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Abstract

The balanced hypercube, which is a variant of the hypercube, is
proposed as a novel inter-processor network. Among the attractive
properties of the balanced hypercube, the most special one is that
each processor has a backup processor sharing the same neighbor-
hood. A connected graph G with at least 2m + 2 vertices is said to
be m-extendable if it possesses a matching of size m and every such
matching can be extendeded to a perfect matching of G. In this
paper, we prove that the balanced hypercube BHy is m-extendable
for every mn with 1 < m < 2n — 2, and our result is optimal.

Key words: Interconnection networks; The balanced hypercube;
Perfect matching; Matching extendability

1 Introduction

Let G = (V,E) he a simple undirected graph, where V is vertex-set
of G and E is edge-set of G. A matching of G is a set of independent
edges of G and a perfect matching of G is a wmatching covers all vertices
of G. A connected graph G with at least 2m + 2 vertices is said to be
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m-extendable if it possesses a matching of size m and every such matching
can be extended to a perfect matching of G. A graph is bipartite if its
vertex-set can be partitioned into two subsets such that each edge has its
ends in different subsets. A path P from vy to v, is a sequence of vertices
YUy - - Vs from vg to v, such that every pair of consecutive vertices are
adjacent and all vertices are distinct except for vo and v,,. We also denote
the path P = wov;---v, hy (vo, P,v,). The length of a path P is the
number of edges in P, denoted by I(P). A cycle is a path with at least
three vertices such that the first vertex is the same as the last one. For
the graph terminologies and notations not defined here, we refer the reader
to [28].

It is useful to design distributed processor architectures that offers high
connectivity and reliability. The systein topology, which defines the inter-
processor network (called interconnection network), is an important part of
such a distributed systemn. The hypercube network is one of most popular
instances of interconnection networks, which has many attractive properties
such as regularity, strong connectivity and symmetry. With such excellent
properties, the hypercube has received much attention of graph theorists
and computer scientists. However, the hypercube has its own drawback,
such as its large diameter. So many variants of the hypercube have heen
proposed, see [1,7-11,17, 25,29, 30].

Among these variants, the balanced hypercube is the only one that each
vertex has a backup (matching) vertex sharing the same neighborhood.
Thus, tasks running on a faulty vertex can bhe easily transferred to its
backup vertex. It is also known (29] that the odd-dimensional balanced
hypercube BH,,, which has the saine nuinber of vertices as Qs,, is of the
smaller diamneter than that of the hypercube Q;,. Owing to attractive
properties ahove, the halanced hiypercube has been extensively studied in
literatures, see {4,13,14,20,21, 31-33, 35).

Brighain et al. [3] showed that if each vertex has a special partner at any
time, especially under the event of edge failure, then the network performs
robustuess in this sense. In order to mmeasure this property of networks,
they introduced the concept of matching preclusion. Recently, matching
preclusion of famous interconnection networks was extensively studied in
[5.6,12,20,23,27]. In this paper we consider the opposite aspect of this
property, that is, given a matching M of G, can it be extended to a perfect
matching of G7 Such a problem was first proposed by Plumimer in 1980 [24],
and later studied in inany kinds of graphs [2,16,18,19,22,26,34]. Especially
in (18], the authors obtained that matching extendability of the hypercube
Qn is n— 1. Recently, Vandenbussche et al. [26] extended the result of 18]
by using the concept of k-suitable inatching. Since the balanced hypercube
poussesses soine novel properties such that the hypercube does not have, it
is of interest to consider such a problein for the balanced hypercube. It
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is also known that a polynomnial algorithin for matching extendability of
bipartite graphs has heen obtained in [15]. However, it is another flavor to
derive a combinatorial forinula of matching extendability for the balanced
hypercube.

The rest of this paper is organized as follows. In the next section, we
present some necessary definitions and properties of halanced hypercubes
as preliminaries. Some useful lemmas and the main result (Theoremn 3.7)
are shown in Section 3. Finally, conclusions are given in Section 4.

