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Abstract Multi-receiver authentication codes with dynamic sender
(DMRA-codes) are extensions of traditional group communication
system in which any member of a group can broadcast an authen-
ticated message such that all other group members can individually
verify its authenticity, and some malicious participants of group can
not successfully impersonate the potential sender, or substitute a
transmitted message. In this paper, a construction of DMRA-code
will be given using linear code and its unconditional security is also
guaranteed.
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1 Introduction

With the development of information technology, traditional point-to-point
message authentication systems have been extensively studied in the liter-
ature. In this paper, we consider authentication for group communication.
As we all known, many schemes have been proposed by several researchers
to provide authentication to secure group communication. Y.Desmedt and
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R.Safavi-Naini developed a series of authentication schemes in [1-2] which
consider a single transmitter who is fixed before hand. Safavi-Naini and
Wang extended the schemes in [3-4] and they relaxed the restriction that
the sender is fixed before hand and introduced a dynamic sender concept in
which any one of the users can become the sender. In [5], they dropped the
restriction of a single dynamic sender and developed a scheme for the situa-
tion with ¢ senders. In [6-7], Aparna and Amberker constructed some secure
authentication codes with dynamic senders, which promoted the growth of
group communication in further. In this paper, a new construction of
multi-receiver authentication code with dynamic sender (DMRA-code) will
be proposed, the parameters and maximum probabilities of success in var-
ious attacks are also computed.

In this paper, let GF(g) be the finite field with g elements, where g is a
power of a prime. We use GF(q)’c to denote the k-dimensional row vector
space over GF(q). The set of all non-zero elements of GF(q)* is denoted

as GF(q)k‘.

The rest of the paper is organized as follows. In section 2 we describe
the models of multi-receiver authentication codes with dynamic senders
(DMRA-code). In section 3 we give the calculating formulas of the prob-
ability of attacks which are from a group of receivers who have access to
part of the key information. We present, in section 4, a new construction
of DMRA-code and the bounds. Finally, we conclude the paper.

2 The Models of DMRA-code

In this section, we study MRA-codes with dynamic senders. We consider
the scenario where there is a group of k users U = {U;,Us,---,Ux} and a
KDC who only runs the keys distribution of participants. In this model,
because every user can be a sender as well as a receiver to other users, so the
keys of each user have also dual functions which can not only encode but
also decode messages. Let C; = (S, E;, M;; fi, 9i;) (7 # i) be authentication
codes of user U; and Uj, where {i,5} C {1,2,---,k}, fi : S x E; — M;
be authentication algorithm of user U;, gi; : S x E; — M; be verification
algorithm of U;. For authenticating a message, every user should comply
with protocols:

(1)Key Distribution: The KDC randomly chooses a encoding rule eeE
and applies some key distribution algorithms to generate a key e; for each
user Uj;, then secretly sends e; to U;. In addition, KDC also generates k
distinct values a; which are public knowledge as identity information for
user U;, (1 =1,2,---,k);
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(2)Broadcast: If a user U; wants to send a source state s to others,
U; computes m; = fi(s,e;) and sends (s,m;) to others with his identity
information a;;

(3)Verification: A user U; (j # %) uses his verification algorithm g;; to
accept or reject the received codeword. That is, he checks the authenticity
by verifying whether m; = g;i(s,e;) or not. If the equality holds, the
message is authentic and is accepted. Otherwise, the message is rejected.

We assume that the system follows the Kerckhoff’s principle which ex-
cept the actual used keys of each user, the other information of the whole
system is public. This includes the uniform probability distribution of the
source states and the keys of users.

3 The calculation formulas

In the whole system, we assume U = {U;,Us,---,Ux} (k 2> 3) are a group
of users, S is the source state space, E; is the encoding rules set of user U;
and M; is the message space of user U;, (1 <i < k).

To assess the security, we consider the probabilities of success in various
attacks. Attackers could be outsiders who do not have access to any key
information, or insiders who have part of key information. We only need
to consider the latter group as it is at least as powerful as the former. We
consider the system to protect against the coalition of groups of up to a
maximum size of users, and study impersonation and substitution attacks.

Let L be a subset of {1,2,---,k} with |[L] =w—1 (w < k—1). Without
loss of generality, let L = {1,2,---,w—1}, denote Uy, = {Uy,Us,---,Uw_1}
andEL =E1 X E2 Xoeee XEw_l.

