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Abstract

In this paper we introduce a new kind of two-parameters general-
ization of Pell numbers. We give two distinct graph interpretations
and prove some identities for these numbers. Moreover we define
matrix generators and derive the generalized Cassini formula for the
introduced numbers.
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1 Introduction

The sequences of the Fibonacci type are given by the sth order linear equa-
tion of the form

Gn =b1an—1 +baan—2+... 4+ bstn_; (1)

forn > s, wheres > 2,b; > 0,7 =1,...,s aregiven integers and ag, ..., as-1
are fixed integers. It is clear that for special values of s and b;, where
i=1,...,s the equation (1) gives well-known recurrences. For example
if s =2 and b, = by = 1, then we obtain classical Fibonacci numbers,
usually denoted by F,, and given by the equation F,, = F,,_, + F,,_5 for
n>2 with Fp =F =1 If s=2andb = 2b; =1, then we get
the well-known Pell numbers, denoted by P, and defined by the equation
P, =2P,_1 + P,_3 for n > 2, with Pp =0 and P, = 1. Similarly, if s =3
and b = by = bz = 1, then we get Tribonacci numbers, denoted by T,
and given by the equation T, = T,—1 + Th—2 + T,—3 for n > 3, with the
initial conditions Ty = 0, T} = T3 = 1. Other more or less known examples
of the sequences of the Fibonacci type can be found in [16]. In this paper
we focus on Pell numbers and their generalizations.
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It is worth mentioning that in the literature there are many kinds of
generalizations of Pell numbers with respect to one or more parameters.
Such generalizations have been intensively studied by E. Kili¢ and D Tasci,
mostly by matrix methods (for details see [6]-[9]). An interesting one-
parameter generalization of Pell numbers and their connections with special
number partitions, graphs and the usual Fibonacci numbers can be also
found in (11]-[14]. In [15] a generalization of Pell numbers in a distance
sense is defined. Let us recall this generalization. The generalized Pell
numbers P(k,n) are given by the following recurrence relation

P(k,n) = P(kyn—1)+ P(k,n —k +1) + P(k,n—k) for n>k+1

with the initial conditions P(2,0) =0, P(k,0) =1 for k>3, P(k,1) =1
fork>2 and P(k,n)=2n-2 for 2<n<k.

In this paper we introduce two-parameters generalization of Pell num-
bers which is closely related to the concept of the generalized Pell numbers
P(k,n) .

2 Generalized Pell numbers and their graph
interpretations

We begin this section with a definition.
Let k> 1,t > 1, n > 0 be integers. The generalized Pell numbers
Py (n) are given by the following recurrence relation

Prei(n) = Pey(n—1) + tPeo(n — k) + Pey(n —k —1) (2)

for n > k, with the initial conditions P :(0) = 0 and Pi.(n) = 1 for
n=1,...,k.

Note that setting k = 1 and t = 1 in (2) we obtain classical Pell
numbers P, and for £k = 2 and ¢ = 1 we get Tribonacci numbers T,.
Actually, if t = 1 then Py (n) = P(k+1,n—k+1)forn>k-1.

The table below presents the first few elements of Py :(n) numbers
for special values of k and n.

Tab.1. The generalized Pell numbers Py ¢(n).

n 01 3 3 3 5
Pre(m) [0 ] 1 [ t+1 ] C+1)°+1 | G+DE+1°+2] | G+ VDHC+ D> +3 +1
Pre(n) [ 0 | 1 1 T+ 1 2(t+ 1) [(EIETEN
Pie(n) | 0 [ 1 1 1 t+1 PICEY)

Pee(n) | 01 1 1 i 1 t+ 1)
Paelm) [0 1 1 1 1 1
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Based on the above table one can easily observe the following relations
between introduced numbers

Pei(ny=(n—-k)(t+1) for n=k+1,...,2k, 3)

Py (2k+1) = (¢ +1)(¢+ k) + 1. (4)

