G-Designs Having a Prescribed Number of
Blocks in Common
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Abstract

Two G-designs (X,A;1) and (X, A2) are said to intersect in m
blocks if A1 N .A2| = m. In this paper, we complete the solution of
intersection problem for G-designs, where G is a connected graph of
size five which contains a cycle.
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1 Introduction

Let H be a simple graph and G be a subgraph of H. A G-design of
H is a pair (V;.A), where V is the vertex set of H and A is a collection of
the edge-disjoint decomposition of H into isomorphic copies of G (called
blocks). If H is the complete graph of order n, we refer to such a G-design
as one of order n. In this paper, we concentrate on a connected graph
G with five edges and containing a cycle. There are six different types of
graphs G (See Figure 1). We begin with some notation to describe these
six graphs.

Ty = ({a, b, c, d, e}, {ab, be, ac, bd, ce}), denote this graph by (a, b, c,d, e)1;

T: = ({a,b,¢,4d, e}, {ab,be, ac, cd, ce}), denote this graph by (a, b, ¢, d, e)2;

T = ({a,b,¢c,d, e}, {ab, bc, ac, cd, de}), denote this graph by (a, b, ¢, d, €)3;

Ty = ({a, b, ¢, d, e}, {ab, bc, cd, da, de}), denote this graph by (a, b, ¢, d, €)4;

Ts = ({a, b, ¢, d, e}, {ab, be, cd, de, ea});
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Ts = ({a, b, c,d}, {ab, bc, ac, da, dc}).
In fact, Ts graph is a 5-cycle Cs and T is called a K4 — e graph, meaning a
complete graph of order 4 with the vertex set {a,b,c,d} minus an edge bd.

Figure 1: Graphs Ty, Ty, T3, T4, Ts and Tg

Two Ti-designs (X, A;) and (X, Ap) of order n are said to intersect in
m blocks if |.A; N Az| = m. Recently, many authors deal with "variations”
to the classic intersection problem, such as intersection problem for triple
systems in [12], disjoint intersection problem in [7] and [10], the triangle
intersection in (2], (3] and [4], the fine triangle intersection in (5] and [6].

Concerning the intersection problem for T and Tj-designs, in 1988, C.
M. Fu [9] obtained the solution for the intersection numbers of pentagon
systems (i.e. Ts-designs) of order n, where n = 0,1 (mod 5) n > 6:

{0,1,...,n(n - 1)/10 — 2,n(n — 1)/10};

in 1997, E. J. Billington, M. Gionfriddo and C. C. Lindner [1] obtained the
solution for the intersection numbers of K4 — e designs (i.e. Tg-designs) of
order n, where n =0,1 (mod 5) n > 6:

{0,1,...,n(n - 1)/10 - 3,n(n — 1)/10}.

The purpose of this paper is to solve the intersection problem for T;-designs
fori=1,2,3,4.

186



Since a necessary condition for the existence of a T;-design of order n is
that (3)/5 is an integer, n = 0 or 1 (mod 5) satisfies this requirement. In
what follows, let I'r,(n) denote the set of all integers k for which there exists
two T;-designs of order n, (X, B;) and (X, B3), such that |B; NBz| = k. For
n=0,1 (mod 5), let J,(n) = {0,1,2,...,n(n—1)/10-2,n(n—1)/10}. In
other words, Jr,(n) denotes the intersection numbers one expects to achieve
with a T;-design of order n. Modifying this notation slightly, let It,(H)
and Jr,(H) denote the achievable and expected intersection numbers for
T;-design of graph H, respectively. It is clear that It,(H) C Jr,(H) for
1=1,2,3,4. Here we deal with for the reverse containment.

Main Theorem I7,(n) = Jg,(n) for n = 0,1 (mod 5) and n > 10; I7,(n) =
Jr (n) for (isn) = (1, 5)) (1, 6): (2,6), (3’ 6)

Let A and B be two sets of integers and k a positive integer. Define
A+B={a+b|lac AbeBhk+A={k+a|a€c Alandk-A =
A+A+.. .+ A

k
We quote the following known result for later use.

Lemma 1.1 [8] Let g, t and u be nonnegative integers. There exists a
3-GDD of type g'u! if and only if the following conditions are all satisfied:
(1)ifg>0thent>3, ort=2andu=g,ort=1andu=0, ort=0;
(2)u<g(t—1) orgt=0;

(3) g(t—1)+u=0 (mod 2) or gt =0;

(4) gt =0 (mod 2) or u =0;

(5) g*t(t —1)/2 + gtu =0 (mod 3).

2 Ingredients

For convenience, let V(K,) = {1,2,...,n}; V(K. \ K,) = {1,2,...,n},
where V(K,) = {1,2,...,v}; V(Kijk1) = X1 U X3 U X3U X4, where
X1 ={1,2,...,i}, Xo =i+ {L,2,...,j}, Xs=(i+3) + {1,2,...,k} and
Xg=({+7+k)+{1,2,...,1}. Similarly, V(K; ;) and V(K; k). When
T;-design of graph H exists, we have b € I, (H), where b is the number of
blocks in the T;-design. It is easy to see that T;-design of order n does not
exist for (i,n) = (2,5), (3,5), (4, 5), (4,6).