In the impersonation attack, Up collude and try to launch an attack

against a pair of users U; and Uj;, by generating a message such that U;
accepts it as authentic and as being sent from U;. It can be expressed as

"rtréaﬁi | {e; € Ej | ej € m,p(er,e;) # 0} |

Pi(i,5) = max
10 = Bt | {e; € By | plec,e;) # 0} |

P; is the best probability of all such attacks and is defined by Pr =

r{na)}c Py(i,7), where LU{4, j} runs through all the w+1-subsets of {1,2,-- -, k}.
"J

In the substitution attack, after seeing a valid message m broadcasted
by U;, the collaborators Uy, construct a new message m' (m' # m) such that
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U; will accept m’ as being sent from U;. We denote the success probability
in this case by

Ps(i,j) =
max |{e;€Ej|e;Cm,e;Cm’,p(er e;)#0}
max max max { "o M
eL€EL,{3,j}Z L e;€EE; &;Cm I{e;EE;|e; Cm,p(eL,e;)#0}] !

and the best probability of all such attacks by Ps = r{na.)}c Ps(i, ), where
1,

Lu {i, 3} runs through all the w + 1-subsets of {1,2,---,k}.

Notes: (1) p(er,e;) # 0 implies that any source state s encoded by ey,
can be authenticated by e;. (2) e; € m implies that m can be verified to
be authentic by e;.

4 Construction and the Bounds

Safavi-Naini and Wang [3-4] gave two constructions of DMRA-code based
symmetric polynomials, they also showed that the latter one is optimal and
has the minimum number of keys set E; for each user U; and the shortest
length of the authenticated message M;. So far, there is no other optimal
construction. In this section, a new construction of DMRA-code will be
proposed based linear codes and that the construction would result in new
optimal system.

Let the set of source states be S = GF(g)\{—1}; the set of i-th user’s
encoding rules E; = {e;|e; € GF(q)* x GF(q)k*}; the set of the authenti-
cated message M; = {m;|m; € C} C GF(q)", where C = [n, k] is a linear
code over GF(g). A k x n matrix G over GF(q) is called a generator ma-
trix of C if its row vectors generate the linear subspace C and G is publicly
known.

Define the encoding map of each user U; (i =1,2,---,k) as

fi: S x Ei — M, fi(s,e:) = (6 + s%:)G (1<i<k),
where e; = (6;,v:) € E;.
The decoding map of each user U; with another user U; as

gij : S x By — Mj, gij(s,e:) = [(8: + s7:) + (1 + s)(a; — a:)]G,

where a;,a; € GF(q)k and 7 # j.
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This code works as follows:
1.Key distribution phase

(1)The KDC randomly chooses an (u,v) of C x C* and assumes u =
(u1,uz," -, %n),v = (v1,v2,"*-,vp). Then he calculates (a3, B1) satisfying
01G = u, B1G = v, that is (a1, ) € GF(q)* x GF(q)*;

(2)The KDC randomly selects k distinct elements by, bz, - - -, bx of GF(q)k'
and computes §; = a; + b;, ;i = B1 + b; such that v; #0,i=1,2,.--,k.
Then he privately transmits e; = (8;,7:) to user U; for each 1 < i < k,
which consists of the secret key of Uj;

(3)KDC also randomly chooses bp € GF (q)k* and calculates values
a; = bp + b; which is public knowledge and is used as identity information
for user U;, (i =1,2,---, k).

2.Broadcast phase For 1 <i <k, assume user U; wants to construct
an authenticated message for a source state s € S. U; computes m; =
fi(s,e:) = (6; + s7v:)G and sends (s, a;, m;) to all the other users.

3. Verification phase The user U; (j # i) can verify the authenticity
of the message in the following way. U; accepts (s, ai,m;) as authentic being
sent from U if g;i(s,e;) = [(§; + 57;) + (1 + s)(a; — a;)]G = my, otherwise,
he rejects it.

For the sake of simplicity, we assume that after the key distribution
phase, each user can only send at most a single authenticated message.

Next, we will show that the above construction is a well defined DMRA-
code.

Lemma 4.1 Let C; = (S, E;, M;; fi), then C;(1 < i < k) is an A-code.

Proof. For any s € S, e; € E;, we assume that e; = (d;,;), then
fi(s,€) = (6; + s7:)G = m; € M;; Conversely, for any m; € M;, choose
€ = (61'.’ 'Yz) € Eia let fi(sv ei) = (61 + S’Yi)G = m;, then 61G =m; — s’YiG~
Because m; is a codeword, so m; — sv;:G is also a codeword. Thus there
must exist a §; € GF(q)k satisfying f;. It means that f; is a surjection.

If s’ € S is another source state satisfying m; = fi(s’, &;), then (d; + 8'7:)G
= (0; + 57;)G, thus (s — ¢')v;G =0. Asv; #0, %G # 0 and s = s’. That
is, s is the uniquely source state determined by e; and m;. So C;(1 <i < k)
is an A-code.

Lemma 4.2 For any valid message m = (s,a;,m;) from user Uj,
U; (7 # 1) will accept it.