Before giving the graph interpretations of the generalized Pell num-
bers Py ¢(n) let us recall some history. Graph interpretations of the Fi-
bonacci type numbers were introduced for the first time by H.Prodinger and
R.F.Tichy (see [10]). They showed connections between Fibonacci and Lu-
cas numbers and the number of all independent sets in some graphs. More
precisely, they proved that if G is an undirected, connected graph of size
m, where size means number of edges of a graph G, and u(G) is the num-
ber of all independent sets in G, then u(P(m)) = F,, and p(C(m)) = L,
where P(m) and C(m) denote a path of size m and a cycle of size m, re-
spectively. Those results gave an impetus for studying connections between
numbers of the Fibonacci type and the number of all independent sets in
different kinds of graphs and their products. Pell numbers also have such
an interpretation. It is commonly known that if Z(G) is the number of all
matchings of G, then Z(P(m — 1) o K;) = P,,, where G o H denotes the
corona of two graphs (for details see [2] and [5]). It is worth noting that
the index Z(G), called the Hosoya index, has many applications in combi-
natorial chemistry. The graph interpretation of P(k,n) numbers is closely
related to the concept of k-independent sets in graphs too (see [15]). For
other results connected with the problem of counting of independent sets
in graphs and its relation with the Fibonacci numbers see also [4]. Those
various graph interpretations were our motivation for further research.

Now let us turn to the graph interpretations of the generalized Pell
numbers Py ;(n). The first graph interpretation of these numbers we will
present is connected with a special edge-colouring of the graph. An edge-
colouring of the graph is a fundamental topic of the graph theory and
it has been intensively studied in the literature. A new concept of an
edge-colouring i.e. an edge-colouring by monochromatic paths has been
introduced recently (see [1]). Let us now recall some basic definitions.

Let G be an undirected, connected, simple graph, Z = {1,...,k},k >
2and Z; = {1,...,b;},b;: > 1. In particular, Z; can be empty (then we put
b; = 0). Moreover, let C = |J;c7 C: be a nonempty family of colours, where
C; = {A};j €Z;} fori =1,...,k. The set C; is called the set of b; shades
of the colour i. Particularly, if C; = {4}, A, ..., Al} then we speak of t
shades of the colour i, and if the set C; has exactly one element, then we
label the colour Ai. Naturally, a shade of the colour is also the colour.

Therefore, the family C has exactly 22‘:1 ICi| = Ef=1 b; colours.
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A graph G is said to be (Aj;% € I, j € I;)-edge coloured by monochro-
matic paths if for every maximal A;--monochromatic subgraph H of G,
where A; €C;and 1 <i<k,1<j<b, there exists a partition of H into
edge disjoint paths of length i. Less formally we can say that the edges of G
are partitioned into paths, and paths of length i can be coloured with one
of b; possible shades. Obviously, we have to consider all possible partitions
into paths of every monochromatic subgraph. Note that if b; # 0 then
(A;;i € I, j € I;)-edge colouring by monochromatic paths always exists.

Assume that a graph G can be (A;'.;i € Z,j € I;)-edge coloured by
monochromatic paths. Let F be a family of distinct (A;;i €Z,j € I;)-edge
coloured graphs obtained by the colouring of a graph G and

F={GW,69,...,c0},1>1,

where G(P), 1 < p <l denotes a graph obtained by (A;;i € Z,j € I;)-edge
colouring by monochromatic paths of the graph G. By 8(G(?)) we denote
the number of all partitions of G for 1 < p <. Let

i
I(aset,sez)(G) = D_6(GP).
p=1

It was proved in [1] that for G = P(m), where P(m) is a path of size
m the following theorem holds.

Theorem 1 Let k > 2 and m > k be integers. Then
O(assiez,jez) (P(M)) = b10(asiez jezy(P(m — 1)) + ...
+bro (A;’;iez,jez,»)(P(m - k)).

