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Abstract

We consider the problem of finding quasiperiodicities in Fibonacci
strings. A factor u of a string y is a cover of y if every letter of y falls
within some occurrence of u in y. A string v is a seed of y, if it is a
cover of a superstring of y. A left seed of a string y is a prefix of y that
it is a cover of a superstring of y. Similarly a right seed of a string y
is a suffix of y that it is a cover of a superstring of y. In this paper,
we present some interesting results regarding quasiperiodicities in
Fibonacci strings, we identify all covers, left/right seeds and seeds of
a Fibonacci string and all covers of a circular Fibonacci string.

Introduction

The notion of periodicity in strings is well studied in many fields like com-
binatorics on strings, pattern matching, data compression and automata
theory (see [16, 17]), because it is of paramount importance in several ap-
plications, not to talk about its theoretical aspects.

The concept of quasiperiodicity is a generalization of the notion of peri-
odicity, and was defined by Apostolico and Ehrenfeucht in {1]. In a periodic
repetition the occurrences of the single periods do not overlap. In contrast,
the quasiperiods of a quasiperiodic string may overlap. We call a factor
u of a nonempty string y a cover of y, if every letter of y is within some
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occurrence of v in y. Note that we consider the aligned covers, where the
cover u of y needs to be a border (i.e. a prefix and a suffix) of y. Seeds are
regularities of strings strongly related to the notion of cover, as a seed is a
cover of a superstring of the string. They were first defined and studied by
Iliopoulos, Moore and Park [13]. A left seed of a string y, firstly defined in
(4], is a prefix of y that is a cover of a superstring of y. Similarly a right
seed of a string y, also firstly defined in [4], is a suffix of y that is a cover
of a superstring of y.

A fundamental problem is to find all covers of a string. A linear time
algorithm was given by Moore and Smyth (18], Li and Smyth [15] (this
algorithm gives also all the covers for every prefix of the string) and an
O(log(log(|y|))) work optimal parallel algorithm was given later by Iliopou-
los and Park [12]. The corresponding problem on seeds is harder, the fastest
and only algorithm was by Iliopoulos, Moore and Park [13], running in
O(|y|log Jyl), until recently Kociumaka et al gave a linear time algorithm
(14].

Fibonacci strings are important in many concepts [2] and are often cited
as a worst case example for many string algorithms. Over the years much
scientific work has been done on them, e.g. locating all factors of a Fi-
bonacci string [6], characterizing all squares of a Fibonacci string (9, 10],
identifying all covers of a circular Fibonacci string [11}, identifying all bor-
ders of a Fibonacci string [7], finding palindromes of a Fibonacci string [8],
etc. Some research has also been extended to Tribonacci strings [19, 20, 21].

In this paper we are presenting results from our previous work on Fi-
bonacci strings [5]. We identify all left/right seeds, covers and seeds of a
Fibonacci string as well as all covers of a circular Fibonacci string, using a
different approach than that of Iliopoulos, Moore and Smyth [11]. We then
extend our previous results by giving comments on the number of quasiperi-
odicities in Fibonacci strings. It is important to note that we restrict to
those quasiperiodicities that are factors of the considered strings.

The rest of the paper is structured as follows. In Section 1 we present
the basic definitions used throughout the paper. In Section 2 we prove
some properties of seeds, covers, periods and borders used later for find-
ing quasiperiodicities in Fibonacci strings. We are then able to identify
quasiperiodicities in Fibonacci strings (Section 3) and circular Fibonacci
strings (Section 4). In Section 5 we give further comments on the num-
ber of distinct seeds in Fibonacci strings and finally we give some future
proposals and a brief conclusion in Section 6.
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1 Definitions and Problems

