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Abstract

We investigate a modifications of the well-known irregularity strength
of graphs, namely the total edge irregularity strength and the total
vertex irregularity strength. In this paper, we determine the ex-
act value of the total edge (vertex) irregularity strength for convex
polytope graphs with pendent edges.
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1 Introduction

Let us consider a simple (without loops and multiple edges) undirected
graph G = (V,E). An edge irregular total k-labeling ¢ of a graph G is
a labeling of vertices and edges of G in such a way that for any different
edges zy and z'y’ their weights ¢(z)+¢(zy)+¢(y) and ¢(z')+¢(z'y)+8(y')
are distinct. similarly, a vertex irreqular total k-labeling ¢ of a graph G is
a labeling of the vertices and edges of G with labels from the set {1,2,...,k}
in such a way that for any two different vertices = and y their weights wt(x)
and wt(y) are distinct. Here, the weight of a vertex = in G is the sum of
the label of z and the labels of all edges incident with the vertex z. The
minimum k for which the graph G has an edge irregular total k-labeling is
called the total edge irreqularity strength of G, tes(G) and the minimum k
for which the graph G has a vertex irregular total k-labeling is called the
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total vertex irregularity strength of G, tvs(G).

In [15] Baga, Jendrol, Miller and Ryan defined the notion of total edge
irregularity strength and total vertex irregularity strength. A simple lower
bound for total edge irregularity strength in terms of maximum degree
A(G), determined in [15] is given by the following theorem.

Theorem 1. tes(G) > max{['E(C;)'+21 , I_A(c;)“] }

They also determined the exact values of the total edge irregularity strength
for paths, cycles, stars, wheels and friendship graphs.
Recently Ivanco and Jendrol [18] proved that for any tree T tes(T) =

maz { PE (7;)"*2] , [A('I;)“] } Moreover, they posed the following conjec-
ture.

Conjecture 1. [18] Let G be an arbitrary graph different from Ks. Then
et e (1527 [

Ivanéo and Jendrol’s conjecture has been verified for complete graphs and
complete bipartite graphs in [20] and [21], for the Cartesian product of two
paths in [22], for generalized Halin graph in [14], for large dense graphs
with 1E (C;)""z < A(c;)“ in {17], for the categorical product of a cycle and
a path in [11, 23], for the categorical product of two paths in [9] and for the
strong product of two paths in [12]. For more results see (2, 4, 6, 8, 10, 16
The lower and upper bound for total vertex irregularity strength of a (p, q)-
graph were determined in the following theorem.

Theorem 2. [15] Let G be a (p, q)-graph with minimum degree § = 6(G)
and mazimum degree A = A(G). Then

p+4o _
[A_*_l.lStvs(G)SP-i-A 26+ 1. (1)

Moreover, Ahmad et al. [13] determined the lower bound of total vertex
irregularity strength of any graph and conjectured that the lower bound
is tight. Wijaya et al. [24, 25] found the exact values of the total vertex
irregularity strength of wheels, fans, suns, friendship graphs and complete
bipartite graphs. Furthermore, Ahmad et al. [1, 10, 3] found an exact
value of the total vertex irregularity strength for Jahangir graphs, circu-
lant graphs, convex polytope and wheel related graphs.
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2 The plane graph D?

In [19], the plane graph D? (p from pendant) is obtained from a graph of
convex polytope D} by attaching a pendant edge at each vertex of outer

Figure 1: The graph of convex polytope D2

cycle of Df. So the graph D?, has following vertex set and edge set.
V(DE) = Ul {ai; bis cis di; e}
E(DP) = UL {didit1; diei; cidi; bici; biypr1ci; ashis asai40 }

with |V(D,)| = 5n and |E(D,)| = Tn, where the subscripts being taken
modulo n.

Theorem 3. Let n >4 . Then tes(D) = [1532]

Proof. Since |E(D,)| = Tn, then from Theorem 1, we have tes(DE) >
[2242]. To prove the equality first we split the edges of D2 in mutually

disjoint subsets. Let & = [7—":;"—2] .
D! = {d;e; : i € [1,n]}

D? = {did;11 : i € [1,n]}, D® = {cidi : i € [1,n}}, D* = {bic; : i € [1,n]}
D5 = {biy1ci:i € [1,n]}, D® = {a;b; : i € [1,n]}, D7 = {@;ai41 : 7 € [1,n]}
Now we define a labeling ¢ : V(D?) U E(D?) — {1,2,...,k} as follows:
#e:) =1, ¢(di) =1, $(ci) =2n+1, ¢(bi) =n+i, $(a;) =k, d(bici) =1,
d(die;) = d(cidi) = 1, d(aibi) =4n —k +2, ¢(aiaiyr) =6n—2k+2+14,
1 for 1<i<n-1