2 Preliminaries
Wu and Huang [29] gave two equivalent definitions of BHy, as follows:

Definition 1. An n-dimension balanced hypercube BH, consists of 4™
vertices (ag,@1,...,@,—), where a; € {0,1,2,3} foreach 0 < i <n -1
An arbitrary vertex (ag,...,@i—1,8i,@it1,...,8n-1),1 <1 <n—1,in BH,
has the following 2n neighbors:

(1). {((ap+1) mod 4,a1,...,8i—1,@i,igly. .1 8n-1),
({ap — 1) mod d,ay,...,ai-1,ai,@it1,...,8y_1), and

(2). ((eg +1) mod 4,ay,...,ai-1,(ai +(-1)*) mod 4,ait1,...,8n-1),
((ag — 1) mod 4,ay,...,a;-3,(ai + (—1)*) mod 4,ai41,...,8n_1)-

As a variant of the hypercube, BH,, also has its hierarchical structure
as the definition follows.

Definition 2. BH,, consists of four copies of BH,_ labeled by BH,,
BH!",, BH{?

n—-19 n—1°

added as the (n — 1)-dimension index of every vertex in each BH,(:ZI. For

BH® respectively, with a new dimension i (0 < i < 3)

n-1

a given vertex v = (ag,@1,...,an-2,%) in BH,(,i_)_l, besides the neighbors in
BH,(:l] , there exist two extra neighbors: {(ag+1) mod 4, ay,...,an-2, i+
1) mod 4) and ((ap — 1) mod 4, a1,...,an-2, (i + 1) mod 4) if ag is even,
or ((ap + 1) mod 4, ay,....a,,-2,{¢ — 1) mod 4) and ({(ap — 1) mod 4,
ay,...,a,-2, (i —1) mod 4) if ag is odd.

Since the hierarchical structure of BH,, is naturally in accord with the
induction method, it plays an important role in our proof of the main
theorein.

BH, and BH, are illustrated in Figs. 1 and 2, respectively.

In what follows, we show some basic properties of BH,, which will he
used in the following paper.
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Proposition 2.1 [29,35]. The balanced hypercube is bipartite, vertex-
transitive and edge-transitive.

Proposition 2.2 [29]. The vertices (ag,ay,...,a,—1) and ((ap + 2) mod
4, ay,...,a,-1) of BH, have the same neighhorhood.

3 Main result

In BH,, the first coordinate ag of (ag,...,a;,...,a,-) is called inner
indez, and the other coordinates a; (1 € i < n — 1) i-dimension indez.
Let u and v he two adjacent vertices in BH,,. If u and v differ only the
inner index, then uv is said to he 0-dimension edge, additionally, © and v
are mutually called O-dimension neighbor. If u and v differ not only the
inner index, but also some i-dimension index (i # 0), then uv is called
i-dimension edge, analogously, uv and v are mutually called i-dimension
neighbor. Let BH,(:l, (0 <1 < 3) be the subgraph of BH,, induced by the

vertices of BH,, with the (n — 1)-dimension index i. That is, the BH,(,ill’s
can be obtained from BH,, by deleting all (n —1)-dimension edges. Let dD;
(0 €i < n—1) be the set of i-dimension edges (also denoted the graph
induced by 9D; when there is no ambiguity). So BH,(:ll = BH,_, for

each 0 < ¢ € 3. For simplicity, we denote BH,(:l,s by B; for i € {0,1, 2,3}
respectively, and denote the set of edges hetween B; and B; by E;; for
i.j € {0,1,2,3} if exists. We also use w; and u; (resp. b; and v;) to denote
white (resp. black) vertices in B; (0 <1i < 3).

By Proposition 2.1, it can be known that BH, is bipartite. We can
use Vi and V) to denote the two partite sets of BH,, such that V, and V;
consist of vertices with even inner indices and odd inner indices, respective-

ly. For convenience, the vertices of Vy and V; are colored white and black,
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respectively.
The following stateinents will be used in our main theoremn, we now
present it.

Lemma 3.1 [20]. In BH,, 8D;(0 < i < n — 1) can be divided into 4*~!
edge-disjoint 4-cycles.

Theorem 3.2 [31]. The balanced hypercube BH,, is Hamiltonian laceable
forn>1.

Lemma 3.3 [31]. Let uv be an edge of BH,. Then uv is contained
in a cycle C of length 8 in BH,, such that |E(C) N E(B;)| = 1 for each
1=0,1,2,3.

Lemma 3.4 [4]. Let V, and V) be two partite sets of BH,,. Additionally,
u,x € Vpand v,y € V;. Then there exist two vertex-disjoint paths P and Q
such that: (1) P conuects u to v, (2) Q connects z to y, (3) V(P)UV(Q) =
V(BH,).