2.1 Small orders of T;-designs for j =1,2,3

Lemma 2.1 I7,(5) = Jg, (5).
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Proof: Let A and B be two Tj-designs of order 5, where 4 = {(2,1, 3,5,
4)1,(2,5,4,3,1);} and B = {(2,1,3,4,5)1,(2,5,4,1,3);}. Then |ANB| = 0.
From the result, we obtain I7,(5) = Jr,(5)- B

Lemma 2.2 I1;(6) = J;(6) for j =1,2,3.

Proof: j = 1: Let B be a T;-design of order 6, where B = {(3,2,1,4,5);, (2,
5,6,4,1)1,(6,4,3,1,5)1}. Then |BNm;B| =i for i = 0, 1, where mp = (6,5)
and m = (3,5,4,6,2).

J = 2: Let B be a T,-design of order 6, where B = {(6,5,1,2,3)2,(2,6,4,1,
5)2,(2,5,3,4,6)2}. Then |[BNmB| =1 for i = 0,1, where mp = (4,5) and
m= (6, 5)

J = 3: Let B be a T3-design of order 6, where B = {(6,3,1,4,2)3,(2,
1,5,3,4)s,(4,5,6,2,3)3}. Then |BNm;B| =i for i = 0,1, where o = (6,5)
and = (5,4).

From the above results, we obtain Iz, (6) = J,(6) for j = 1,2,3l

Lemma 2.3 0,1,8,9,12,15 ¢ IT: (K5,5'5) and0,8,15 € ITJ. (K5,5'5) forj =
2,3.

Proof: j = 1: Let By be a Tj-design of K555, where B; = {(11, 9, 3, 14,
12);, (13, 9, 5,12, 14),, (15,6,5,4,8),, (15,7,4,3,9),, (15,8,3 ,2,10);,
(15,9,2,1,6)1, (15,10,1,5, 7)1} U {b1,ba,...,bs}, by = (11, 6, 1,14, 2),,
by = (11, 10, 2,14, 12)q, b3 = (11, 8, 4,14, 12),, by = (13,10,4 , 12, 14),,
bs = (11, 7, 5,14, 12);, bs = (13, 6, 3,12, 14)y, by = (13, 7, 2,12, 14),,
bs = (13, 8,1,12,14);. Then |By N m;B;| = i for i = 0,1, 8, where mg =
(14,15), m; = (1,2)(3,4)(6,7) and w5 = (1,2). Now, B, comes from B; by
removing the blocks {b1,bs,bs} and replacing them with {(1,6,12,11,8),,
(6,3,14,13,1),, (8,1,13,11,6),}; B3 comes from B; by removing the blocks
{b2, b3, by, bs, bz, bg} and replacing them with {(12,10, 2, 13, 11),, (14, 10,
4,11,13);, (12, 8, 4, 13, 11),, (14, 8, 1, 11, 13),, (12, 7, 5, 13, 11),, (14, 7,
2,11, 13)1} Then IBI N Bgl =12 and IBI N Bgl =9.

j = 2: Let By be a T>-design of K 55, where B; = {(11,8,4,12,9),, (11,7,
5,12,8)q, (13,8,1,14,9)2, (13,10,4,14,6)s, (13,9,5, 14,10), (15,1,10,12,
14)s, (15,2,9,12,14)3, (15,3, 8,12, 14)2}U{by, by, . .., by}, by = (11,10,2, 12,
6)2, bo = (13,7,2,14,8)3, b3 = (11,6,1,12,7)s, by = (15,5,6,12,14),,
bs = (15,4,7, 12,14),, bs = (11,9,3,12,10), by = (13,6,3,14,7);. Then
|By N moB1| = 0, where m = (13,12). Now, B, comes from B; by removing
the blocks {b1, b2, b3, bs, bs, bg, b7} and replacing them with {(11, 1, 6, 12,
14), (5, 6, 15, 7, 4)a, (1, 11, 7, 4, 14)s, (11, 10, 2, 6, 8)5, (13, 7, 2, 12, 14),,
(11,9, 3, 7, 10)2, (13, 6, 3, 12, 14),}. Then |B, N By| = 8.
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J = 3: Let B be a T;-design of K555, where B = {(11, 8, 4, 9, 12)3, (13, 7,
2, 14, 8)3, (15, 1, 10, 5, 12)3, (15, 2, 9, 1, 12)3, (15, 3, 8, 2, 12)3, (15, 4, 7,
3,12)s, (11, 6,1, 7, 12)3, (13, 8, 1, 14, 9)s, (11, 10, 2, 6, 12)3, (13, 10, 4, 14,
6)s, (15, 5, 6, 4, 12)3, (11, 9, 3, 10, 12)3, (13, 6, 3, 14, 7)3, (11, 7, 5, 8, 12)3,
(13, 9, 5, 14, 10)3}. Then [BNmB| =i for i = 0,8, where m = (13,12)
and mg = (5,4).

From above results, we have 0,1,8,9,12,15 € I1,(Ks55) and 0,8,15 €
ITJ. (K5,5,5) for ] = 2, 3..

Lemma 2.4 0,1,30 € I, (Kss,55) for i =1,2,3.