P(biy1ci) = {

2n for i=n
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n+l—1 for 1<i<n-1

#(didiy1) = {

Under the total labeling ¢ the weights of the edges are describe as follows:
(i) from the set D! admit the consecutive integers from the interval (3, n+2],
(ii) from the set D? admit the consecutive integers from the interval [n +
3,2n + 2],

(iii) from the set D3 admit the consecutive integers from the interval [2n +
3,3n + 2],

(iv) from the set D* admit the consecutive integers with difference 2 from
the interval [3n + 3, 5n + 1],

(v) from the set D® admit the consecutive integers with difference 2 from
the interval [3n + 4, 5n + 2],

(vi) from the set D® admit the consecutive integers from the interval [5n +
3,6n + 2],

(vii) from the set D7 admit the consecutive integers from the interval [6n +
3,7 +2].

Now, it is easy to check that all vertex and edge labels are at most k and
the edge-weights are pairwise distinct. This concludes the proof. D

n+1 for i=n

Theorem 4. Let n > 4. Then tvs(DP) =n + 1.

Proof. From (1), we have tvs(DB) > [22!] = n + 1. To prove the
equality it is enough to describe a suitable vertex irregular total k-labeling
where k =n + 1.

We define a labeling ¢ : V(D3) U E(DR) — {1,2,...,k} by
b(eibis1) = d(didis1) = d(cids) = k,
od(die;) = d(bici) =i, @(aivit1) =1, d(aib;)) =n—1,
#lai) =1, d(ci)=n—1, ¢(di)=n—2, ¢(e;)=o(b:) =1
The weights of vertices of DP are as follows:
wt(e;) =i+ 1, wt(a;) =n+1+14,
wt(b;)) =2n+ 141, wi(e;) =3n+1+1, wt(d;)=4n+1+1.

Now, it is easy to see that all the vertex-weights are pairwise distinct. The
labeling ¢ provides the upper bound on tvs(DE). Combining with the lower
bound, we conclude that tvs(DE) =n + 1. a
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3 The plane graph Q?

In [19], the plane graph QP is obtained from graph of convex polytope Qn
by attaching a pendant edge at each vertex of outer cycle of graph of convex

Figure 2: The plane graph Q7

polytope Q.. So the graph QZ has the following vertex and edge sets.
V(QF) = Ui {ai; bis cis di; e:}
E(QR) = U {diei; didiy1; cids; bibig1; bici; cibiy1; aibi; aiaig1}
Also the subscript n + 1 must be replaced by 1.

Theorem 5. Let n >4 . Then tes(QR) = [88}2]

Proof. Since |[E(QR)| = 8n, then from Theorem 1, it follows that tes(Q5) >
fs—":fﬁ] . To prove the equality we split the edges of QF in mutually disjoint
subsets. Let k = [8232],
Q! = {die; ;i € [1,n]}, Q%= {didiy,:i€ [1,n]}

Q% = {dic; 11 € [1,n]}, Q* = {bibiy1:1 € [1,n]}, Q% = {e:b; : i € [1,n]}
Q¢ = {cibiy1:1 € [1,n]},Q7 = {a:bi : i € [1,n]}, Q® = {aiai1:1€[1,n]}
Define a labeling ¢ : V(QR) U E(QZR) — {1,2,...,k} as follows:

&) =n+1, ¢le;) =1, ¢(di) =4, o(c;) =2n+1, ¢(a;) =k,
(dic;) = p(die;) = 1, P(aib;)) =5n—k+2, ¢(aiaiy1) =Tn—2k+2+1,
Plesh;)) =n+1+14,
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n+l+7 for 1<i<n-1
#(cibiy1) = ]
n+1 for i=n
n+l—i for 1<i<n-1
n+1 for i=n
Under the total labeling ¢ the weights of the edges are describe as follows:

(i) from the set Q' admit the consecutive integers from the interval (3, n+2,

¢(didit1) = d(bibiy1) = {

(ii) from the set Q2 receive the consecutive integers from the interval
[n+3,2n + 2],

(iii) from the set Q3 receive the consecutive integers from the interval
[2n +3,3n + 2],

(iv) from the set Q* receive the consecutive integers from the interval
[3n +3,4n + 2],

(v) from the set Q° receive the constant integers 4n + 3 for ¢ = n,

(vi) from the set Q® receive the consecutive integers with difference 2 from
the interval (4n + 4,6n + 2],