Throughout this paper we consider a string y of length |y} = n, n > 0, on
a fixed alphabet. It is represented as y[1..n]. A string w is a factor of y if
y = uwv for two strings u and v. It is a prefiz of y if u is empty and a suffiz
of y if v is empty. We denote the longest common prefix of two strings x and
y as LCP(z,y). A string u is a border of y if u is both a prefix and a suffix
of y. The border of y, denoted by border(y), is the length of the longest
border of y. A string u is a period of y if y is a prefix of u* for some positive
integer k, or equivalently if y is a prefix of uy. The period of y, denoted by
period(y), is the length of the shortest period of y. For a string u = u[l..m]
such that u and v share a common part u[m—£¢+1..m] = v[1..¢] for some
1 € € < m, the string u[1..m[v[f +1..n] = u[l..m — {Ju[l..n] is called
a superposition of u and v with an overlap of length ¢. A string z of
length m is a cover of y if both m < n and there exists a set of positions
P C {1,...,n—m+1} that satisfies both y[i..i+ m—1] =z forallie P
and U;epfs,...,i+m—1} = {1,...,n}. Astring vis a seed of y, if it is a
cover of a superstring of y, where a superstring of y is a string of form uyv
and u,v are possibly empty strings. A left seed of a string y is a prefix of
y that is a cover of a superstring of y of the form yv, where v is a possibly
empty string. Similarly a right seed of a string y is a suffix of y that is
a cover of a superstring of y of the form vy, where v is a possibly empty
string.

We define a (finite) Fibonacci string Fi , k € {0,1,2,...} , as follows:
Fb=b Fi=a F,=F,1F,2 n¢c {2,3,4,...}

A (finite) circular Fibonacci string C(Fk) , k € {0,1,2,...} , is made by
concatenating the first letter of F to its last letter. As before a factor u of
C(F}) is a cover of C(Fy) if every letter of C(F}) falls within an occurrence
of u within C(Fy).

The following example shows all left seeds, right seeds, covers and seeds of
the string Fg = abaababaabaab.

All covers of Fg: abaab, abaababaabaab

All left seeds of Fg: aba, abaab, abaaba, abaababa, abaababaa,
abaababaab, abaababaaba, abaababaabaa, abaababaabaab

All right seeds of Fs: abaab, abaabaab, babaabaab, ababaabaab,
aababaabaab, baababaabaab, abaababaabaab

All seeds of Fg: aba, abaab, abaaba, abaababa, abaababaa, abaababaab,
abaababaaba, abaababaabaa, abaababaabaab

213



Fr b

F; 1 a a

F2 ab a b
F3 aba

Fy abaab b a
Fs abaababa a a
F¢ abaababaabaab b

F; abaababaabaababaababa

Figure 1: The first eight Fibonacci strings Figure 2: C(Fs)

2 Properties

In this section, we prove and also quote some properties for the covers, the
left /right seeds and the seeds of a given string as well as some facts on
Fibonacci strings that will prove useful later on.

Lemma 1. [4] A string z is a left seed of y iff it is a cover of a prefix of y
whose length is at least the period of y.

Proof. Direct: Suppose a string z is a cover of a prefix of y, say uv, larger
or equal to period(y), where |u| = period(y) and v is a possibly nonempty
string. Let k the smallest integer such that y a prefix of u*. Then z is a
cover of uFv = ywv, for some string w, possibly empty. Therefore z is a
left seed of y.

Reverse: Let z be a left seed of y.

e if |z| < border(y). Then a suffix v of 2z (possibly empty) is a prefix of
the border (consider the left seed that covers y[period(y)]). Then z is
a cover of uv, where u is the period of y.

o if |z| > border(y). Let z not a cover of a prefix of y larger or equal
to |period(y)|. Let v a border of y such that |v] = border(y). Then
v is a factor of 2, such that z = uvw, where v and w are nonempty
strings (consider the left seed that covers y[period(y)]). This gives uv
a longest border for y, which is a contradiction.

(]

Lemma 2. [3] A string 2z is a right seed of y iff it is a cover of a suffix of
y whose length is at least the period of y.

Proof. Direct consequence of Lemma 1. 0O
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The following property of borders, which we give without proof, is
quoted in almost every publication regarding periodicity.

Lemma 3. Let u be a border of z and let z # u be a factor of x such that
|2] < |u|. Then z is a border of z if and only if z is a border of u.

Lemma 4. [18] Let u be a proper cover of x and let z # u be a factor of z
such that |z| < |u|. Then z is a cover of z if and only if z is a cover of .

Proof. Clearly if z is a cover of u and u is a cover of x the z is a cover of
z. Suppose now that both z and u are covers of . Then z is a border of =
and hence of u (|z| < |u[); thus z must also be a cover of u. a

Lemma 5. (7]
{}, n € {0,1,2}
All borders of F,, are: § {Fn—-2,Fn—4, Frn—s,...F1}, n=2k+1k2>1

{Frn-2,Fn-4, Fos,...Fp}, n=2kk>2
1)

Lemma 6. [10] F = Piéx, where Py = Fy_oFi_3..F1,k > 2 and 6k = ab
if k is even or §; = ba otherwise.