Proof: j = 1: Let B be a T)-design of K5555, where B = {(10, 11, 2,
4, 20)1, (7, 13, 2, 5, 18)y, (8, 16, 4, 2, 20);, (10, 18, 4, 6, 19)1, (9, 18, 5,
12, 19),, (17, 10, 13, 12, 19);, (14, 3, 16, 18, 10),,(7, 4, 17, 14, 11)y, (16,
13, 9, 8, 3)1, (7, 18, 15, 13, 19),, (10, 5, 14, 8, 9)1, (6, 16, 15, 12, 20);,
(15, 1, 10, 6, 19)1, (3, 20, 7, 10, 14),, (5, 20, 6, 12, 19),, (8, 17, 12, 5, 2);,
(11, 9, 20, 4, 8),, (6, 13, 3, 4, 10)4, (9, 15, 2, 5, 17)1, (14, 19, 1, 7, 16),,
(3, 19, 8, 2, 15), (3, 15, 17, 4, 1)4, (13, 20, 1, 14, 18)y, (16, 11, 7, 5, 1),
(4, 6, 12, 2, 1), (7, 5, 12, 16, 3)1, (1, 11, 8, 3, 2)4, (12, 19, 9, 11, 1);, (8,
18, 14, 11, 2)1, (14, 17, 6, 9, 11);}. Then |BNm;B| =i for i = 0,1, where
mo = (8, 7)(13,12)(18,17)(20,19) and m = (9,8)(13,12)(18,17)

(20,19).

j = 2: Let B be a T»>-design of K5 5,55, Wwhere B = {(6, 11, 1, 12, 8), (10,
11, 2, 6, 18)2, (7, 13, 2, 14, 8)2, (8, 16, 4, 9, 205, (10, 18, 4, 6, 19),, (9,
18, 5, 10, 19)a, (18, 8, 11, 4, 19),, (19, 9, 12, 16, 5),, (17, 10, 13, 4, 19),,
(14, 3, 16, 2, 10)2, (7, 4, 17, 5, 1), (16, 13, 9, 17, 3),, (6, 17, 14, 4, 18),
(7, 18,15, 4, 19),, (10, 20, 14, 5, 9)s, (6, 16, 15, 5, 20),, (1, 15, 10, 12,
19)s, (3, 20, 7, 19, 14)s, (5, 20, 6, 12, 19),, (3, 12, 18, 13, 6)g, (8, 17, 12,
4, 2)2, (11, 9, 20, 12, 8)z, (6, 13, 3, 11, 10),, (15, 9, 2, 19, 20),, (14, 19,
1,9, 16), (3, 19, 8, 14, 15),, (3, 15, 17, 1, 2)s, (13, 20, 1, 7, 18),, (8, 13,
5, 11, 16)s, (16, 11, 7, 5, 12)2}. Then |BNm;B| = i for ¢ = 0,1, where
7o = (13,12)(15, 14)(18, 17)(20,19) and m = (13,12)(15,14)(19,20,18).

j = 3: Let B be a T3-design of Kj555, where B = {(6, 11, 1, 7, 12)3,
(10, 11, 2, 17, 5)3, (7, 13, 2, 14, 5)3, (8, 16, 4, 11, 7)3, (10, 18, 4, 20, 15)3,
(9, 5, 18, 6, 4)3, (19, 9, 12, 2, 6)s, (17, 10, 13, 4, 9), (7, 4, 17, 1, 8)3,
(16, 13, 9, 1, 12), (14, 17, 6, 12, 4)s, (7, 18, 15, 19, 4)a, (10, 20, 14, 18,
1)s, (6, 16, 15, 5, 11)s, (1, 15, 10, 3, 9)3, (3, 20, 7, 19, 2)s, (5, 20, 6, 19,
13)s, (3, 18, 12, 16, 10)s, (12, 17, 8, 14, 4)s, (11, 9, 20, 12, 10)s, (3, 6,
13, 18, 2)3, (15, 9, 2, 20, 8)s, (1, 19, 14, 9, 17)3, (3, 19, 8, 15, 4)3, (3, 15,
17, 11, 3)s, (13, 20, 1, 16, 7)3, (8, 13, 5, 7, 14), (5, 10, 19, 11, 16)3, (18,
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11, 8, 2, 16)s, (3, 14, 16, 5, 12)3}. Then [BNmB| =i for ¢ = 0,1, where
mo = (20,1)(19,2)(18, 3)(17, 4)(16, 5)(15, 6)(14, 7)(13, 8)(12, 9)(11, 10) and
m = (9, 10, 8)(15, 14)(19, 20,18).

From above results, we have 0,1,30 € I;(Ks5,5,) for  =1,2,3 1

Lemma 2.5 0,7 € I;(Kio \ Ks) forj =1,2,3.

Proof: j = 1: Let B be a T)-design of Ko \ K5, where B = {(8,6,1,9,7),,
(2,9,10,4,7),, (3,6,10,4,5);, (4,8,10,7,1)4, (9,7,3,4, 8)1, (8,9,5,1,6),
(6,7,2,5,8):} Then |[BNmB| = 0, where 7o = (1,2)(4, 5).

J = 2: Let B be a Ty-design of Ko \ K5, where B = {(9, 10, 1, 6, 8),, (2,
9,7, 10, 1)y (3, 10, 8, 7, 4)2, (4, 6, 7, 3, 5)2, (5, 6, 8, 9, 2)2, (2, 6, 10, 4,
5)2, (3, 6, 9, 4, 5)2} Then IBnﬂ'oBll = 0, where mp = (8, 7)(10, 9).

