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§1. Introduction

The graphs throughout this paper are finite simple without loops or
multi-edges. All terms are standard and follow from Bondy’s book[BM].

Tutte’s 1-factor theorem shows that a cubic graph without a cut-edge
must contain a 1-factor (or perfect matching as some scholars named). But
what about the number of 1-factors of such graphs? In this field, Lovasz
and Plummer conjectured that there are exponentially many 1-factors in
such graphs[LP]. Since then, this conjecture has challenged every one in
graph theory and some important progresses are made.

(1) Edmonds, Lovasz and Pulleyblank showed that there are at least
1+ B(G) 1-factors in a cubic bridge-less graph G [ELP], where 8(G) is the
Betti number of G.

(2) Kral, Sereni and Stiebitz improved this bound to § + 2 [KSS].

(3) Voovhoeve solved this conjecture in the case of bipartite graphs [V).

(4) Shrijver extended the above result to k-regular bipartite graphs [S).

(5) Very recently M. Chudnovsky and P. Seymour proved this conjecture
for planar cubic graphs [CS].

Here in this article we consider the number of 1-factors and edge-
colorings in the Mdbius ladder graphs C(2m, m) which is formed by intro-
ducing a chord (%,i+m) on a 2m-cycle C = (1,2,3,---,2m) for 1 <i < 2m
where the sum is under modular 2m.. What surprises us most is that the
number of 1-factors in C(2m, m) can be expressed by the famous Fibonacci
series, i.e.,

Theorem 1. Let h(m) denote the number of 1-factors in the Mébius lad-
der graphs C(2m, m) (m > 2). Then

_ [ fm)+2f(m-1)+2, m=1(mod2), (1)
h(m) = { F(m) +2f(m 1), m = 0(mod2). (1)

where {f(m)} is a Fibonacci series with the condition
{ fm)=fm-1)+f(m-2), m=>3 (2)
f)=7@2)=1 (2')

Corollary 1. The number of 1-factors in the Mébius ladder graphs C(2m,m)
(m=>2)is

b _ [ f(m)+2f(m—-1)+2, m = 1(mod2), (3)
(m) = { f(m)+2f(m -1), m = 0(mod2). 3"
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where f(m) = Je{(255)" ~ (155)"}(m 2 2)

This result differs from that of (1)-(5) since the Mébius ladder graphs
C(2m,m) may be nonbipartite and nonplanar. Further more, we study
the number of 3-edge-colorings of Mébius ladder graphs C(2m,m) ( i.e.,
the number of 1-factorizations in such graphs ) and show that the number
of ( proper ) edge-colorings of the Mobius ladder graphs C(2m,m) is also
exponentially large. More precisely, we obtain the following

Theorem 2. The number of (proper) edge-colorings of the Mobius ladder
graphs C(2n,n)(n > 2) is

(n) = { 22" —(-1)" 1) +6, n=1(mod2), (4)
= 22" — (=1~ N, n = 0(mod2). (4"

In the history of solving of the famous Heawood Conjecture in coloring
graphs on general surfaces, all the triangular embeddings for the complete
graph K, are "men-made” (i.e., induced from current graphs with few in-
dexes ). One may asks that what does these triangulations look like? One
may readily see that a Mdbius ladder graph is a underline graph of a type
of current graph by Youngs. Therefore, current graphs will certainly have
some actions on their triangular embeddings. There should exists some
connection between current graphs and triangular embeddings of complete
graph Kiomi7. We show that a current graph has great influence on
the combinatorial structures of the corresponding triangular embeddings
of Kyom47. As applications, we have the following

Theorem 3. A current graph (by Youngs or Ringel) is bipartite if and
only if the dual of the corresponding triangular embedding for Kiom47 is
bipartite. Further more,a 8-edge-coloring of a such current graph will imply
a Grunbaum coloring of the corresponding triangular embedding of K1am47.

As we had shown|RG] that a simple 3-regular graph G of order n may
have at least 27=7%()(> ¥22%) distinct maximum genus embeddings,
where vas(G) is the maximum genus of G, and each index 1 current graph
of Youngs will induce at least one oreintable cyclic triangular embeddings
of K19m47,we have )

Corollary Ko7 has at least -29—‘;%': triangular embeddings such that

(1)The dual of such embeddings are of 3-regular nonbipartite;(2)Each of
such embeddings permits o(4m + 2) = 2(24™+! — 1) Grumbaum colorings.