Proof. Easily proved by induction. a

It is sometimes useful to consider the expansion of a Fibonacci string
as a concatenation of two Fibonacci factors. We define the (Fin, Fin—1)-
expansion of F,,, wheren € {2,3,...} and m € {1,2,...,n—1}, as follows:

e Expand F,, using the recurrence formula as F,,_1 F,,_,.
e Expand F,,_; using the recurrence formula as F,_2F,,_3.
o Keep expanding as above until F,+1 is expanded.

Lemma 7. The (F,,, Fyn—1)-expansion of F,, where n € {2,3,...} and
m € {1,2,...,n — 1} is unique.

Proof. Easily proved by induction. a

Lemma 8. The starting positions of the occurrences of F,, in F;, are the
starting positions of the factors considered in the (Fr,, Fin_1)-expansion of
F,, where n € {2,3,...} and m € {1,2,...,n — 1} except from the last
F,._,, if it is a border of F,.
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Proof. Using the recurrence relation we can get the (Fy,, F;,—1)-expansion
of F,, as shown before:

Fo=Fn P Fp PP\ FnFa B .

We can now observe many occurrences of Fy,, in F,,. Any other occurrence
should have one of the following forms (note that there are no consecutive
Fin—1 in the above expansion):

e zy, where z is a nonempty suffix of F,, and y a nonempty prefix of
Fr—y. Then both z and y are borders of F,. It holds that |z| + |y] =
{Fm| = |Fm-1| + |Fm-2|, but |z| < |Frm-2|, |y| € |Fm-2| and so there
exists no such occurrence of F,, in F,.

e zy, where x is a nonempty suffix of F,,,_; and y a nonempty prefix of
F.,.. Then y is also a border of F;, and so belongs to {Fn_2, Frn—g,... F1},
if nis odd, or to {Fin—2, Fn—4 ... F2}, otherwise. But |z|+ |y| = |Fu|
and 0 < |z| < |Fn—1] so in either case the only solution is z = F,,_;
and y = F,,_2 giving the occurrences of F,,, at the starting positions
of F,,—) in the above expansion.

e zF,,_1y, where z is a nonempty suffix of F,,, and y a nonempty prefix
of Fin. Then both z and y are borders of F,,,. It holds that |z|+|y| =
|Fin—2|, but as both z and y are nonempty |z| < [Frn—_4l, |y| £ |Fm-4
and so there exists no such occurrence of F,, in F,,.

e zy, where = is a nonempty suffix of F, and y a nonempty prefix
of F,.(note that there is no such occurrence in the F,_5, F,,_; ex-
pansion). Then both z and y are borders of F,,. It holds that
|z| + ly| = |Fm|, but as both z and y are nonempty |z| < |Fn_2|,
ly| < |Fm-2| and so there exists no such occurrence of F, in F,.

a

Lemma 9. For every integer n > 5, Fn[1..|F,—1| — 1] is not a left seed of
F,.

Proof. Using the recurrence relation we can expand F, , n > 5, in the
following two ways:
Fro=Fy oF aFy 2 =Fh oF, 3F, sF, 4
Then one can see that £ = F,,[1..|Fa_1| — 1} = Fa_2Pp_36,n_3[1] (Lemma
6). Using Lemma 8 we can see that by expanding = from the prefix and
suffix positions of F,,_, we cover F,, except F,[|Fn—1|]. Expanding F,,_,
from its middle occurrence yields the factor y = Fi,_2Fn_5Pn_40n—4[1] =
Fr_oP,_36,_4[1]. It is easy to see that z and y differ at their last letter
and hence the above result follows.

a
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Lemma 10. For every integer n > 5, F,_4, where z is a suffix of F;,_3
and 0 < |z] < Fp_3, is not a right seed of Fi,.

Proof. Using the recurrence relation we can expand F,, n > 5, in the
following way:

Fn = Fn—4Fn—5Fn—4Fn—4Fn—5F —4Fn—5F -4

Then any right seed of the form zF,_4, 0 < |z| < |Fh—3|, has = as a suffix
of F,,_4F,_5. Clearly the 3 occurrences of F,,_4 at the starting positions
of Fr_5 (Lemma 8) cannot be expanded to their left to give right seeds
as an Fj,_4 is to their left, which has a different ending than that of F,_s
(Lemma 6). Then Fy,[|F—4| + |Fn-5| + |Fn-4| + 1] cannot be covered by
expanding the other 5 occurrences of F,,_4 in F,. O

3 Quasiperiodicities in Fibonacci strings

In this section we identify quasiperiodicities in Fibonacci strings (left seeds,
right seeds, seeds, covers).