Lemma 3.5. Let P = v;uiviu; be a 3-path in B;. In addition, f =
wjv; is an edge in B; (j € {0,1,2,3} \ {i}). Then P is contained in a
cycle C of BH, with 10 < |E(C)| < 14 and uj,v; € V(C), such that
|E(C)N Eoy)| = 1, |E(C)N Era)| = 1, |E(C)N Egs)| = 1, | E(C) N Ex)| = 1
and |E(B;) N E(C)| =1or 3.

Proof. By symmetry of BH,,, suppose that i = 0. Moreover, we nay
assuine that f is contained in Bj, that is f = ugvs.

Case 1: ugvp is an edge of By. By Lemma 3.3, there exists a cycle C of
length 10 containing P. If u3, vz ¢ V(C), we are done. Thus, [{u3,va} N
V(C)| < 2. If [{u3,v3}NV(C)| = 1. That is, exact one of uz and vz, say us,
is contained in C. Let ws (resp. b3) be the white (resp. black) vertex differ
only the inner index of u3 (resp. v3). We only need to replace uz € V(C)
by wa. If |{us,v3} NV(C)| = 2, then f € E(C). Note that wz and us
(resp. bz and v3) have the sane neighborhood. We delete u3 and v3 from
C, and add wsbs to C hy connecting w3 (resp. b3) to the neighbor of uz
(resp. v3) on C. Thus, a cycle of length 10 containing P but no endpoints
of f follows.

Case 2: up and vy are non-adjacent. Then P contains at most two edges
of the same ditnension, otherwise, up and vy are adjacent.

Case 2.1: P contains exact two edges of the samne dimension, say & (0 <
k < n—1). Then two k-dimeunsion edges must be voug and vjuo. Otherwise,
uy and vy are adjacent, a contradiction. Therefore, we may assume that
vhuf is an I-dimension edge (0 <! <n—1,1# k). Let v; be an (n — 1)-
diinension neighbor of ug. and vyu; € E(B;) be an I-dimension edge. There
exists an edge u,vy from B, to Ba. Let Py = vaujvjug be a 3-path in B,
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such that vouj and wvjus are hoth 0-dimnension edges, and ubvh is a k-
dimension edge. In addition, there exists an edge uyvs from B to Bj.
Similarly, let P3 = vzujvjus be a 3-path in Bj such that vauj and vjus are
hothi 0-dimension edges, and ujvj is a k-dimension edge. It implies that us
and vp are adjacent. Thus, C = (vg, P, uo, v1,u1,v2, P2, ug,vs3, P, u3, vp)
is a cycle of length 14 containing P. (Note that P, (resp. P3) will be
degenerated to a O-dimension edge voug (resp. vsuz) when k& = 0, then C
is a cycle of length 10 containing P.) If uz, v3 ¢ E(C), we are done. Thus,
we may assume that {{usz,v3} NV(C)| = 2. Similarly, using the approach
of Case 1, we can obtain a cycle of length 14 containing P but no endpoints
of f.
Case 2.2: The edges contained in P are of dimension &, { and m (0 <
k<l<m<n-1). If £k # 0, analogously, hy Case 2.1, we can obtain
a cycle of length 14 containing P but no endpoints of f. Now we study
the case k = 0. If ugvg is a 0-dimension edge, we can also obtain a cycle
of length 14 containing P but no endpoints of f. So we assume vguy or
Uplo, Say voug, is a O-dimension edge. Thus, we may assume that ujv)
(resp. wgug) is an l-dimension (resp. m-dimension) edge. Let v; be an
(n — 1)-dimension neighbor of up, and viu; € E(B;) be an l-dimension
edge. There exists an edge ujvs from By to B;. Let voup € E(B;) be a
O-dimension edge. In addition, there exists an edge usvs from By to Bj.
Again, let P3 = vsujvjus be a 3-path in Bs such that vsuj and vjus are
both 0-dimension edges, and ujvj is an m-dimension edge. It implies that
uy and vo are adjacent. Thus, C = (v, P, ug, v1, u1,v2, u2,v3, P3,u3, ) is
a cycle of length 12 containing P. If us, vz € E(C), we are done. Using the
approach of Case 1 again, we can ohtain a cycle of length 12 containing P
but no endpoints of f. O
Next we present the following lemnina as the basis of the main theorem
of this paper.