239



§2. Proof of Main Results

In this section, we shall prove Theorems 1 and 2. We first consider the
validity of Theorem 1.

Proof of Theorem 1. Let the vertices of the M&bius ladder graphs
C(2m,m) be listed as

Z1,22," 1y Tmy Tty * 'y T2m

It is easy to see that the result stands for smaller natural number.So
assume that the integer m > 4 in the following discussions. Now every 1-
factor f of C(2m,m) contains one of the three edges z1%m41, 2122, Z1T2m-
Let fi(m) and fa(m) denote, respectively, the number of 1-factors of C(2m, m)
containing the edge z,z,,+1 and the edge z;z2. By symmetry, the number
of 1-factors of C(2m, m) containing the edge z;za,, is also fa(m). There-
fore, the number of 1-factors of C(2m,m) is

h(m) = fi(m) + 2f2(m).
Case 1 1-factors containing the edge £1Zm41.

It is clear that the 1-factors containing «Z,,41 are determined by those
of C(2m,m) — {1, Zm+1}(as shown in Fig.1).

Tm+2 To

Tm43 3

Tom Tm-1

T2m Tm
Fig.1

One may readily see that there are m — 1 horizontal edges in G(m — 1)
= C(2m, m) — {z1,Zm+1}. Let g(m-1) denote the number of 1-factors of
G(m —1). Then its 1-factors contain either the edge zoz3 or zoTpmyz. If a
1-factor contains the edge 2Tm 42, then G(m —1) — {z3, Tm12} = G(m—2)
which has g(m-2) 1-factors; if a 1-factors contains the zyx3, then it must
contains the edge Zm+2Tm+3, and G(m—2) —{z3, Tm+3} = G(m—3) which
has g(m-3) 1-factors. Hence, we obtain a recursive relation for {g(m)},

g(m —1) = g(m —2) + g(m — 3) ()
g(1) =1 (5")
g(2)=2 (5")
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which implies that {g(m)} is a Fibonacci series and
fi(m) = g(m —1) = f(m)

Case 2 1-factors containing the edge z1T2.

It is clear that any 1-factor of C(2m,m) containing z,z» is determined
by those of C(2m,m) — {z1,z2}(as shown in Fig.2).

Tm+2 Tm+1
Tm+3——e T3
T2m Tm—1
Tm Lo
Fig.2

If a 1-factor contains z1Z5 and ZTy41Zm, then there is exactly one of
such a 1-factor provided m = 1(mod2); if m = 0(mod2), there is no such
1-factor contains both of the edges z1z2 and z,, T, +1. If a 1-factor contains
both of the edges ;72 and T4 1Tm+2, then

G(m - 2) = C(2m,m) — {Z1, T2, Tm+1, Tm+2}
will have g(m —2) many 1-factors. By our reasonings in Case 1, g(m—2) =
f(m —1). Hence

_ [ fm=-1)+1, m=1(mod2) (6)

fam) = { Fim=1) m = 0(mod2) (6")

Now substitute f;(m) and f2(m) into h(m) = fi(m) + fa(m), we have
the following formula:

h(m) = { fm)+2f(m—-1)+2, m=1(mod2), )

| f(m)+2f(m—1), m = 0(mod2). (7')

This ends the proof of Theorem 1.

In the following, we shall prove Theorem 2.

Proof of Theorem 2. Let o(n) denote the number of (proper) edge-
colorings of the Mobius ladder graphs C(2n,n), where the color-set is
{1,2,3}. We still draw C(2n,n) in the projective plane as show in Fig.3
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Z Y1

Y2

z: Ys

Fig.3 .

Let the edge z;zi41 = pi, Yi%is1 =g¢1i,$iyi =r,1<i<n—1z,y; =
Pry¥nZT1 = Gn,ZTnYn = Tn. We use 7(n) to count the number of edge-
colorings of C(2n,n) such that the color of the edge 7, is ¢(r;) = 1, here
c(e) indicates the color received by the edge e. Then we have
Claim 1. o(n) = 37(n).

Next, we shall determine the value of 7(n) (i.e. determining of the
number of edge-colorings such that ¢(r;) = 1). There are two situations to
be considered (i.e. ¢(p;1) = ¢(g1) or not).