Identifying all covers of a Fibonacci string is made possible by identify-
ing the longest cover of the string and then applying Lemma 4 as shown in
the theorem below.

Theorem 1.

F,, n € {0,1,2,3,4}
All covers of F,, are:§ {Fy,, F_2,F_4,Fn_¢,...F3}, n=2k+1,k>2
{Fn,Fn_z,Fn_4,Fn_s,...F4}, n= 2k,k Z 3
(2)

Proof. 1t is easy to see that the theorem holds for n € {0,1,2,3,4}. Using
the recurrence relation we can expand F,, , n > 5, in the following two
ways:

Fo=FhoF, 3Fy o=F, oF o2F,_sFn_4

It is now obvious that F,,_» is a cover of F,,. By Lemma 5 F,,_» is also
the longest border of F,, and therefore the second longest cover of F;, (after
F,). Similarly F,,_4 is the longest cover of F,,_3, F,,_¢ is the longest cover
of F,,_4, etc. Hence by following Lemma 4 we get the above result. a

Corollary 1.

1, n € {0,1,2,3,4}
The number of covers of Fy, is: ¢ 252, n=2k+1k>2 (3)
-1, n=2kk>3
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Identifying left seeds of a Fibonacci string F,, is made possible for large
n by characterizing each possible left seed as a factor of the form Fi,z,
where m € {3,...n — 1} and z a possibly empty prefix of F,,,_;. We then
use the (F,,,, F,—1)-expansion of F;, along with Lemma 9 and the following
result follows.

Theorem 2. All left seeds of F,, are:
o F,, ifne {0,1,2}
e {ab,aba}, if n =3
n—2

o {F,_1z: z a possibly empty prefix of F,,_2} Un _3{Fmz: z a possibly
empty prefix of Fr_i[l..|Fm-1] —2]},ifn >4

Proof. 1t is easy to see that the theorem holds for n € {0,1,2,3,4}. For
even n > 5 by Theorem 1 {F,,, F,,_3, Fa_4,... F4} are covers of F,, and
therefore left seeds of F;,. Again by Theorem 1 {F,_1, Fy,_3, Fn_s, ... F3}
are all covers of F,,_; which is the period of F,, and hence by Lemma 1
{Fn,Fa_1,Fa2,... F3} are left seeds of F,,. By making similar observa-
tions for odd n > 5 we get that {F},, Fr—1, Fn—2,... F3} are all left seeds of
F, in either case. Only a and ab might be shorter left seeds but they are
rejected as they are not left seeds of F; and so they are not left seeds of any
longer Fibonacci string (Fy is a prefix of every other F;,, n > 5). Therefore
the remaining left seeds are of the form F;,,z, wherem € {3,4,...,n—1} and
0 < |z} < |Fm-1]. Using the recurrence relation we can get the (Fy, Frn—1)-
expansion of F,, for any m € {3,4,...,n — 1} as shown before:
= Fn P\ P FnFp 1\ FnFrne1 P . ..
We then try to expand the seed from each F,,, F;,_; in the above expan-
sion as of Lemma 8 (note that there are no consecutive F,,_; in the above
expansion).
FmFm—l = Fum—ltsm—l
FmFm = FmFm—lFm—2 = Fum—16 —lF -2
FonaFn=Fn 1 FnoFm 3Fn_9=FpnFn 3Pn_26m—2 = FuPu_16m-2
It is now obvious that any Fy,x, where m € {3,4,...,n—1} and 0 < |z| <
|Frn—1] — 2 is a left seed of F,. Fn_1Fn_2[l..|F,_2| — 1] is the only other
left seed as it covers the period of F,, (Lemma 1). That there are no left
seeds of form Fi,,z, where m € {3,4,...,n—2} and |z| = |F—1| — 1 follows
from Lemma. 9.

O

Corollary 2.

1, n € {0,1,2}
The number of left seeds of F;, is: { 2, n € {3} (4)
[Fal =n+3, n>4
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Identifying right seeds of a Fibonacci string F,, is made possible for large
n by characterizing each possible right seed as a factor of the form zF,
where m € {3,5,...n -2} if n is odd or m € {4,6,...n — 2} if n is even,
and z is a possibly empty suffix of Fj,+1. We then use the (Fin, Fn-1)-
expansion of F,, along with Lemma 10 and the following result follows.