Lemma 3.6. BH, is 2-extendable.

Proof. Let ¢y and e; be two independent edges of BH,. By Definition
1, it follows from Lemuna 3.1 that, 8D; (i = 0,1) can be divided into four
vertex-disjoint 4-cycles. If ep and e; are hoth in 8Dy or 8D, then it can
be easily derived a perfect matching of BH> containing eo and e;. Thus
we ouly consider the case when ey € D and e; € 8D,. By Proposition
2.1, BH; is edge-transitive, without loss of generality (w.l.o.g.), suppose
that e; = (0,0)(1,1). By symnetry of BHy, it remains to consider eg =
(1.0)(2,0) or (0,3)(1,3). Two perfect inatchings containing ep and e, are
shown in Table 1. 0
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Table 1. Two perfect matchings of BH, with ep=(1,0)(2,0),(0,3)(1,3) and
e1=(0,0)(1,1).

0 oy perfeet matehings containing ¢y and ¢,
(TO)Z0)  (O0)1.1)  (L0){2.0).(0.0)(1.1).(0,1)(3.1).(3.0)(0,3).(2,1)(1,2),(1.3)(2,3),(0.2)(3,2).(2,2)(3.3)
(0.3)(1.3) _(0.0)(1.1) _ (0.8)(1,3).(0.0)(1.1),(2.0)(3.0).(1.0)(2,3).(2,2)(3.3).,(1.1)(3,2),(2,1)(3,1),(0,2)(1,2)

Now we state our main theorem of this paper.
Theorem 3.7. BH,, is (2n — 2)-extendable.

Proof. We use induction on n. It follows from Lemma 3.6 that the theorem
is true for n = 2, thus, the induction step holds. So we assume that the
theorem holds for all integers 3 < k < n. Next we consider BH,. Let
M he a set of independent edges of BH,, such that |M| = 2n — 2. If for
each i € {0,1,2,3}, |E(B;) N M| < 2n — 4, by induction hypothesis, it can
be derived a perfect matching of each B;, which obviously yields a perfect
matching of BH,,. Thus, suppose that there exists some i € {0,1,2,3}
such that 2n — 3 < |E(B;) N M| < 2n — 2. Suppose w.l.o.g. that i = 0.
Next we consider the following two cases:

Case 1: |E(By)NM| = 2n—3. Let e € MNE(By) and f € M —E(Bo), by
induction hypothesis, M N E(By) —e can be extended to a perfect matching
A/fu of Bo.

Case 1.1: e € M.

Case 1.1.1: f € Ey or Eps. Suppose w.lo.g. that f € Ep. Let f =
1oV, where ug is a white vertex in By and v, is a black vertex in Bj.
Thus there exists an edge uovp € Mg. Observe that the edges in M are
independent, then ugug ¢ M. By Lemma 3.3, there exists an 8-cycle C =
UL UzUaUoU2U Vg containing ugvo, where ugvs (resp. uavg, u1v;) is an
edge in By (resp. Ba, By). By Lemma 3.2, there exists a Hamiltonian path
P, (resp. P,, P3) from u; to v; (resp. uz to vg, ug to v3) in By (resp.
Bg. B:;). Thus C' = <’u,0,vo,u;3,P3,v3,’lL2, Pz,vg,ul,Pl,‘Ul,'U,o) is a cycle
containing f. Note that {(P}) = [(P2) = l(P;) = 4"~ — 1, C' is an even
cycle, thus an alternating cycle. So there exists a perfect matching M¢» of
C’ containing f. Hence Mo U Mc: \ {uovo} is a perfect matching of BH,
(see Fig. 3, heavy lines mean edges of My, solid lines mean edges of Mc-).
Case 1.1.2: f € Ey5 or Ep3. W.lo.g, suppose that f € Ejq,i.e. f =uivs.
The proof is analogous to that of Case 1.1.1, we omit it.