Case 1 c(p1) =c(q1)-

We use 71(n) to denote the number of edge-coloring of C(2n,n) with
c(r1) =1 and ¢(p1) = ¢(q1). (Obviously 72(n) counts those of ¢(r;) = 1 and
c(p1) # c(q1)). Then ¢(p;) = c(q1) € {2,3}. Let a(n) to count the number
of edge-colorings of C(2n,n) such that ¢(r;) = 1,¢(p1) = ¢(q1) = 2).Then
we have the following
Claim 2. 7,(n) = 2a(n).

Now c(p2) = e € {1,2,3} — {2} and ¢(rz) = a € {1,3} — {a}, and so
¢(g2) = a. In general, we obtain the following
Claim 3. ¢(p;) = c(g;:),1 <i < n.

Let A, be the set of integer series {ay,a2,--,a,} with
a1 =2,a;41 € {1,2,3} - {a.i},l <i<n-1.
Let B, and C,, be the subsets of A, such that

Bn = {{01,0.2’ Ve ,an} € A,.Ia,, = 3}

Cn= {{61,0.2, v aan} € Anlan =1lor 2}.

The following property says that B, almost determines the edge-colorings
of C(2n,n).

Claim 4. The number of edge-colorings of C(2n,n) satisfying ¢(r;) = 1
and c(p1) = (q1) = 2 is | Bu| = a(n).

242



Proof. Let ¢ be an edge-coloring of C(2n,n) as defined above, Then
sy =¢(p1) = 2,80 =¢(pn) = 3,8 = c(pi), 8i # si41,1 S S -1

Therefore, {s1,52,-**,5n} € Bn.

Conversely, let {s;,52,"*,3n} € Bn. We may define an edge-coloring ¢
of C(2n,n) as follows:

c(p.-) = C(Qi) = a;,c(ri) =z€ {ls 2, 3} - {ai—l, ai}, (aﬂ-l'l = al).

It is easy to see that ¢ is a proper edge-coloring of C(2n,n) such that

a1 = c¢(p) = ¢(q1) = 2,8, = 3 = c(pn) = c(gn), c(r1) =1

Claim 5. |Cy| = [Cnei] + 2|Cn—2l, |Bn| = |Bn_1] + 2|Bn_a|

Proof. Let {aj,az2,---,ak—1,ax} € Bx. Then ax = 3 and ar—; €
{1,2}. Hence, |Bi| = |Ck-1|- Let {a1,a2, :,ak—1,ax} € Ci. Then
ax € {1,2} and ax—; € {1,2,3} — {ax}. If ax_; = 3, then there are 2|B;_,|
subsequences in Ck; if ax—1 € {1,2} — {ax}, then there are |Cr_1| subse-
quences in Cy, Hence, |Cx| = 2|Bi—1| + |Ck—1|. Substitute |Bi| = |Cr_1]
into |Cp| = 2|Bn-1| + [Cn-1, the results follows.

Solving the recursions in Claim 5, we obtain the following

1Bl = 3(2° = (=1)") (n.2 2)

r(n) = 2la(n)] = 2Bal = 32" ~ (-1)")

Case 2 c(p1) # c(q1)-

Under this assumption, there are exactly 2 edge-coloring of C(2n,n)
provided n = 1(mod2) and no proper edge-coloring of C(2n,n) whenever
n = 0(mod2).

Based on the above analysis, we arrive at

%(2"-1 (=) 42, n=1(mod2); ®)
7(n) = 9
§(2""l —(=1)"), n = 0(mod2), (8"

which implies that the number of proper edge-colorings of C(2n,n) is
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(n) = { 22" = (=1)"1)+6, n=1(mod2); (9)
TEE g2nt — (1), n = 0(mod2). @)

§3. Applications in graph embedings

In this section we shall discuss the relationship between current graphs
and triangular embeddings of K)2/m47. Readers may refer Ringel’s mono-
graph[GR] for the concepts and terminologies.

Claim 6 There are two types of current graphs designed by Youngs and
Rigngel, respectively, (as depicted below).