Theorem 3. All right seeds of F,, are:
e F,, ifne{0,1,2}

e {Fy,Frn_o,Fy_4,Fn_g,...F3} U {zF,_3F,_3: z a possibly empty
suffix of Fj, 2}, ifn=2k+1,k>1

o {Fo,Fh_o,F_4,Fn_g,...F4} U {zF,_3F,_3 z a possibly empty
suffix of F,_2}, if n =2k, k> 2

Proof. It is easy to see that the theorem holds for n € {0,1, 2,3, 4}. For even
n > 5, by Theorem 1 {F,,, F,,_2, Fn_4, ... F4} are covers of F;, and therefore
right seeds of F,,. Only {baab, aab, ab,b} might be shorter right seeds but
they are rejected as they are not right seeds of Fg and so they are not right
seeds of any F},, where n even and n > 5 (Fg is a suffix of every other F,, n
even and n > 5). Similarly for odd n > 5 {Fy, Fr_2, Fn_a4,... F3} are right
seeds of F, and F3 is its shortest right seed. Therefore the remaining right
seeds are of the form zF,, where 0 < |z| < |Fipt+1| andm € {4,6,...,n—2},
if n is even, or m € {3,5,...,n — 2}, otherwise.

The only other right seeds are of the form zF, _3F,,_o ,where z is a suffix
of Fn_g and 0 < |z| < Fy, as it is easy to see that they cover the period of
F, (Lemma 2).

The fact that there are no right seeds of form zF,_5, where 0 < |z| <
| F—3], follows from Lemma 8. Clearly the middle occurrence of Fj,_o
cannot be expanded to the left as an F,,_3 is to its left, which has a different
ending than that of F,,_3 at the left of the last F,,_o. Then Fy[|Fr—2| +1]
cannot be covered by expanding the other 2 occurrences of F,,—s in F,.
The fact that there are no right seeds of the form zFy,, where 0 < |z| <
|Fmn+1] and m € {4,6,...,n — 4}, n is even, or m € {3,5,...,n — 4},
otherwise, follows from Lemma 10. O

Corollary 3.

1, n € {0,1,2}
The number of right seeds of Fj, is: ¢ |[Fn—g| + 25, n=2k+1k>1
ool +2—1, n=2kk>?2
(5)
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Identifying all seeds of a Fibonacci string F,, is made possible for large
n by characterizing each possible seed as a factor of the form zF,,y, where
m € {3,4,...n — 1} and z, y follow some restrictions such that F,, is the
longest Fibonacci factor in the seed and no occurrence of F, in the seed
starts from a position in z. We then use the (F,, Fy,,—)-expansion of F,
along with Lemma 8 and the result below follows.

Theorem 4. All seeds of F,, are:
o all left/right seeds of F,,, if n € {0,1,2,3}
o all left/right seeds of F,, and bae, if n =4

o all left/right seeds of Fy,,
strings of form {zF,,y: z a suffix of F,,,,y a prefix of Fi,—;, 0 < |z| <
[Fml, 0 < |yl < |Fm-1]—1, ||+ |y| = Fn—1 and m € {3,...,n—3}},
strings of form {zF;,—1Fny: z a suffix of Fi,,y a prefix of Fn_y,
|z} + ly| = Fn and m € {3,...,n - 3}},
strings of form {zF,_2y: z a suffix of F,,_2,y a prefix of F,,_sF,_4,
0 < |z| < |Fa=2|, 0 < |y| £ |Fn-3| and |z| + |y| = |Fr-3|},ifn2>56

Proof. 1t is easy to see that the theorem holds for n € {0,1,2,3,4}. For
n > 5 it is obvious that all left seeds of F;, and all right seeds of F}, are also
seeds of F,,.

Therefore the remaining seeds are of the form zF,,y, such that F,, is the
leftmost occurrence of the longest Fibonacci string present in the seed,
me {3,4,...,n—2}, |z| >0 and |y| > 0.

