge-magic labeling f of a graph G
of order p to be a super edge-magic labeling if f has the additional property
that f(V(G)) = [1,p) (an alternative term exists for this kind of labeling,
namely, strongly edge-magic labeling; see Wallis [15]). Thus, a graph that
admits a super edge-magic labeling is called super edge-magic.

The following lemma from (3] gives us a necessary and sufficient condition
for a graph to be super edge-magic, which is useful in this paper.

Lemma 1. A graph G of order p and size q is super edge-magic if and only
if there exists a bijective function f: V(G) — [1,p] such that the set

S ={f(v) + f(v) luv € E(G)}

consists of q consecutive integers. In such a case, f extends to a super
edge-magic labeling of G with valence k = p+q+ s, where s = min(S) and

S=lk—(p+4q),k—(p+1)].

For every graph G, Kotzig and Rosa [11] proved that there exists an edge-
magic graph H such that H = G U nK, for some nonnegative integer n.
This motivated them to define the edge-magic deficiency, p (G), of a graph
G to be the smallest nonnegative integer n for which the graph G U nK,
is edge-magic. Figueroa-Centeno et al. [5] analogously defined the notion
of the super edge-magic deficiency, us (G), of a graph G to be either the
smallest nonnegative integer n with the property that the graph GUnK] is
super edge-magic or +oo if there exists no such integer n. Thus, the super
edge-magic deficiency of a graph G is a measure of how close G is to being
super edge-magic.

Figueroa-Centeno et al. [5] showed that the super edge-magic deficiency
of the complete bipartite graph satisfies that p, (Kmn) < (m —1) (n—1)
for every two positive integers m and n. They also conjectured that for all
positive integers m and n, ps (Kmn) = (m — 1) (n — 1), which they proved,
with considerable effort, for m = 2. Furthermore, Hegde et al. [10] proved
it to be true for m = 3, 4 and 5. In this paper, we prove this conjecture in
general.

For further knowledge on the super edge magic deficiency of graphs, the
authors suggest that the reader consult the results in [4, 9, 12, 14].

2. THE SEQUENTIAL NUMBER AND SUPER EDGE-MAGIC DEFICIENCY

In this section, we introduce the notion of the sequential number, o (G),
of a graph G of order p without isolated vertices, and prove that o (G) =
ts (G) + p — 1. To do this, we start with some definitions.
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Harmonious graphs were first studied by Graham and Sloane (8]. A
graph G of order p and size ¢ with ¢ > p is harmonious if there exists an
injective function f : V(G) — Z, such that each uv € E(G) is labeled
f(u) + f(v) (mod gq) and the resulting edge labels are distinct. Such a
function is called a harmonious labeling. If G is a tree (so that g =p —1)
exactly two vertices are labeled the same; otherwise, the definition is the
same.

The notion of sequential graphs was introduced by Grace [6] who was
inspired by the above definition of harmonious graphs. He defined a graph
G of size q to be sequential if there exists an injective function f : V (G) —
[0,q — 1] (with the label g allowed if G is a tree) such that each uv € E (G)
is labeled f (u) + f (v) and the resulting set of edge labels is [m,m + ¢ — 1]
for some positive integer m. Such a function is called a sequential labeling.
Thus, every sequential graph is also harmonious. However, note that a
harmonious labeling is not necessarily a sequential labeling. The existence
of harmonious graphs admitting no sequential labeling is an open question.

We now provide the definition for the key concept to be discussed in this
paper.

The sequential number, o (G), of a graph G of size ¢ without isolated
vertices is defined to be either the smallest positive integer n for which it is
possible to label the vertices of G with distinct elements from the set [0, n]
in such a way that each uv € E (G) is labeled f(u) + f(v) and the resulting
edge labels are g consecutive integers or +oo if there exists no such integer
n.

If a graph G of size g that is not a tree and has no isolated vertices
satisfying o (G) < q — 1, then G is sequential or, equivalently, if such a
graph G is not sequential, then o (G) > g.

Thus, the sequential number of a graph G is a measure of how close G is
to being sequential. Moreover, for any graph G of order p without isolated
vertices, it is immediate that o (G) > p — 1 and the bound is sharp (for
example, ¢ (Ki,,) = n).

With the above definition in hand, we have the following theorem.

Theorem 1. If G is a graph of order p without isolated vertices, then
U(G) = Us (G) +p-1.