J = 3: Let B be a T3-design of Kjo \ K5, where B = {(7, 1, 6, 3, 10)3, (2,
8,709 1), (3, 8,9,5, 73, (4, 9, 10, 8, 5)3, (5, 6, 10, 1, 8)3, (6, 9, 2, 10,
73, (8, 6, 4, 7, 3)3}. Then |BN 8| = 0, where m = (9, 10, 8).

From above results, we have 0,7 € Ir;(K1o \ Ks) for j =1,2,3 8

Lemma 2.6 0,2,3,6 € Ir;(Kio \ K¢) for j =1,2,3.

Proof: j = 1: Let B be a T}-design of K10\ K¢, where B = {(10,1,7,9, 3),,
(7s 21 8, 10» 4)11 (9) 31 87 10; 1)1) (101 47 91 7a 5)1: (81 5v 10) 79 6)1, (71 6: g) 87 2)1}
Then [BNwB| = i for i = 0,2,3, where mo = (10,9), m» = (5,6,4) and
T3 = (6, 5)

J =2: Let B be a Tp-design of K10\ K¢, where B = {(6,9, 10,5,4), (5,8,9,
4,3)2,(4,7,8,3,6)2, (8,10,7,6,5)2,(10,8,2,9, 7)2, (9,7,1,10,8)2}, Then |BN
miB| = 1 for i = 0,2,3, where mp = (9,10, 8), m2 = (10,8) and 73 = (6,5).
J = 3: Let By be a Ts-design of Kio \ Kg, where By = {(6,9,10,5,7)s,
(4,7,8, 3,9)s,(3,10,7,2,9)3, (1, 7,9, 4, 10)s, (5,9,8, 1,10)3, (2, 10,8, 6, 7)3).
Then |By N m;B)| = i for i = 0,2,3, where mp = (10,9), 7 = (5,4) and
w3 = (6,5).

From above results, we have 0,2,3,6 € I, (K10 \ K¢) for j =1,2,3.1

Lemma 2.7 I1;(10) = J1,(10) for j =1,2,3.

Proof: The graph Kjo can be regarded as a union of a copy of Ko \ Ks,
and a copy Kg. Therefore, we have

I1,(K10) 2 Ir; (Ko \ Ke) + I'; (Ke) 2 {0,2,3,6} + J1,(Ks) = Jr;(K10) M
Lemma 2.8 0,1,3,4,8¢ 113 (Kn \Ks) fOT‘j =1,2,3.
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Proof: j = 1: Let B; be a T}-design of K1; \ Kg, where B; = {(1,10,11,5,
6)1, (10,8,2,3,9)1, (11,9,3,5, 10);, (9,10,4,6,7);, (7,8,1,4,9)1, (11,8,5,9,
7)1, (9, 7,6,10, 8)1, (2, 7,11,3, 4)1} Then IB] N 7"1'31‘ =titfori=0,1,3,4,
where 7o = (6,1)(4,5,3), m1 = (4,5,3), 73 = (4,3) and 7g = (4,2).

j = 2: Let B; be a T>-design of Kj; \ K, where B; = {(4,8,9,6,7)2, (11,2,
9,3,1)2, (5,11,7,6,4), (8,3,11,4,1)s, (10,1,8,6,5), (2,8,7,3,1)2, (11,6,
10,4, 2),,(9,5,10,7,3)2}. Then |By N m;8,| = i for i = 0,1,3,4, where
mo = (9, 8)(11,10), my = (10,11,9), 73 = (10,9) and 4 = (6,5).

j = 3: Let By be a T3-design of K13 \ K, where B; = {(11,10,6,7,4)3,
(10,9,5, 8,6)3, (9,8,4,11,1)3, (11,8,3,7,1)s, (11, 9,2, 10,4)3, (10,8, 1,9, 3)s,
(5,11,7,9,6)3,(2,8,7,10,3)3}. Then |ByNm;B,| =i for i =0,1,3,4, where
o = (10, 11,9), T = (11, 10), T3 = (5, 4) and T4 = (3, 2)

From above results, we have 0,1,3,4,8 € I;(K1; \ Kg) for j =1,2,31

Lemma 2.9 I7;(11) = J7;(11) for j = 1,2,3.

Proof: The graph K;; can be regarded as a union of a copy of Kj; \ K¢
and a copy of Kg. Therefore, we have

IT; (K1) 2 IT;(Knu\Ks)+Ir;(Ks) 2 {0,1,3,4,8}+Jr;(Ke) = Jr;(K11) M
Lemma 2.10 0,19 € I, (K5 \ Ks) for j = 1,2,3.

Proof: j = 1: The graph K5 \ K5 can be regarded as a union of a copy
of tripartite graph K555 and 2 copies of K. Therefore, we have