Case 1.1.3: f € E(B;) (1 <i < 3). Let upvg € Mp \ M be an edge in
By. We first claim that there exists an 8-cycle C = uguouzvsuavauy vy up of
BH,, such that neither endpoints of f is on C, where u,v; is an edge of B,
ugty is an edge of By, and uzvs is an edge of Bs. It follows from Lemma 3.3
that there exists an 8-cycle C = uguouaviugvau v ug of BHy. If neither
endpoints of f is on C, we are done. Otherwise, we may assume that
f € E(C), then f = u;v, (i=1,2,3). Suppose, w.l.o.g, that f = uzvz. Let
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Fig. 3. IDlustration for Case Fig. 4. [Illustration for Case
1.1.1. : 1.1.3.

u3 and uj (resp. v3 and v}) be two vertices having the samne neighborhood.
Then ugvoujvhusvourving is the 8-cycle as required. For convenience, we
also denote it by C. Let M,,,, be the perfect matching of C containing
upvy. By Lemma 3.6, uyv; (resp. uavp) can be extended to a perfect
matching M, (resp. M) of B; (resp. B;). Especially, f and uzvs can be
extended to a perfect matching Ms of B3. Thus, Mo U M, U My U M3 U
Mo, \ {wovo, u1v1,ugvs, uzv3} is a perfect matching of BH,, containing
M (see Fig. 4, heavy lines inean edges of Mo U M; U My U M;).

Case 1.2: e &€ My. Let e = upvy. Suppose that ug and vj are saturated
hy ugvp, vhup € My, respectively.

Case 1.2.1: f € Ey, U Ey.

Case 1.2.1.1: f is incident to up or vg. Assuine w.l.o.g. that f is incident
to ug. Therefore f = ugvy. There exist an edge uzvg from Bs to Bg, an
edge uguy from B; to Ba, and an edge ujve from B) to B;. By Lemma
3.2, there exist a Hamiltonian path P, from v; to u; in By, a Hamiltonian
path P, from vz to ug in Bp, and a Hamiltonian path P3; from v; to us
in B3. Thus, C" = (ug,vg,u0, v, Pr,u1,v2, Py, ug, vs, P3,us, vo, up) is a
cycle of even length. So C’ has two perfect matchings, say M and Mgy
Suppose that M,,,; contains voug and vgug, and My contains e and f
Hence, Mo U My \ {vouo,vouo} is a perfect matching of BH,, containing
M (see Fig. 5, heavy lines mean edges of My, dotted lines means edges of
My).

Case 1.2.1.2: f is not incident to ug or vg. Assuimne that f = wgb;
is an edge from By to B;. Additionally, bpwg € Mp but not in M.
Thus, there exist an edge wasby (resp. wuzvg) from B3 to By, and an
edge ugvy from By to By. Let by and va bhe two distinct black vertices
in By, and let wy and u; be two distinct white vertices in B;. Thus,
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by Lemma 3.4, there exist two vertex-disjoint paths Ppz and P;3 such
that: (1) Pp3 connects uy to vs, (2) Pi3 connects w3 to bz, (3) V(Po3) U
V(P3) = V(B3). Similarly, there exist two vertex-disjoint paths Pp; and
Pyy such that: (1) Py counects u; to vi, (2) Piy connects w; to by, (3)
V(Po1) UV (P11) = V(By). Thus, there exist an edge wyby (resp. ujvz)
from B; to Bj, and an edge wobs (resp. upu3) from Bs to Bs. Again,
there exist two vertex-disjoint paths Ppz and P2 such that: (1) Pp2 con-
nects uy to v, (2) Pio connects wq to ba, (3) V(Pa2) U V(Pi2) = V(By).
Then C; = (vg,up, vf,uo, 1, Por, u1,v2, Pog, u2,v3, Pos, us, vo) and Cy =
{(bo, wo, b1, Py1, w1, ba, Pra, we, b3, P13, wa, bp) are two vertex-disjoint cycles
of eveu length. Let M¢, (resp. Mc,) be the perfect matching of C; (resp.
C5) containing e (resp. f). Thus Mg, U Mce, U My \ {bowo, voug, vguo} is a
perfect matching of BH,, containing M (see Fig. 6, heavy lines inean edges
of My, dotted lines mean edges of Mc, U Mc,).