It shows that the graph parameter o AisieT, jez,)(G) is closely related
to the recurrence equation (1). Many connections between the parame-
ter o4 .ez.jez,) (P(m)) and the numbers of the Fibonacci type have been
proved. We list only a few of them: for Pell numbers F,, Tribonacci num-
bers T;, and generalized Pell numbers P(k,n). For other results see [1].

Theorem 2 Let k > 2 be integers. Then
1. U(A{,A%'Af)(lp(m)) = Pm+1 fOf‘ m Z 1.
U(A{’AglA:‘l)(P(m)) = Tm+1 fOT‘ m Z 1.

U(A{'Ask—l)’Af)(P(m)) = Plk,m —k+3) form>k—3.
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It should be mentioned that such a graph interpretation is not valid
for all numbers of the Fibonacci type. For example, it does not work for
the Tribonacci numbers of the second type given by the equation T, =
Tp o+ Ty o+ T zforn 23, withTy =Ty =T = 1.

Now we shall show that this interpretation works for numbers Py ¢(n).

Theorem 3 Let k > 1,t > 1,m > 1 be integers. Then
(a1 ab,.... a5, a0+ (B(M)) = Pey(m +1).

Proof. By Theorem 1 it suffices to check only the initial conditions. Let us
consider (A}, A%, ..., A%, A**D).edge colouring by monochromatic paths
of a graph P(m). If m = 1,2,...,k —1 for k > 1 then there is a unique
(A}, Ak, ..., Ak ,Agk"']))-edge colouring of P(m) using only the colour A}.
Then

U(A{,A‘;,...,A’:,A‘l""'”)(ﬂb(m)) =1= Peu(k).

If m = k then we can colour edges of the path P(k) by the colour A}
or we can use one of t shades of the colour k. Therefore

T (a1 a8,....ak, a0y (P(K)) =t +1 = Pey(k +1).

Let m = k + 1. If k = 1 then we consider (A},..., A}, ;, A})-edge
colouring by monochromatic paths of P(2). In this case the path is A3-
monochromatic or can be coloured by one of ¢t + 1 shades of the colour 1
ie. by A},j=1,...,t+1ont+1 ways. Then

o(al,....Al,,,an (P(2) = (t + 12 +1=P,(3).

If £ > 2 then we have the following possibilities of colouring the
path P(k): use only the colour A} or only the colour A(1k+1) or to choose
simultaneously one of t shades of the colour k and the colour A} on 2t ways.
Consequently

U(A{'A,{""'Af,A(lk-i-l))(IP(IC +1)=2t+2=Peo(k+2) for k>2.

Thus by the initial conditions and by Theorem 1 the proof is com-
plete. m]

To give the second graph interpretation of the generalized Pell num-
bers P :(n) we recall the concept of distance (H, k)-matchings introduced
by A.Wiloch (see (13}).

Let G and H be two graphs, k£ > 1 be an integer. We say that a subgraph
M of a graph G is a distance (H, k)-matching if all connected components
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of M are isomorphic to H and for each two components H;, H; from M such
that ¢ # j we have dg(H;, H;) 2 k, where dg(H;, H;) = min{dg(z,y) : z €
V(H;),y € V(H;)} and dg(z,y) denotes distance between vertices z and
y in the graph G. Note that the distance (K>, 1)-matching is a matching
in the classical sense.

Now let us consider a corona P(m) o N, of two graphs P(m) and N,
where P(m) is a path of size m and N is an edgeless graph of order ¢
(i.e. with t vertices). By P(0) we mean a graph with a unique vertex i.e.
P(0) = N,.

Theorem 4 If m > 0,k > 1 are integers then the number of all distance
(K2, k)- matchings of a graph P(m) o N, is equal to Pis(m + k —1).

Proof (by induction on m). Let us denote by p (P(m) o N;) the number of
all distance (K3, k)-matchings of a graph P(m) o N;. For m = 0 a path
P(m) reduces to one vertex and then p(P(0) o N;) =t + 1 = P (k +1).

Assume now that m > 1 and the statement is true for an arbitrary
m. We shall prove that it is true for m+1. Consider a graph P(m+1)o N,
(see Fig. 1).