5s+4 5542 4s+4 6543
5s+3 4s+3
2s5+1
1 2 2s-1 2s
3s+2 — s+2
3s54-3 3s+1 2543 4542
Fig.4
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A 4m+2  8m+2  4dm+3  Bm+l  dmid Sm+l Tm43  Sm+2  Si+3  1lm42  Smid 10m+1  10m+d4  10m+2  10m+3  12m+3 B
2 '7 < 7 T jrd d i 2 - « - 3
- g 8 -4 z 2 £ &
- - - g E ; o~ o
B 12m+3 8m+3 12m+3 8m+4 12m+1 ST 1lm+e Sm+2 1lm+3 Tm+2 Sm+3 Tm+1 Tt om44 6m+) 6m43 6m+2 4m+32 A
Fig.5: Orientable current graph for n = 24dm +7,m > 2
PN
w
A 4m4+ 3 8m+ 7 12m+ 7 8m+ 8 13m+ 6 lm+9 Sm+ 6 1lm+ 86 7m+6 6nt 6 7mt S 6m4 8 Om+d O6m+ 7 10m+ 8 10m+ 7 13m+ 8 12m+410 B
- S-S B L - M S S-S S -
- g E 13 o g g
£ g H & & g s L &
B 12m+10 8m+ 6 dwm+ 8 Bm+5 4m+ 7 6m+4 7Tm+7 bbm+5 Sm+ 7 AMm+? Om+ 8 *** T0m+6 10m+9 10m+ 6 6m+5 Om+6 4m+5 4m+3 A

Fig.6: Orientable current graph for n = 24m +19,m >3



It is clear that the underline graph of the current graph by Youngs is a
type of nonbipartite and nonplanar Mdbius ladder graph. Although these
two types current graphs induce triangular embeddings for the same graph
Ki2m47, such embeddings may have different combinatorial structures.

Claim 7. A current graph(as depicted before) is bipartite if and only if
the corresponding triangular embeddings is 2-face colorable. Further more,
if a current graph has a 3-edge-coloring, then so does the dual of the cor-
responding triangular embeddings (i.e., such triangular embedding permit a
Grunbaum coloring).

Proof. Let (K,Zj2m4+7,A) be an index 1 current graph satisfying the
following conditions

(i) there is exactly one 2-cell(called indez 1);

(ii)this 2-cell is an (n — 1)-gon;

(iii) each element of Zy2,,4+7 — {0} appears exactly once as a current on
some (clockwise,say) oriented edge of the (n — 1)—gon;

(iv) K is 3-regular;

(v) the Kirchoff current low (KCL)holds at each vertex.

Let A(ijk) be a triangular face of Ki2m47. Then its local situation is
shown below

Fig.8

When one walks around A ingcounter-clock way, by KCL one may
imagine that the weight of the oriented edge ji is A(ji) = j — . Similarly
we have A(ik) = i — k,A(kj) = k — j, each of which are distributed on
three edges sharing the same vertex in the current graph. Let A’ = (ikl)
be another triangular face sharing a common oriented edge ik with A(ijk).
Since ik is on the common boundary of A and A/, these two triangles
determines the two ends of the with current A = i — k in (K, Z12m47, A).
Thus, when one moves from a triangle A(ijk) to the next onessay A/ =
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(ikl), the corresponding walk on (K, Zi2m+7,A) is from one end of the
oriented edge having current A = ¢ — k to another.

Claim 8. A closed face-chain (A1 Dz...A) in a triangular embedding of
Kiomyr with E(A)NE(Ais1) # ¢, (1 < i < k) corresponds to a closed
eulerian walk in its current graph and a simple cycle Cy of length k in
(K, Z12m+7,A) determines a simple closed face-chain in the corresponding
triangular embedding of Kiom47.

This ends the proof of the first part of Theorem 3.

Now we begin to prove the second part of Theorem 3. Let C be a 3-
edge-coloring of the underline graph of (K, Z12m47,A) and A = (ijk) be a
triangular face of K}2,,47. As we have indicated before, the oriented edges
are ji,ik and kj such that j—14,i—k and k —1 are, respectively, the current
of three oriented edges ( also denoted as j — 4,7 —k and k—1 in convention)
incident to the same vertex in the current graph preserving KCL. Now we
define a coloring C* such that

C'(ji) = C(j —i) C*(ik)=Cli—k); C*(kj)=Clk—i).

It is easy to check that C* is a Grunbaum coloring of the corresponding
triangular embedding of Kj,+7 and distinct edge-coloring of the underline
graph of a current graph will induce different Grunbaum coloring of the
corresponding triangular embeddings.
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