Proof. Let G be a graph of order p and size q without isolated vertices, and
assume that o (G) = n > p — 1 for some positive integer n. Then there
exists an injective function f : V(G) — [0,7] such that

{f () + f () |uwv € E(G)} = [m,m+q—1]
for some positive integer m. Let
L=[0,n]-f(V(G)={klie[l,n—p+1]}.
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Then |L| =n—p+1. Ifwelet H= GU(n-p+1)K,, and define the
graph H with

V(H)= V(G)U{‘wilié [L,n—p+1]}

and E (H) = E (G), then the bijective function g : V (H) — [1,n + 1] such
that
fW+1 ifveV(G)
g(v)={l,-+1 if v = w; for some i € [1,n — p + 1]

extends to a super edge-magic labeling with valence m + n + ¢ + 3, since
|V(H)| =n+1, |[E(H)| = q and min{f (u) + f (v) |uv € E(H)} = m +2.
Therefore, ps (G) < n — p+ 1, implying that ¢ (G) > p, (G) + p— 1. This
indicates that if G is a graph such that ¢ (G) < +00, then p, (G) < +o0.

To show that ¢ (G) < s (G)+p—1, let H = GUnK;, where n = p, (G)
for some nonnegative integer n. It follows from Lemma 1 that there exists
a super edge-magic labeling f : V(H) — [1,n + p] with valence p+q+s
such that

{FfW+f@|weE(H)}=[s,s+q-1],

where s = min {f (u) + f (v) juv € E(H)}. Now, define the bijective func-
tion g : V(H) — [0,n + p ~ 1] such that g (v) = f(v) — 1 for all v € V (H).
If we consider the restriction of g to V (G), then we obtain

{g(v)+g(v)|uv € E(G)} =[s — 2,5 +¢g — 3], which
is a set of g consecutive integers, and
max{g(v)jv € V(G)} < |[V(H)|-1=n+p-1.
Therefore, 0 (G) < n + p — 1, implying that ¢ (G) < s (G) + p — 1. This

indicates that if G is a graph such that p, (G) < 400, then ¢ (G) < +00.
a

From the above theorem, it follows that the problems of determining the
sequential number and the super edge-magic deficiency are equivalent. It
is also immediate from the same result that for any graph G, o (G) = 400
if and only if u, (G) = +oc.

We conclude this section with three corollaries obtained from Theorem 1.

The contrapositive of the following corollary provides us with a sufficient
condition for a graph to be super edge-magic.

Corollary 1. If G is a graph of order p without isolated vertices that sat-
isfies 0 (G) 2 p, then G is not super edge-magic.

The following corollary excludes certain graphs from the class of sequen-
tial graphs.

Corollary 2. If G is a graph of order p and size q without isolated vertices
that satisfies us (G) > q—p+ 1, then G is not sequential.
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Figueroa~Centeno et al. {3] proved that every tree with an a-valuation is
super edge-magic (see (7] for the definition and significance of a-valuations).
Combining this fact with Theorem 1, we obtain the following corollary.

Corollary 3. If T is a tree of order p with an a-valuation, then
o(T)=p—1.
3. COMPLETE BIPARTITE GRAPHS

Graham and Sloane [8] proved the following theorem.

Theorem 2. The complete bipartite graph K, » is harmonious if and only
ifm=1orn=1.

The above theorem allows us to compute the sequential numbers of all
complete bipartite graphs.

Theorem 3. For every two positive integers m and n,
0 (Kmzn) = mn.

Proof. First, note that for every positive integer n, the star K) », is clearly
sequential by labeling the central vertex with 0 and the remaining vertices
with 1 through n, implying that ¢ (K1,») < n; however, o (Kj,n) > n, since
K » has no isolated vertices. Thus, 0 (K1,n) =n.

Next, notice that for every two integers mn and n with m > 2 and n > 2,
the complete bipartite graph K, ,, is not sequential (for otherwise it would
be harmonious which would contradict Theorem 2), is not a tree and has
no isolated vertices. Therefore, o (Km,n) 2> mn.

To show that o (Km ) < mn for every two integers m and n with m > 2
and n > 2, let X = {z;|i € [1,m]} and Y = {y;|j € [1,n]} be the partite
sets of K n, and define the injective function f : V (Km,n) — [0, mn] such
that

f(z:) = (i — 1)n for each i € [1,m)]
and
fy;) = (m —1)n +j for each j € [1,n].
Then
{f(x)]i € [1,m]} = {0,n,2n,...,(m—1)n}
is an arithmetic progression with m terms and common difference n, and

{fw)lieLn}={(m-1n+1,(m-1)n+2,...,mn}
is a sequence of n consecutive integers. Therefore,
{(f@x)+fy|lzeXandyeY}=[(m—-1)n+1,(m—1)n+mn|

is a set of mn consecutive integers, implying that o (Km ) < mn and the
proof is complete. O
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The validity of the conjecture mentioned in introduction now follows
readily from Theorems 1 and 3.

Corollary 4. For every two positive integers m and n,

bs (Kmpn)=(m—1)(n—-1).
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