1,2 ¢ 1,2 t 1 2 t
LS S 1 Y2 Y2 Y2 Ym+2 Ym+2, . Ymi2
3} T2 T3 Tm+1 Tm+2
Figure 1.

Let M be any (K3, k)-matching of the graph P(m + 1) o N;. The

following cases are possible:

1) the edge Tmy2yi 40 € M for somei=1,...,t,

2) the edge Tmy2¥i, 10 € M for any i =1,...,t and the edge Ty 1Zms2 €
M,

3) edges Tm42y5, 42 and Tmi1Zm2 do not belong to M.

Let p1(P(m + 1) o Ny), p2(P(m + 1) o Ny) and p3(P(m + 1) o N;) be
numbers of all distance (K3, k)- matchings of the graph P(m + 1) o N; in
the case 1), the case 2) and the case 3), respectively.

In the first case we have

n(P(m+1) o Ny) =tp(P(m + 1 —k) o Ny),
and by the induction hypothesis we get
p1(P(m + 1) o N) = t Py s (m).
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In the second case we have
p2 (P(m + 1) o Nt) = p(P(m — k) o Ny),
and by the induction hypothesis we get
p2 (P(m +1) o N¢) = P e(m — 1).
In the third case we have
ps (P(m +1)o V) =p(P(m — 1) o V),
and by the induction hypothesis we get
p3(P(m +1) o Ny) = Pro(m — 1+ k).
It is obvious that
p(P(m+1)oNy) = p1(P(m+1)oN) +p2(P(m+1) o Ny) +ps(P(m+1) o Ny).
From the above cases and the definition of Py ¢(n) we obtain
p(P(m+1)oNy) = tPyo(m) + Pre(m—1)+ Peo(m—1+4k) = P (m+k).
Thus the proof is complete. 0

3 Identities

In this section we present some identities for generalized Pell numbers
Py (n) and extend these numbers to negative integers. We show how to use
the graph interpretation given in the previous section for proving identities.

Theorem 5 Let k > 1,t > 1,n > 2k be integers. Then

k—1
Pry(n) = Pee(n—2k) + (t+1) Y Pro(n — k —i).
=0
Proof. Assume that n > 2k. Then using (2) and some calculations we get
Pk't('n) = Pk't(’n - 1) + th,t('n - k) + Pk,t(n k- 1) =
= Pet(n—2)+tPt(n—k)+(t+1)Pre(n—k—1)+FPee(n—k-2) =
= Prt(n—3)+tP(n— B+ (@ +1)[Pee(n—k—1)+ Pe(n—k—
2)] + Pk,t(n —k- 3).
After k — 1 steps we obtain
Pei(n) = Peo(n—2k)+ (t+1)[Pre(n—k)+ Pee(n—k—1)+...+ Py e(n—
2k+1)] =

k—1
= Pk,t(n-—2k)+(t+1) Z Pk,t(n—k—i). O
=0
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Theorem 6 Letk > 1,t > 1,m > k+1,1<n<m-—k—1 be integers.
Then

k

Py t(m+1) = Py t(n) Py (m—n+1)+t z P i(n—r+1)Py y(m—n—k+r+1)+
r=1
k+1
Z Peyn—r+1)Peg(m—n—k+r).
r=1

Proof. To prove this identity we use the first graph interpretation of the
number Py :(m). Let us consider the path P(m) of size m. Let n € E(P(m))
and 1 <n<m-k-1. By U(A{,A;‘,...,Af,Ag"’f”)(P(m)) we denote the
number of all (A}, 4%,.. .,A{‘,Agk“))-edge colouring by monochromatic
paths of the graph P(m). For convenience we will write o(P(m)) instead of
O (AL, Ak, AF A(k+1))(ﬂ"(m)). ‘We have to consider the following possibilities.
141 0A Ay

The edge n could be coloured by the colour Al or by one of t shades of
the colour k&, or by Agk“). Then the number of all colouring of the path
P(m) in every case we denote by o1 (P(m)), o4 (P(m)),c4" " (P(m)),
respectively. Taking into account that there are ¢ shades of the colour % it
is clear that

k41
AfE+D

o(P(m)) = o (P(m)) + toi (P(m)) + 041 (P(m)).