IT1 (K15 \ Ks) 2 IT] (K5,5,5) +2- IT; (Ks) 2 {0, 15} +2. {0,2} 2 {0, 19}

j = 2: Let B be a T,-design of K5 \ K5, where B = {(11, 1, 6, 2, 12), (6,
3,13, 14, 11),, (15, 8, 3, 12, 10)g, (12, 9, 2, 15, 14), (12, 13, 15, 1, 10),, (6,
8, 7, 10, 9)2, (11, 15, 14, 9, 3)2, (4, 9, 6, 10, 14),, (1, 14, 12, 10, 11),, (11,
5,7, 1,12)5, (13, 2, 7, 14, 3)a, (11, 4, 8, 5, 12),, (15, 6, 5, 12, 14)s, (15, 7,
4,12, 14),, (11, 3, 9, 15, 8)2, (13, 5, 9, 10, 1),, (11, 2, 10, 1, 8), (13, 4, 10,
14, 5)2, (13, 1, 8, 14, 2)2}. Then |[BNmeB| = 0, where 7o = (11, 10)(14,13).
J = 3: Let B be a Ts-design of K15\ K5, where B = {(11, 5, 7, 1, 12)3, (13,
4, 10, 6, 9)a, (6, 5, 15, 11, 13)s, (15, 7, 4, 6, 12)3, (15, 9, 2, 8, 12)s, (10, 1,
15, 12, 9)a, (6, 8, 7, 9, 10)s, (15, 14, 13, 12, 11)3, (9, 8, 5, 14, 11)3, (12, 5,
10, 14, 2)a, (11, 1, 6, 2, 12)3, (13, 3, 6, 14, 4)3, (11, 2, 10, 3, 12)s, (13,2, 7,
14, 3)a, (15, 8, 3, 7, 12)3, (11, 4, 8, 10, 7), (13,1, 8, 14, 12)3, (11, 3, 9, 4,
12)3, (14, 1, 9, 13, 5)3}. Then |BN meB| = 0, where mo = (15,1)(14,2)(13,
3)(12,4)(11, 5)(10,6)(9, 7).

From above results, we have 0,19 € It; (K15 \ K5) for j =1,2,31

191



Lemma 2.11 I7;(15) = J1;(15) for j = 1,2,3.

Proof: j = 1: The graph K5 can be regarded as a union of a copy of
Ks 5,5 and 3 copies of K5. Therefore, we have

Ir,(15) 2 It (Ks,65) +3-Ir, (Ks) 2 {0,1,8,9,12,15} +3- {0, 2} = J, (15).

Jj = 2: Let By be a T>-design of K5, where B; = {(12,8,5,11,7),,(13,9,5,
14,10),, (3,10,1,15,5)s, (8, 11,9,2, 15)s, (8, 15, 3,2,12),, (12, 14, 13, 11, 15)a,
(15,12,11,6,14),,(1,4,2,5,15)2,(7, 8,10, 11, 14),, (6, 10,9, 7, 14) }U{b1, ba,
b}, b1 =(7,11,1,12,6)s, by = (13,8,1,14,9)s, bs = (15,4, 7, 12, 14),,
by = (14,8,6,7,12),, bs = (5,6,15,14,10)9, bg = (12,10, 2,6,11),, by =
(13,7,2, 14,8),, bg = (4,5,3,11,9)2, by = (13,6,3,14,7)s, b1o = (12,9, 4,
11,8), and by, = (13,10, 4,6,14). Then |ByNwB;| =i fori=0,1,...,12,
where mp = (12,11)(15,14), m = (13,12)(15,14), my = (12,11)(14,13),
73 = (13,15,12), my = (13,14,12), 5 = (15,14), ne = (14,12), 7y =
(13, 12), mg = (15, 13), g = (14, 13), mTi0 = (10, 9), ™M1 = (13, 10) and 192 =
(13,9). Now, By comes from B; by removing the blocks {b;,b;} and re-
placing them with {(11,7,1,6,9)2,(13,8,1,12,14),}; B3 comes from B; by
removing the blocks {b3,b4,b5} and replacing them with {(4,7,15,5,10),
(8,6,14,7,15),, (12,7, 6,5,15)2}; B4 comes from B, by removing the blocks
{bs,b7} and replacing them with {(12,10,2,6,8),,(13,7,2, 11,14),}; Bs
comes from B; by removing the blocks {bs, b7} and replacing them with
{(12,10,2, 6,8),,(13,7,2,11,14),}; Bs comes from B4 by removing the
blocks {bs, by} and replacing them with {(4,5,3,9,7),,(13,6,3,11,14),};
Bz comes from Bs by removing the blocks {bs, b9} and replacing them with
{(4,5,3,9,7)2,(13,6,3,11,14),}; Bs comes from Bg by removing the blocks
{b10, b11 } and replacing them with {(12,9, 4, 8, 6)2, (13, 10, 4, 11, 14)2}. Then
|BiNnB;|=21—ifori=2,3,...,8.