(vii) from the set Q° receive the consecutive integers with difference 2 from
the interval [4n + 5,6n + 1],

(viii) from the set Q7 receive the consecutive integers from the interval
[(6n +3,7n + 2],

(ix) from the set Q® receive the consecutive integers from the interval
[7n + 3,8n + 2],

Now, it is routine matter to check that all the vertex and edge labels are at

most k and the edge-weights form an arithmetic sequence 3,4,...,8n + 2.
Thus the labeling ¢ is the desired edge irregular k labeling. This concludes
the proof. ]

Lemma 1. Let 4 <n < 6. Then tvs(Qf) = [2&HL]

Proof. The existence of the optimal labeling ¢ for i € [1,n] gives the
required result.

#(b:) = ¢(ci) = d(di) =2, d(ei) =1, P(eids) = P(cibi) =1,
$(aibi) = P(bibit1) = d(cibis1) = d(didiy1) = $(dici) =k,
1 if 1<i<n—3andi=n-1
#ai) =< 5] if i=n—-2

2 if i=n
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[#$1] if 1<i<n-3
#aiaipy) = 1 for i=n-2,n
k—=1 if i=n-1

Now, it is easy to check that the total vertex-weights are pairwise distinct.
This concludes the proof. o

Theorem 6. Let n >4 . Then tvs(Qh) = [22+L]

Proof. For 4 < n < 6, the assertion follows from lemma 1. For n > 7,
we prove the above statement. Now using (1), it follows that tvs(Q%) >
[5—"61'—’] To prove the equality it is enough to describe a suitable vertex
irregular total k-labeling. Let k = [32£1].

First we define a labeling ¢ : V(QR) — {1,2,...,k} for i € {1,n] as follows:
o(e:) = maz{l,i — k+ 1}
#(c;) = maz{2n -2k + 1, 2n — 3k + 1 + i}
#(d;) = maz{3n —3k+1,3n — 4k +1+1i}
&(b;) = maz{d(n — k) +1,4n — 5k + 1 + 4}
n—k if 1<i<n—-3andi=n-1
#lai) = ¢ 3] if i=n-2
2(n—k) if i=n
Now we define a labeling ¢ : E(QE) — {1,2,...,k} for i € [1,n] as follows:
d(eid;) = é(bic;) = min{i, k}.
#(aib;) = d(cibiy1) = d(didir1) = ¢(cid;i) = P(bibiy1) = k.
[#] if 1<i<n-3
n—k if i=n-2
k if i=n-1

1 if i=n

#(aiaiq1) =

The weights of vertices of QF, are as follows:
wi(e;) =i+ 1, wit(a:;)=n+1+4,
wt(c;) =2n+ 1+14, wt(d;)) =3n+ 1 +4,wi(b;)) =4dn+1+.

Now, it is easy to see that the vertex-weights are pairwise distinct. Thus,
the labeling ¢ provides the upper bound on tvs(Q?f). Combining with the
lower bound, we conclude that tvs(QR) = [32+1]. m]
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4 The plane graph R?

In [19], the graph RP, is obtained as a combination of the graph of a prism
and the graph of an antiprism by attaching a pendant edge at each vertex of
outer cycle. We make the convention that Tp41 = Z1, Ynt+1 = Y1, 2Zne1 = 23
to simplify the notation. We have

V(RE) = Uiy {z4; ys; zi; wi}

E(RL) = UL {ZiZit1; Yildir1; 2iZig1; 2i¥%5; Ti¥li; TiYig1; Z;w;}
with |V(RP)| = 4n , |[E(RE)| = Tn.

Figure 3: The plane graph R?,

Theorem 7. Letn > 4 . Then tes(Rp) = [I242]

Proof. Since |E(RE)| = 7Tn, then from Theorem 1, we have tes(RR) >
[ 7"342] . To prove the equality we split the edges of R? in mutually disjoint
subsets. Let k = [12#2] .
R'= {mi$i+1 RS [l,n]}
R? = {zyy; i € [1,n]}, R® = {ziyiy1 11 € [1,n]}, R* = {yiyiy1 : 4 € [1, 7]}
RS = {zy: : i € [1,n]}, R® = {zizi}1:i € [1,n]}, R7 = {ziw; : i € [1,n]}

Define a labeling ¢ : V(RE) U E(R?) — {1,2,...,k} as follows:

#(zi) = 1, 9(wi) =n+1,8(z:) = d(wi) = k, $(ziZi41) = 4,

H(ziyit1) = 28, ¢p(ziy:) = 26 — 1, §(zsw;) = 6n — 2k + 2+ 4,
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o(Wiviv1) =n+ i, ¢(ziy:) =3 —k+1+4,¢(2i2i41) =50 — 2k + 2 +i.
Under the total labeling ¢ the weights of the edges are describe as follows:
(i) from the set R! admit the consecutive integers from the interval [3,n+2],
(ii) from the set R? admit the consecutive integers with difference 2 from
the interval [n + 3,3n + 1],

(ili) from the set B3 admit the consecutive integers with difference 2 from
the interval [n + 4,3n + 2],

(iv) from the set R* admit the consecutive integers from the interval [3n +
3,4n + 2],

(v) from the set R® admit the consecutive integers from the interval [4n +
3,5n + 2],

(vi) from the set R® admit the consecutive integers from the interval [5n +
3,6n + 2],

(vii) from the set R7 admit the consecutive integers from the interval [6n +
3,7+ 2],

Now, it is not difficult to see that all vertex and edge labels are at most
k and the edge-weights are pairwise distinct. Thus, the resulting total
labeling is desired edge irregular k-labeling. This concludes the proof. O

Lemma 2. Let 4 < n < 6. Then tus(RR) = [4atl]

Proof. From (1), we have tus(RB) > [#&tl]. Now the existence of the
optimal labeling ¢ gives the required result. Let k = [4%L1] .

#(z) = maz{n — k,n + i — 2k}, d(z:y:) = d(wiz:) = min{i, k}
H(ziyi) = k — 1,¢(zizig1) = 1, d(ivir1) = k, d(w;) = max{l,i — k + 1}

e whenn =4
H(ziziv1) = 2, d(wiyis1) = 3, 0(v:) = o(z:) = maz{2,i - 1}

e whenn=5
A(ziziv1) = 3, 0(yivi+1) = 4, d(y:) = o(z:) = mzz{1,i — 3}

e whenn =26
H(xizis1) = 3, d(yivis1) = 4, (y:) = o(x:) = maz{2,i - 3}

Now, it is easy to see that all vertex and edge labels are at most k and the
vertex-weights are pairwise distinct. This concludes the proof. m]
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Lemma 3. tvs(R}) =5

Proof. The existence of the optimal labeling ¢ gives the required result.
(Zi¥i+1) = $(Yiyi+1) = 5, ¢(ziy:) = d(wizi) = min{i, 5}.
#(2:) = ¢(z:) = maz{2,i — 3}, d(ziyi) = d(ziwit1) = 4.
d(zizig1) = 1, d(wi) = maz{l,i - 4}, ¢(y:) = maz{3,i — 2} m]
Lemma 4. Let n=8,9. Then tus(RR) = [45t1]

Proof. From (1), we have tvs(R5) > [#%1]. Now the existence of the
optimal labeling ¢ gives the required result. Let k = [4241] .

&(zizip1) = 1, 0(y;) = maz{3n — 4k + 3,3n + 3+ i — 5k}
$(ziip1) = k — 2,¢(z:) = maz{2n — 3k +5,2n +5 + i — 4k}
$(w;) = maz{l,i — k +1},é(z;) = maz{n — 1 — k,n — 1 + i — 2k}
g(ziyi) = $(Ti¥i+1) = k, (Yiyi1) = k — 1, $(ziys) = d(wiz;) = min{s, k}

Theorem 8. Letn > 4 . Then tvs(RR) = [48+1].

Proof. For 4 < n < 9, the assertion follows from lemma 2,3,4. For
n > 10, we prove the above statement. Now using (1), it follows that
tvs(RP) > [4—"‘;‘1]. To prove the equality it is enough to describe x suit-
able vertex irregular total k-labeling. Let k = [4—";'—1] .

We define x labeling ¢ : V(RE)U E(RE) — {1,2,...,k}
#(zizig1) = 1, d(z;) = maz{2n — 3k + 3,2n + 3 + i — 4k}
$(xiziy1) =k - 1,0(z;) = maz{n—k -1, n—1+i-2k}
&(ziys) = Pp(wiz;) = minfi, k}, §(y:) = maz{n — k,n +1i — 2k}
$(w;) = maz{l,1 + i — k}, d(ziyis1) = &(zivi) = p(yivie1) = k
The weights of vertices of R?, are xs follows:
wt(w;) =i+ Lwt(z) =n+1+i,wt(z;) =2n+ 144, wt(y) =3n+1+1i

Now, it is easy to see that all vertex the vertex-weights are pairwise wistinzt.The
labeling ¢ is the desired vertex irregular total k-labeling and provides the
upper bound on tvs(RF). Combining with the lower bound, we conclude

that tvs(RE) = [4&+1]. ]
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