Let us consider the possibilities mentioned previously.

(2) If n is coloured by the colour A} then

o1 (P(m)) = o(P(n — 1))o(P(m — n)).

*(44) If n is coloured by one of shades of the colour & then the edge n could
be the vth,v =1, ...,k edge of the subpath of P(m) of length k. Then

k
o4 (P(m)) = 3 o(P(n —r))o(B(m —n — k +1)).

r=1

(i3i) If n is coloured by the colour A¥*? then, analogously like in the
previous case, we have

k+1
oA (P(m)) = > oPn—r))o(®Pm—n—k+r—1)).

r=1
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Finally from the above cases we obtain

k
g(P(m)) = o(P(n—1))o(P(m—n))+t Z o(P(n—7r))o(P(m—n—k+r1))+

r=1
k41
+3 o(B(n—r))o(P(m—n—-k+r—1)).
r=l
Applying Theorem 3 we obtain
k
Peo(m+1) = Peo(n)Pes(m—n+1)+t 3 P o(n—r+1)Peo(m—n—k+r+1)+
r=1 .
k+1
Z Pii(n—r+1)Pes(m—n—k+r).
r=1
Thus ends the proof. a

The generalized Pell numbers Pj ¢(n) can be extended to negative
integers n. Let k > 1,n > 1 and t > 1 be integers. Then

Pk,f,(—n) = Pk,g(k -n+ 1) - Pk,t(k - ‘n) - th'g(]. - n) for n Z 1 (5)
with initial conditions Py (0) =0, Px.(n) =1forn=1,...,k.

Table 2 includes the first few elements of Py .(n) sequence for special
k and negative n.

Tab.2. The generalized Pell numbers Py ¢(n) for negative n.

n =4 -3 -2 -1 JO0 1
Poe(n) | —G+D[E+D"+2] | ¢+ +1 ] —t-1 1 Jol1
Pye(n —14t° —t 1 o [of1
Ps¢(n -1 1 0 0 0 1
Pse(n 1 0 0 0 [0 1

Notice that for k = 1,t = 1 we get the well-known extension of Pell
numbers for negative numbers.

4 Matrix generators

In this section we give matrix generators for generalized Pell numbers
Py +(n) using the same idea as in [14].
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Based on the equation (2), which describes generalized Pell numbers,
let us define a matrix Pyt = [pij](k+1)x(k+1) as follows. For j = 1 and
t=1,2...,k+1 an element p;; of the matrix P . is equal to the coefficient
of Py ¢(n — 1) in the right-hand-side of the equation (2). For2 < j <k +1
andi=1,2...k+1 we put

o 1 ifj=1i+1,
Pij = 0 otherwise .

By the above definition for & = 1, 2, 3,4, ... we obtain matrices:

110 1 1 0 0
Plt= t+1 1 :P2t= t 01 1P3t= °o 010 y
' 1 0 , 1 0 0 ' t 0 0 1
1 0 0 O
110 .- 00
1 1 0 0O 0 01 -.. 0O
0 01 0O . .
Pge=|00 0 1 0}, .. ,P=1]: @ : :
t 0 0 0 1 0 0 O 1 0
1 0 0 0 O t 0 0 0 1
1 0 O 0 0
We will call the matrix Py ; the generalized Pell matrix.
Note that for £ =t = 1 we get the matrix P ; = [ f é ] having the

property Pr') = [ F ;‘,:1 Pf ':l ], and being the classical matrix generator

of Pell numbers
defined by J. Ercolano [3].