For m = n—2 the expansionof F, = Fj,_oFy_3F, o = F,_oF, _oF,_sF,_4
is very small so we consider it separately. By expanding the middle occur-
rence of F,_o we get the seed zF,,_3y, where 0 < |z| < |Fh—2|, 0 < |y| <
|Fr—3| and |z| + |y| > |Fa-3|. As of Lemma 8 the remaining seeds of form
zF,,y, such that F,, is the leftmost occurrence of the longest Fibonacci
string present in the seed, m € {3,4,...,n — 3}, |z| > 0 and |y| > 0, have
their leftmost F,,, factor occurring in the start position of either an F}, or an
Fo—1inthe (Fin, Frn—1)-expansion of Fy, = Fpo Fon 1 Foo Fr Frn 1\ Frn Frn 1 P .
We consider the following cases (note that there are no consecutive Fy,,_;
in the above expansion):

o A seed of form zF,,y, such that F,, has a F,,_; to its left in the
(Fin, Frn—1)-expansion of F,, and 0 < |z| < Fy,—; (otherwise there
exist a new leftmost occurrence of F, in the seed). The occurrences
of F,, that we are considering have starting positions only from a
F, in the expansion of F,,, then y can be up to Fi,_1[1..|Fp-1] —
1] (otherwise a Fi ) is created). But such a seed fails to cover
Fol|lFnFn—1FnFrmoy) — 1]
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o A seed of form zF,y, such that F,, has a F,, to its left in the
(Fm, Frn—1)-expansion of F, and 0 < |z| < F,, (otherwise a Fi,4
is created). If the occurrences of F;, that we are considering have
starting positions both from a F,, and a F,,_; in the expansion
of F,, then y can be up to Fin_1[l..|Fm-1| — 2] (otherwise the
factors differ). Furthermore |z| + |y| = |Fm-1| ,such as to cover
FL|FnFm-1| +1..|FnFn_1Fn|]. Such a seed covers F,, as Frn42 =
E Fp_ 1Fy = FpFpPpn_16m—2 is a left seed of F,, (Theorem 2)
composing F,, with concatenations of overlap 0 (factors are joined by
considering the seed that its leftmost Fy, starts from the next Fi,12)
or F,, (factors are joined as |z|+|y| > Fpn—1). If the occurrences of Fi,
that we are considering have starting positions only from a F, in the
expansion of F},, then y can be up to Fy,—1[1..|Fpn_1]|—1] (otherwise a
F41 is created). But such a seed fails to cover F,,[|Frn Frn—1]]. If the
occurrences of F,,, that we are considering have starting positions only
from a F,,—; in the expansion of Fy,, then |y| can be up to 2|Fm—1|—1]
(otherwise a Fy, . is created). Furthermore |z|+|y| > |Fn[+|Fm-1] =
|Frns1] ,such as to cover F,[|FnFm-1|+1..|FpFno1FmFn|). Such
a seed covers F, as Fruy2 = FpnFm-1Fn = FnFon Pn_10m—2 is a left
seed of F,, (Theorem 2) composing F;, with concatenations of overlap
0 (factors are joined as |z| + |y| 2 |Fm+1|) or Fin (factors are joined
as |z| + [yl 2 |Fm4a| > |Fim-al)-

a

Corollary 4. The number of seeds of F, is Q(|Fy|2).

4 Quasiperiodicities in circular Fibonacci
strings

Finding all covers of a circular Fibonacci string is now obvious, we just
need to check the seeds of the relevant Fibonacci string. Those which are
covers of a superstring of form zF,y, where z is a possibly empty suffix of
F,, and y is a possibly empty prefix of F,, are covers of C(F3).

Theorem 5. All covers of C(F,) are:

e F,, ifne {0,1,2,3}
e F,and F,_;,ifn=4

e F,, strings of form {F,,z: = a possibly empty prefix of Fp,_1[l..
|Frn—1]| — 2] and m € {3,...,n — 1}},
strings of form {zF,y: z a suffix of Fi,,, y a prefix of Fi,—1,0 < || <
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|Fml, 0 < |yl < [Frm-1] =1, |z} +|y| 2 Fn-1 and m € {3,...,n—2}},
strings of form {zF,_1Fny: = a suffix of Fy,, y a prefix of F,,,_,,
|z| +ly| > Fn and m e {3,...,n—3}},ifn>5

Proof. 1t is easy to see that the theorem holds for n € {0,1,2,3,4}. For
larger n the covers of C(F,) are at most the seeds of Fy,. A seed is a cover
of C(Fy) iff it covers a superstring of F,, of form zF,,y, where z is a possibly
empty suffix of F,, and y is a possibly empty prefix of F,,. We consider the
following cases:

e Left seeds of form Fy,[1..|Fi|+i], wherei € {0,1,...,|Fx—1| -2} and
k € {3,4,...n—1}, are covers of F,Fi[1..4] ,if F} is a cover of F},, or
covers of F, Fi[1..|Fy_a| + i] otherwise, and hence covers of C(Fy,)
in both cases. Clearly F,, is also a cover of C(Fy,). F,[1..|F,|—1]is
not a cover of C(F,) as it fails to cover a prefix of F,, F,, longer than
|Fn] —1 (consider the Fy,_j, F,—2 expansion of F}, along with Lemma
8).