J = 3: Let By be a Ts-design of Ki5, where B = {(11, 10, 2, 6, 12)3, (11,
8,4,9, 7)3, (14, 4, 6, 8, 10)3, (12, 1, 9, 2, 15)s, (15, 4, 7, 3, 12)3, (1, 3, 2,
4, 5)s, (15, 14, 13, 12, 11)g, (3, 10, 14, 12, 15)3, (6, 10, 7, 8, 9)3, (13, 4,
10, 9, 14)3} U {by, bz, ..., b1}, by = (11,6,1,7,12)3, by = (13,8,1,14,11)3,
bs = (11,7,5,8,12)s, by = (13,7,2,14, 8)3, bs = (15,3,8,2,12)s, b =
(11,9,3,5,2)s, by = (13,6,3,4,12)3, bg = (13,9,5,1,4)3, by = (12,10, 5, 14,
7)3, bio = (1, 10,15,11, 13)3 and by; = (5,6,15,9, 6)3 Then lBl ﬂﬂiBll =1
fori =0,1,...,11, where m = (15, 1)(14,2)(13,3)(12, 4)(11 , 5)(10, 6)(9, 7),
m = (11,10)(13,12)(15, 14), w3 = (12,11)(14, 15, 13), 73 = (12, 11)(15, 14),
mq = (13,12)(15,14), 75 = (13,14,12), me = (13,12), w7 = (14,15,13),
g = (14,11), g = (15,13), T = (15,14), and T = (14, 13) NOW,
B; comes from B; by removing the blocks {b;,b2} and replacing them
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with {(11,6,1,14,11),(13,8,1,7,12)}; B3 comes from B; by removing the
blocks {bs, b4, bs} and replacing them with {(12,2,8,5,7)s, (13,2,7,11,5)s,
(15,3,8,14,2)3}; B4 comes from By by removing the blocks {bs, b7} and
replacing them with {(11,9, 3,4,12)3, (13,6, 3,5, 2)3}; Bs comes from B3 by
removing the blocks {b,, b,} and replacing them with {(11,6, 1, 14, 11)3, (13,
8,1,7,12)3}; Bs comes from B, by removing the blocks {bs,bo} and replac-
ing them with {(13,9,5, 14, 7)s, (12,10,5,1,4)3}; B7 comes from Bs by re-
moving the blocks {bg, b7} and replacing them with {(11,9, 3,4,12)3, (13,6,
3,5,2)3}; Bs comes from Bg by removing the blocks {b10, b11} and replacing
them with {(1, 10, 15,9, 6)3, (5, 6,15,11,13)3}; By comes from B7 by remov-
ing the blocks {bg, bg} and replacing them with {(13,9, 5, 14, 7)3, (12, 10,5, 1,
4)3}. Then |[ByNB;| =21 -1 fori=2,3,...,9.

From above results, we have It;(Kis) = Jr, (Kis) for j =1,2,3.8

Lemma 2.12 0,21 ¢ ITJ. (K16 \ Ks) fOT‘j =1,2,3.

Proof: The graph K¢\ K¢ can be regarded as a union of a copy of K5 5,5
and 2 copies of K¢. Therefore, we have

I, (K16 \ K6) 2 Ir;(Ks,5,5) +2-Ir;(Ks) 2 {0,15} +2-Jr;(Ks) 2 {0,21}.0
Lemma 2.13 I7;(16) = J7,;(16) for j = 1,2,3.

Proof: The graph Kjg can be regarded as a union of a copy of K555 and
3 copies of Kg. Therefore, we have

IT;(K16) 2 IT;(Ks,s5,8) +3- I;(Ks) 2 {0,8,15} +3- Jr;(Ks) = Jr;(K16) M
Lemma 2.14 Ir;(20) = Jr;(20) and I1,(21) = Jry(21) for j =1,2,3.

Proof: I;(K20) 2 ITy(Kss,5) + 2 - Ity (K10 \ Ks) + IT;(K10) 2 {0,15} +
2-{0,7} + Jr, (K10) = Jr;, (20).

I7;(21) 2 Ity (Ks,55) + 2 Ir; (K11 \ Ke) + IT;(K11) 2 {0,15} +2- {0,8} +
JT,‘ (Kll) = JTj (21)-.

Lemma 2.15 I,(25) = Jr;(25) and I;(26) = JT,(26) for j = 1,2,3.

Proof: ITj (25) 2 IT,' (K5.5,5,5) +3- ITj (KIO \Ks) + ITj (KIO) 2 {0’ 1, 30} +
3-{0,7} + Jr;(K10) = Jr,(25).

ITJ. (26) 2 ITj (Ks,5,55)+3- IT__,. (K11 \ Ke) +IT} (K1) 2 {0, 30} +3- {0, 8} +
JTJ. (Kn) = JT_.,- (26).1
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2.2 Small orders of T -design
Lemma 2.16 0,5 € IT,‘ (Ks,s), 0,6 € IT‘ (K5,3) and 0,15 € IT‘ (Ks's,s).

Proof:

[Ks,5 | Let B be a T,-design of K55, where B = {(6,2,9, 3,10)4, (7, 3, 8, 4,
6)4, (10,1,8,2,7)4, (10, 4,9,5,8)4, (7, 5,6,1,9)4}. Then |BNoB| = 0,
where my = (9, 8).

[Ks.6 ] Let B be a Ty-design of K5 g, where B = {(1,7,2,6,3),, (3,8,4,9,
1)4, (6,5,7,4,10)4, (11,2,10,3,7)4, (2,9,5,8,1)4 ,(1,10,5,11,4)4}.
Then |B NmoB| = 0, where mp = (8,7)(11, 10).

(K555 | The graph Ks 55 can be regarded as a union of 3 copies of Ks 5.
Therefore, we have

I7,(Ks5,5) 2 3- I, (Ks,;5) 2 3-{0,5} 2{ 0,15}.1
Lemma 2.17 0,7 € IT4 (Klo \ Ks).

Proof: Let B be a Ty-design of Ko\ K5, where B = {(6,2,9,3,10)4, (10, 8,
3’ 7: 4)4’ (10, 1, 8: 2» 7)4» (101 41 9: 51 8)4: (71 51 61 1! 9)41 (101 9, 7: 6a 8)41 (4’ 6: 9, 8r
7)4}. Then |B NmoB| = 0, where m = (10,9). Il

Lemma 2.18 I1,(10) = Jr,(10).