Let k > 1,t > 1 be integers. For fixed k > 1,t > 1 we define a matrix
Ag ¢ of order k + 1 as the matrix of initial conditions

Pro(2k)  Prp(2k—1) o Pro(k+1)  Pr(k) T
Pr(2k—1) Py(2k—-2) .- Py o(k) Pre(k—1)
Ave=| I s
P e(k+1) Py (k) e Pp,e(2) Py,e(1)
Pp i (k) Pee(k—-1) - Ppe(1) Pre(0)

Theorem 7 Letk >1,t > 1, n > 1 be integers. Then

Prp(n+2k) Pi(n42k—1) - Prs(nt+k+1) P o(ndk) 7

Py 1(n+2k—1) P i(n+2k—2) - Pro(ntk)  Prp(ntk—1)
Ak P = : : : : (6)
P t(n+k+1) Py o(ntk) - Pee(n+2)  Pra(n+l)
Pit(n+k)  Pge(ntk—1) - Prp(n+l) Py o(n+0) |
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Proof (by induction on n). Let k¥ > 1 and ¢ > 1 be fixed integers. If n =1,
then by simple calculations and recurrence relation (2) we get (6). Assume
now that the statement is true for all integers 1,...,n. We shall show that
it is true for an integer n + 1. Since Ak,tP,:‘_',"l = Ak,tP,:‘,,Pk,z, thus by our
assumption and the recurrence relation (2) we obtain

Pk’g(‘n-l-?k) vee Pk,t(n+k+1) P[g,g(’n+k) 110.---0
Pi(n+2k—1) - Py (n+k) P (n+k-1) 001--0
A PO = : S : i =
Pk'g(‘n-l-k-"l) e Pk‘g(n+2) Pk,g(‘n-i-l) t 00 ... 1
Pk'g(n-{-k) Pk,t(n+l) Pk,g(‘n+0) 100 -0
Pei(nt142k)  Pra(n+2k) o Pei(n+2+k) Py (n+1+k)
Pre(n+2k)  Pii(n—142k) - Ppy(n+l+k)  Pro(ntk)
Peo(n42+k) Pos(ntl4k) -~  Plkntd)  P(kn+2)
Py ¢(n+14k) P(k,n+k) v Prg(nt2) P t(n+1)
m]
Theorem 8 Let k > 1, ¢t > 1 be integers. Then
det(Py,.) = (~1)%, (7)
k(k4-1
det(Ag.) = (-1) "%—l. (8)

Proof. Equality (7) follows from the definition of P and basic proper-
ties of determinants. To prove equality (8) it is enough to notice that by
definition of A ., recurrence relation (2) and observation (3) we have

k(t+1) (k—2)(+1) - t+1 1
(k=1)(t+1) (k—=2)(t+1) -.- 1 1

Ak = : R : :
t+1 1 11

1 1 1 0

Now we use elementary operations. Subtracting the (k +1 — s)th row from
the (k — s)th row, for s = 0,...,k — 1, and then by Laplace expansion of
determinant with respect to the last column we get

t+1 t+1 t 0
t+1 t+1 00
detAj ¢ = det : : o=
t 0 01
1 1 1 0
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t+1 t+1 - 41
t+1 t+1 .- ¢t 0
=odet) oD
t+1 ¢t ... 0 O
1 1 . 1 1

Analogously, subtracting the (k—s)th column from the (k—1—s)th column,
for s =0,...k—2, and then expanding with respect to the last row we get

o0 .-~ 1 t
o0 .-+ ¢t O
detAk,,,:—det =
1t 0 0
0 0 01
0 0 01
00 .- 1 ¢t
E(k+1)
=—det| : : - i 1 l=(=1) .
01 ... 00
1 ¢ 00

]

As an immediate consequence of Theorem (8) and Cauchy’s Theorem
for determinants we obtain two generalizations of the Cassini formula.

Theorem 9 Let k > 1,t > 1 be integers. Then

det(PZ,) = (-1)"* (9)
det( Ay, PL) = (~1)2E52 (10)

Putting k =t = 1 to the equality (9) we get the well-known Cassini
formula Pn+1P -1 P,% = (—l)n.
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