¢ The only right seeds of F;, that are covers of C(F,) are the covers
of F,, (included above). Right seeds of form zF,_3Fn — 2, where
z is a possibly empty suffix of F,,_2 and 0 < |z| < |F,,_o], fail to
cover a suffix of F\, F, = F'n — 2F,_3Fn — 2 longer than |zF,_3F,_5|
(consider the F,_3, F,_3 expansion of F;, along with Lemma 8), and
so they are not covers of C(Fy,).

o Seeds of form zF,,y where z a suffix of F,, and y a prefix of F,,_;,
0 < |z| < |Fnl|, 0 < ly| < |Fm=1] =1, |2]| + |y| > Fn and m €

{3.4,...,n — 3} are covers of zF, F,,y ,if F,, is a cover of F,,, or
covers of zFy,_1 F, Fr 2y otherwise, and hence covers of C(F,) in
both cases.

o Seeds of form zF;,_1Fny where z a suffix of F},, and y a prefix of
Fro1, 0 < z| < |Fn|, 0 < |y| < |Fm-1), |z| + |y > Frn and m €
{3,4,...,n — 3} are covers of zF,,,_1 Frn Foy ,if Fy, is a cover of F,,
or covers of zFy, 1 F,, Fiy otherwise, and hence covers of C(Fy) in
both cases.

¢ Seeds of form zF,_ oy where = a suffix of F,,_; and y a prefix of
Fo_s5Fn_q such that 0 < |z} < |Fh—2|, 0 < |y| < |Fh—3] — 1 and
|| + |y| > |Fn_3]| are covers of zF, F;,_2y and hence covers of C(F},).
When y = Fr_sFn_4 or Fi_sF,_4[1..|Fn_4| — 1] the seed fails to
cover zF, F,, oy, the first F,,_; of F,, cannot be expanded further to
the right. Trying to force an overlap of zF;,_2y to the left of F,, F, _5y
gives the superstrings zF,,_3Fo F,._oy and zF,,_oF;,_sF Fy,_ay (con-
sider the occurrences of F,_4 in F,,), which are not made of suffixes
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of F,, as clearly F,,_3 and F'n — 5 are not borders of F,, (Lemma 5),
and so they are not covers of C(Fy,).

O
Corollary 5. The number of covers of C(F,) is Q(|C(Fy)|?).

5 Bounds on the number of seeds of a string
It is easy to see that the number of seeds a string z is bounded above by
1=?

-
Theorem 6. The number of distinct seeds of a nonempty string z is at
most ﬂ%—"—ll, where [z| = n.
Proof. The number of non-empty factors of z is n + (3) = 1‘—("2—“2 O

We have seen that the number of seeds a Fibonacci string F, is Q(|F|?)
(Theorem 4). The following theorem proves that as n — +oo the ratio of
the number of distinct seeds of F,, to the square of its length converges to

%”-&l = 0.100813061875578. .., i.e. still not very close to -%

. Seeds(F,) ¢*+1
Theorem 7. nl{r_{noo TACEERTS
Proof. Summing all the seeds of Theorem 4 and considering only the quadratic
terms we get:
. Seeds(F,)
Hm EAE
"2‘:3 |Fm|? + 2| Fon| o

nli’l'm 2|2

— % 2|I'-'m|2 + |Fm+l|2 |Fm—2|2

h nl{Too Zo 4|F, |2

_ 2| Fos||Fa—2| + | Fn—2||Fn-1] — |Fa-s|Fn-4]
n—++oo 4|F |2

(as 3o IFi? = | Full Fasal)

= lm 4F, |2(2|Fn-3”F —2| + [Fa-2|(1Fn—2| + |Fn-3)
~(21Fn-s| ~ |En2[)(IFa—2] — |Fn-s]))
= lim lFﬂ 2| +|Fn— l
it IP
= 97448"C :
- 2 (as n—l-l)r-lr-loo Fn ) _¢)
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2
‘257