Proof. For any valid message m = (s, a;,m;) from user U;, there must
exist e; = (J;,7;) € E;, such that m; = (8; + s%;)G. According to the given
protocol, we can get §; = a3 +b;, vi=P1+b;anda; =bo+b;, 1 <i <k,
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where (a;, 81) € GF(g)* x GF(g)* and (bo, b;) € GF(q)*" x GF(q)*". Thus

mp = [(a1 +b)+s(B+ b)]G

[(ca + sp1) + (1 + 8)bi]G

[(@1 + b5) + 5(B1 + bs) + (1 + s)(b: — b5)]G
(65 + 575 + (1 + 8)((a: — bo) — (a; — bo))IG
= [§; + 57 + (1 +5)(a: — a)]G,

where e; = (d;,7;) € Ej is the key of user U;. It means that message
m = (s, a;, m;) could be verified by user U;. So U; will accept it.

From Lemma 4.1 to Lemma. 4.2, we can see this construction is well de-
fined. Next, we will compute the parameters and the maximum probability
of success in various attacks.

Theorem 4.1 The parameters of constructed authentication code with
dynamic sender are: |S| = q — 1;|Ei| = ¢*(¢* — 1);|M;| = |C| = ¢*.
Proof. The result is straightforward.

Lemma 4.3 For any fixed e, = {(81,71), (§2,72), -+, (bw—1,Yw-1)} €

Ey, where (8;,7:) € GF(q)*xGF(q)*",(l =1,2,--,w — 1), let the number
of e; which is incidence with e;, be a. Then a = ¢* — (w + 1).

Proof. For any fixed ez = {(d1,1),(02,72),"**» (w~1,Yw—1)}, ac-
cording to the given protocol, we can get & = a3 + by, v = B1 + by,
(!=1,2,---,w—1) for a common and fixed (o1,51) € GF(q)* x GF(qg)*.
That is, (6;,7) is only determined by b; of GF(g)*". Let e; = (05,75),
then e; is mmdence with ey, if and only if §; = ay + bj, 7; = B1 + b;. As
b; EGF(q) ,bj # —B1 and b; # b, (I =1,2,---,w — 1), the number of
b is q —(w + 1). It means that the number of e; which is incidence with
eLisgt —(w+1). Soa=¢* —(w+1).

Lemma 4.4 For any fixed ef = {(d1,71),(92,72), -, (bw—1,Yw-1)} €
Ey, where (8i,m) € GF(q)* x GF(g)*",(1=1,2,---,w—1), m € M;,
where m is generated by collaborators Uz, who want to send it to U; with
the identity information of U;. Let the number of e; (j # ¢) which is inci-
dence with e; contained in m be ¢. Then c=1.

Proof. Let e; = (8;,7;), m = (s,a;,m!) generated by collaborators
Up. For any fixed er, = {(61,71), (62,72)," s (dw—1,Yw—1)}, similarly, we
canget =0y + b, =01 +b, ({=1,2,.--,w—1) for a common and
fixed (a1,81) € GF(q)* x GF(q)*. If ¢; is incidence with ey, then

0; = a1 +bj, v;=p51+bj,

for some b; € GF(q)*".
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Again, e; C m, then

(85 + s73) + (1 + s)(ai — a;)]G = m;.

By combining the above equations, we can get

[(e1 + b5) + s(B1 + bj) + (L + 8)(a; — ay)]G
= [(1+8)b; + (01 + sB1) + (1 + s)(a;: — a;)]G =m.

As m! is a codeword, there must uniquely exist a § € GF(q)* satisfying
that

(l + s)bj -+ (011 + sﬁl) + (1 + s)(a; — aj) =§,
thus

(1+ 8)bj = & — (o1 + 1) — (1 + s)(a: — aj).
Because (a;,a;), (e1,01) and (s,§) are fixed and s # —1, so b; is only
determined by them. That is, the number of e; which is incidence with e;,
contained in m is only one. Then ¢ =1.

Lemma 4.5 For any fixed e = {(61,71 (62,72), -+ » (Ow—1,Yw-1)} €
EL, where (8;,m) € GF(q)* x GF(q) ,(l =12,---,w—-1), m € M;,
where m is sent by user U; who want to broadcast it to other users. Let
the number of e; which is incidence with ey contained in m be d. Then
d=g~ - (w+2).

Proof. Let e; = (6;,7;), m = (s,ai,m;) sent by user U;. For any
fixed €L = {(61,7l)v (62v 72)1 T 7(6‘0—1) 'YW—I)}a from Lemma 4°3a we can
gety=a;+b, =0 +b, (l=1,2,---,w—1) for a common and fixed
(a1,B81) € GF(g)* x GF(q)*. That is, (61,7:) is only determined by b; of
GF(q)*". If ¢; is incidence with ey, then

dj =ay +bj, v =505 +bj,

for some b; € GF(q)*".