Proof: Let B, be a Ty-design of K;o, where B; = {(4,6,9,5,10)4, (6,8,2,7,
10)4, (7, 9,3,8, 10)4, (8,1,4,9, 10)4} U {bl, b, ... ,b5}, b = (1, 3,6,2,10),,
b2 = (2,4, 7, 3, 10)4, b3 = (3,5,8, 4, 10)4, b4 = (5,7, 1,6, 10)4 and b5 =
(9,2,5,1, 10)4. Then |By N7B;1| =i for i = 0,1,2,3, where mp = (10,9),
m = (8,9,7), ma = (9,7) and w3 = (9,8). Now, B, comes from B, by
removing the blocks {b1, b5} and replacing them with {(3, 6, 2, 1, 9),, (5,
1, 10, 2, 9)4}; B3 comes from B; by removing the blocks {b1,b4,b5} and
replacing them with {(2,9,1,6,10)4, (1,7,5,2,10),, (3,6,5,1,10),}; B4(Bs)
comes from By(Bs) by removing the blocks {b2, 43} and replacing them with
{(7,3,10,4,2)s, (5, 8,4,3,2)4}. Then |BiNB;| = 9—i for i = 2,3,4,5. From
those results, we have I, (10) = J7,(10). H

Lemma 2.19 It,(11) = Jp,(11).

Proof: Let B; be a Ty-design of K13, where B, = {(8,10,2,9, 3)4,(9,11,3,
10, 4)4, (10, 1,4,11, 5)4}U{b1,b2, vy bs}, b = (l, 3,6,2, 7)4, by = (2,4, 7,3,
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8)s, bs = (3,5,8,4,9)4, bs = (4,6,9,5,10)4, b5 = (5,7,10,6,11),, bs =
(6,8,11,7, 1)4, b7 = (7,9,1,8,2)4 and bg = (11,2,5,1,6)s. Then |B; N
mBy| =i for i = 0,1,2,3,4, where mo = (8,7)(11,10), m; = (9,8)(11,10),
n = (10,11,9), m3 = (11,8) and m4 = (11,10). Now, B, comes from B;
by removing the blocks {b;,bs} and replacing them with {(3, 1, 2, 6, 11)4,
(10, 6, 5, 7, 2)4}; B3 comes from B, by removing the blocks {by,bg,bs}
and replacing them with {(1,3,6,2,11)4, (1,5,2,7,11)s, (1,11,8,6,7)4};
B4 comes from By by removing the blocks {bs, bs} and replacing them with
{(4,2,3,7,1)4,(11,7,6, 8,3)4}; Bs(Bs) comes from Bz(B4) by removing the
blocks {b3, b7} and replacing them with {(5, 3,4, 8,2)4,(1,8,7,9,4)4}. Then
|BiNB;| =11—ifor i =2,3,...,6. From those results, we have Iz, (11) =
Jr,(11). B

Lemma 2.20 0,19 € IT‘ (Kls \Ks) and 0,21 € IT4(K16 \ Ke)

Proof: The graph K5\ K5 can be regarded as a union of 2 copies of K55
and a copy of K. Therefore, we have

It (K5 \ Ks) 2 2 I, (Ks,8) + I, (K10) 2 2+ {0,5} + {0,9} 2 {0,19}.
The graph K¢ \ K¢ can be regarded as a union of 2 copies of K5 ¢ and
a copy of Kyo. Therefore, we have
It (Kis\ Ke) 2 2 I, (Ks,6) + I, (K10) 2 2-{0,6} + {0,9} 2 {0,21}. M
Lemma 2.21 I1,(15) = Jr,(15) and I1,(16) = J7,(16).

Proof: The graph K5 can be regarded as a union of a copy of Ky \ Ks,
a copy of Kss and and a copy of Kjo. Therefore, we have I, (K5) 2
I, (Ks,5)+ I, (K10\ Ks5)+I1,(K10) 2 {0,5}+{0, 7}+J1,(K10) = I, (K18)-

The graph K6 can be regarded as a union of a copy of Kjo\ Ks, a copy
of K56 and a copy of Kj;. Therefore, we have It,(Kig) 2 IT,(Ks,6) +
It (K10 \ Ks) + I, (K11) 2 {0,6} + {0, 7} + J1, (K11) = Jr,(K16). H

Lemma 2.22 Ir,(20) = Jr,(20) and I1,(21) = Jg,(21).

Proof: The graph K3 can be regarded as a union of 4 copies of K55 and
2 copies of Kjo. Therefore, we have

IT,(K20) 2 4-I1,(Ks,5) +2- I, (K10) 2 4-{0,5} +2- J1,(K10) = J1,(K20).

The graph K3; can be regarded as a union of 4 copies of K55 and 2
copies of Ky;. Therefore, we have

It,(K2) 2 4-I7,(Ks,5)+2- I, (K1) 2 4-{0,5}42-J7, (K11) = J1, (K21) M
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Lemma 2.23 Ir,(25) = Jr,(25) and Ir,(26) = Jr,(26).

Proof: The graph K5 can be regarded as a union of 6 copies of K3 5, a copy
of K)o and a copy of K;5. Therefore, we have I, (K2s) 2 6 - I, (Ks5) +
It,(Kyo) + I, (K15) 2 6 - {0,5} + J7,(K10) + J1,(K15) = J1,(K325).