= 0.100813061875578. .. O

6 Conclusion and Future Work

In this paper we have presented our preliminary results on Fibonacci strings,
we have identified all left seeds, right seeds, seeds and covers of every Fi-
bonacci string as well as all covers of a circular Fibonacci string under
the restriction that these quasiperiodicities are also factors of the given Fi-
bonacci string. We were then able to give lower bounds on the number of
distinct seeds of a string. Beyond their obvious theoretical interest, those
results might prove useful in testing algorithms that find quasiperiodici-
ties in strings and giving worst case examples on them or in extending the
above work in general Sturmian strings (the infinite Fibonacci string, a
string which has every Fibonacci string as a prefix, is Sturmian).

References

{1} A. Apostolico and A. Ehrenfeucht. Efficient detection of quasiperiod-
icities in strings. Theor. Comput. Sci., 119(2):247-265, 1993.

[2] J. Berstel. Fibonacci words-a survey. The book of L, pages 13-27.

[3] M. Christou, M. Crochemore, O. Guth, C. Iliopoulos, and S. Pissis.
On the right-seed array of a string. Computing and Combinatorics,
pages 492-502, 2011.

[4] M. Christou, M. Crochemore, C. Iliopoulos, M. Kubica, S. Pissis,
J. Radoszewski, W. Rytter, B. Szreder, and T. Waleir. Efficient seeds
computation revisited. In Combinatorial Pattern Matching, pages 350-
363. Springer, 2011.

[5] M. Christou, M. Crochemore, and C. S. Iliopoulos. Quasiperiodicities
in Fibonacci strings. In Local Proceedings of the 38" International
Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM 2012), 2012.

[6] W. Chuan and H. Ho. Locating factors of the infinite Fibonacci word.
Theoretical computer science, 349(3):429-442, 2005.

[7] L. Cummings, D. Moore, and J. Karhumaki. Borders of Fibonacci
strings. Journal of Combinatorial Mathematics and Combinatorial
Computing, 20:81-88, 1996.

224



[8] X. Droubay. Palindromes in the Fibonacci word. Information Process-
ing Letters, 55(4):217-221, 1995.

[9] A. Fraenkel and J. Simpson. The exact number of squares in Fibonacci
words. Theoretical Computer Science, 218(1):95-106, 1999.

[10] C. Hliopoulos, D. Moore, and W. Smyth. A characterization of the
squares in a Fibonacci string. Theoretical Computer Science, 172(1-
2):281-291, 1997.

[11] C. Iliopoulos, D. Moore, and W. Smyth. The covers of a circular
Fibonacci string. Journal of Combinatorial Mathematics and Combi-

natorial Computing, 26:227-236, 1998.

[12] C. Iliopoulos and K. Park. A work-time optimal algorithm for comput-
ing all string covers. Theoretical Computer Science, 164(1-2):299-310,
1996.

[13] C. S. Iliopoulos, D. W. G. Moore, and K. Park. Covering a string.
Algorithmica, 16:289-297, Sept. 1996.

[14] T. Kociumaka, M. Kubica, J. Radoszewski, W. Rytter, and T. Walen.
A linear time algorithm for seeds computation. In Proceedings of the
294 Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1095-1112. SIAM, 2012.

[15] Y. Li and W. Smyth. Computing the cover array in linear time. Algo-
rithmica, 32(1):95-106, 2002.

[16] M. Lothaire, editor. Algebraic Combinatorics on Words. Cambridge
University Press, 2001.

(17} M. Lothaire, editor. Appplied Combinatorics on Words. Cambridge
University Press, 2005.

(18] D. Moore and W. Smyth. An optimal algorithm to compute all the
covers of a string. Information Processing Letters, 50(5):239-246, 1994.

[19] G. Richomme, K. Saari, and L. Zamboni. Balance and abelian com-
plexity of the tribonacci word. Advances in Applied Mathematics,
45(2):212-231, 2010.

[20] S. Rosema and R. Tijdeman. The tribonacci substitution. Integers:
Electronic Journal of Combinatorial Number Theory, 5(3):A13, 2005.

[21] B. Tan and Z. Wen. Some properties of the tribonacci sequence. Eu-
ropean Journal of Combinatorics, 28(6):1703-1719, 2007.

225