Again, we have known that e; C m and m is encoded by e;, the key
of user U;, which means that e; is incidence with e;. Let e; = (d;,v:),
similarly, we can see that ¢; = a; + b;, v =01 +b;.

By combining the above conclusions, it is easily to get b; # —f1, b; # b
and b; # bi, (1 =1,2,--,w—1). Also, b; € GF(q)*", then the number of b;
satisfying the above requlrements is ¢* — (w+2). That is, d = ¢* — (w+2).

Lemma 4.6 For any fixed ey = {(61, 1), (82,72), -+, (bw-1,w-1)} €

Ev, where (6;,1) € GF(q)* x GF(q)*",(1=1,2,---,w—1), m € M,,
m' € M; (m’ # m), where m is sent by user U; and m’ is generated
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by collaborators Uz, who want to send it to user U; with the identity infor-
mation of U;. Let the number of e; which is incidence with e; contained
both in m and m’ be f. Then f =1.

Proof. Let e; = (§;,7;), m = (s,a;,m;) and m' = (s, a;,m}) (s #
s'). For any fixed ex = {(d1,71), (02,72)," * *» (bw—1,Yw—1)}, similarly, we
canget oy =oy +b, i=F1+b,(1=1,2,---,w—1) for a common and
fixed (a1, 51) € GF(q)* x GF(g)*. It means that (d;,v;) is only determined

by b € GF(q)k‘. If e; is incidence with e, then
dj=on+bj, v;=p+bj

for some b; € GF(q)*". Again, e; € m and e; C m’, then from the given
protocol, we can see that

(85 + sv;) + (1 + s)(ai — a;)]G =m;

and
(85 + s"v5) + (1 + §')(ai — a5)]G = m;.

By combining all the above conclusions, we can get
(1 +b5) + s(Br + b5) + (1 + s)(as — a5)]G = my

and

[(e1 +8;) + 5'(B1 +8;) + (1 + ') (a: — 05)]G = mi.
Because both m; and m/ are codewords, so there must exist two fixed values
(01,02) satisfying that

ar +b; + (61 + ) + (1 + s)(ai —a;j) =0

and

o1 +b; + S’(ﬂ1 +b)+(1+ s')(a; — a;) = o9,
where (01,02) € GF(q)* x GF(q)*. Hence, (s — s')(B1 + b; + a; — ;) =
01— 02. Ass# 8, Bi +bj +a; —a; = (s — §')" (01 — 02). Also, a;, a;
and B, are fixed, so b; is only defined. That is, the number of e; satisfying
all the above requirements is only one. Then f = 1.

Theorem 4.2 In this authentication code with dynamic sender, if
the encoding rules of users are chosen according to a uniform probability
distribution, then the largest probabilities of success for different types of
deceptions are P; = qk_(lw +1) @nd Ps = m.

Proof. (1) From Theorem 4.3 and Lemma 4.4, we know that the
largest probability of w— 1 malicious users’ successful impersonation attack
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is

Pr(i,5) =
max I{eJ €Ejle;Cm,p(eL,e;)#0}|
,LGE‘S,%,?S,}(ZL{ *|{es€E;lp(er e5)#0}] }

= E—Zw+15

Qo

(2) From Lemma 4.5 and Lemma 4.6, we know that the largest prob-
ability of w — 1 malicious users’ successful substitution attack is

PS (7‘1.7) =
'"# I{eJ €E;le;Cm,e;Cm’,pleL ,e5)7#0}
eLGEI:l,?ifj}¢L glea%c. glgascn |{eJ GEjle,Cm,p(eL,e,);ﬁOH )

f— 1
T d T gk—(w+2)

Obvnously, both Pr(i,j) and Ps(i,j) are constants, so Pr = P(3,j) =
d—(wt1) 204 Ps = Ps(i,5) = gu_us)-

Compared with the construction of R.Safavi-Naini and H.Wang[4], we
see that in this model the size of each user’s key is |E;| = g*(g* — 1) > ¢**
for all 1 < ¢ < k, and the size of codewords is |M;| = |C| = ¢* > ¢*|S].
At the same time, it is easily to see that P; < ! and Ps < (11. That is,
the beat chances of success in the corresponding attacks are more reduced
than [4].

5 Conclusion

Multi-receiver Authentication codes with dynamic sender (DMRA-code)
are interesting and important cryptographic primitive in secure group com-
munication. In this paper, we mainly gave a new construction of DMRA-
code using linear code and derived related bounds. In addition, according
to the above results, we can see that it is more optimal than the result
of [4]. Also, there are many applications for such system, such as group
communication of conference system, airline travel, network security etc.,
where members of a group want to broadcast messages such that every
other group members can verify the authenticity of the received messages.
Of course, they are interesting open problems, which need us to do further
research.
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