The graph Kjg can be regarded as a union of 4 copies of K5, 2 copies
of K56, & copy of K)o and a copy of K. Therefore, we have I, (K26) 2
4-I7,(Ks;) +2- It (Ks,6) + I, (K10) + I (K16) 2 4- {0,5} +2- {0,6} +
J1,(K10) + J1,(K16) = J1,(K26)- B

3 Main Results

For proving the Main Theorem, the Wilson’s Fundamental Construction of
GDD:s is an extremely useful tool.

Let K be a set of positive integers. A group divisible design (GDD),
K-GDD, is a triple (X, G, B) such that the following properties are satisfied:
(1) G is a partition of a finite set X into subsets (called groups); (2) B is
a set of subset of X (called blocks), each of cardinality from K, such that
every 2-subset of X is either contained in exactly one block or in exactly
one group, but not in both. If G contains u; groups of size g; for 1 <i < r,
then we call g1 g3? ... g¥ the group type of the GDD. If K = {k}, we write
{k}-GDD as k-GDD.

Let H = {H,Ha,...,Hn,} be a partition of a finite set X into subsets
(called holes), where |H;| = n; for 1 < i < m. Let Ku, n,,..n,. be the
complete multipartite graph on X with the i-th part on H;, and let G be
a graph. A G-GDD is a triple (X, #,B) such that (X, B) is a G-design of
Kn, ns,...nm- The hole type of the G-GDD is {n, ny,...,nm}. We also use
an exponential notation gy*g3? ... g¥" to describe hole type if there are u;
occurrences of g; for 1 < ¢ < r, in the hole type. We say a T;-GDD if G is
a T; graph.

The following construction is a variation of Wilson’s Fundamental Con-
struction [13].

Construction 3.1 (Wilson’s Fundamental Construction). Suppose that
(X,6,B) is a K-GDD, and let w: X — Z* be a weight function. Suppose
that for each block B € B there is a G-GDD of type {w(z) : z € B}. Then
there ezists a G-GDD of type {3__..cw(z): G € G}.

Theorem 3.2 For i = 1,2,3,4, It,(n) = Jr,(n),where n = 0,1,5,86, 10,
11,15, 16(mod 30).
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Proof: The cases when n = 5,6,10,11,15 and 16 follow from the small
cases in Section 2. Assume that n > 30. Let n = 10u 4+ a with u =
0,1(mod 3), u > 3 and a € {0,1,5,6}. Start from a 3-GDD of type 2%
from Lemma 1.1. Give each point of the GDD weight 5. By Lemma 2.3
and 2.16, there is a pair of T;-GDDs of type 53 with & common blocks,
a € {0,15} C I1,(Kss5,5). Then, apply Construction 3.1 to obtain a pair of
T:-GDDs of type 10* with Y_7_, @ common blocks, where z = 2u(u —1)/3
is the number of blocks of the 3-GDD of type 2*.

By Lemmas 2.7, 2.9-2.13, 2.18-2.20, we take a pair of T;-designs of K104a
with 8 common blocks, 8 € Jr,(Kio0+a), and u — 1 pairs of T;-designs of
K10+ \ K. with v common blocks, ¥ € {0,9+2a} C I, (Ki0+a\Ka). There
are a pair of T;-designs of order 10u+a with }°7_, o+ 8+ Z;:ll ~ common
blocks. Thus, I, (n) 2 z-It,(Ks5,5)+(v—1)-It,(K104+a\Ka)+I1:(10+a) D
z-{0,15} + (u —1)-{0,9+ 22} + J1;(K10+2) = J7;(n). This completes the
proof.

Theorem 3.3 Fori = 1,2,3,4, Ir,(n) = Jr,(n), where n = 20,21,25, 26
{mod 30).

Proof: The cases when n =20, 21, 25 and 26 follow from the small cases
in Section 2. Assume that n > 50. Let n = 10u + a with © = 2(mod 3),
u>5and a € {0,1,5,6}. Start from a 3-GDD of type 2“~24 from Lemma
1.1. Give each point of the GDD weight 5. By Lemma 2.3 and 2.16, there
is a pair of T;-GDDs of type 5% with a common blocks, @ € {0,15} C
IT,(Ks,55). Then, apply Construction 3.1 to obtain a pair of T;-GDDs of
type 10¥~220 with }_7_, o common blocks, where z = 2(u + 1)(u — 2)/3 is
the number of blocks of the 3-GDD of type 2¥~24,

By Lemmas 2.7, 2.9, 2.10, 2.12, 2.14, 2.15, 2.18-2.20, 2.22, 2.23, we
take a pair of T;-designs of K204, With 8 common blocks, 8 € Jr.(20 + a),
and u — 2 pairs of T;-designs of Kjp4+a \ K, with v common blocks, v €
{0,942a} C IT,(K10+a \Ka). There are a pair of T;-designs of order 10u+a
with 37 a+ 8+ 3% v common blocks. Thus, Ir,(n) 2 z-Ir,(Kss,5) +
(v—2)-It,(K10+a \ Ka) + I7,(204+ a) Dz {0,15} + (u — 2) - {0,9 +2a} +
J1.(20 + @) = J1,(n). This completes the proof. ll

Combining the Theorems 3.2 and 3.3, the Main Theorem can be ob-
tained as follows.

Main Theorem It (n) = Jr,(n) forn = 0,1 (mod 5) and n > 10; I1;(n) =
Jr,(n) for (i,n) = (1,5), (1, 6), (2,6), (3,6).
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