Case 1.2.2: f € Ej3U E53. We may assume that f € Fy,. In addition, let
f = ujve. For convenience, we also make use of the proof of Case 1.2.1.1.
Given a black vertex v; in By, for an arbitrary white vertex u; in By, there
always exists a Hamiltonian path of By from u; to v;. So the choice of f
does not affect the existence of C’' in BH,,. Therefore, the statement holds.
Case 1.2.3: f € E(B;)U E(B;) U E(B3). We may assume that f €
E(B;). It follows from Lemma 3.5 that, there exists an even cycle C
such that 10 < |E(C)| < 14, satisfying: (1) P = ugvguguo is contained
in C, but no endpoints of f is contained in C; (2) |E(C) N En1)| = 1,
|[E(C)NE))| =1, |[E(C)NEg3)| =1, |E(C)NE3)| =1, |[E(B1)NE(C)| =1
or 3, |[E(By)NE(C)| =1or 3, |E(Bs) N E(C)| = 1. W.lo.g, suppose that
|E(C)| = 14, then |E(B1)N E(C)| = 3 and |E(B2) N E(C)| = 3. Therefore,

let C = (upvhuhvousvaugvhusvauyviu)vitg), where uzvs is an edge in Bs,

269



[o— O ., P
. f 1
w e Uy Yoy U,
U5 - @m0 - [ -+ - |- gue'- : ... T
e
(10

. Yo ;
vy ‘Nu, '\,"/ v, e
H o H

e e M, e v,
o—e | | T M, U,
I B |B, T B, B,

Fig. 7. Illustration for Case Fig. 8. Illustration for Case 2.2.
1.2.3.

and ugvhusv, (resp. uyvjujvy) is a 3-path in By (resp. B;). Since C is of
even order, it consists of two perfect matchings, say M, and Mv{,uo’ where
e € M..

By Lemima 3.6, ujvj and ujv; (resp. uovj and ujvs) can be extended to
a perfect matching of By (resp. By), say M; (resp. M3). Ohserve that f N
ugvz = 0, then f and uzv; can be extended to a perfect matching of B, say
M;. Then M UMoUM,UM>UM;3\{u3vs, vougy, vouo, viu], viu;, vauh, vhus }
is a perfect matching of BH,, containing M (see Fig. 7, heavy lines mean
edges of Mo U M; U M, U M3, dotted lines mean edges of M,).

Case 2: |E(Bg) N M| =2n—2. Let e and f be two edges in M N E(By),
then by induction hypothesis, M — e — f can he extended to a perfect
matching My of By. Next we consider the following cases.

Case 2.1: e, f € Mp. It can be easily obtained a perfect matching of By,
By and Bgs, say M, M, and M3, respectively. Thus, Mo U My U My U M;
is a perfect matching of BH,, containing M.

Case 2.2: Either e € My or f € My but not hoth. W.lo.g. suppose that
J € My but e & M. Let e = ugvy, and ugug, vjug € Mp. By Definition 1,
there exists an edge uov; (resp. uyvs, ugv3, usvp) from By to By (resp. B,
to By, By to B3, B3 to Bg). By Lemma 3.2, there exists a Hamiltonian path
Py (resp. P, P3) from v; to u; (resp. v to up, v3 to ug) in B, (resp. B,
Bg). Therefore, C' = ('uo, v, P] , U, V2, Pg, ug, v3, P3, us, vo, u(,, v(',, uo) is a
cycle of even length, thus has two perfect matchings, i.e. M, and Mum,‘:),
where e € M,. Then, My U M, \ {uovg, uyvo} is a perfect matching of BH,,
containing M (see Fig. 8, heavy lines mean edges of My, dotted lines inean
edges of M,).

Case 2.3: e, f € My. Let e = uyvy and f = wpby. Suppose that
ufug, vhug, wobe, bgwy € Mp. Then there exist woby,uovy € Eg (resp.
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Fig. 9. Illustration for Case 2.3.

wsbg, usvg € E3p). Again, there exist wibz, ujve € Eq2 (resp. webs, ugvs €
E53). By Lemina 3.4, there exist two vertex-disjoint paths Po; and Pi; in
B; such that Py conmects v; to u;, Piy connects by to wy and V(Pp1) U
V(Py1) = V(B): there exist two vertex-disjoint paths Py and P2 in
B such that Ppo conmects vg to ug, Pia connects by to we and V(Po2) U
V(P12) = V(B,); there exist two vertex-disjoint paths Ppz and Py3 in
B such that Ppz connects vz to us, Py3 connects b3 to ws and V(Poz) U
V(Py3) = V(Bj3). Therefore, C) = (ug, Vg, to, v1, Po1, 1, v2, Poz, u2, V3, Pos,
uz, vo,uh) and Cp = (w),bh, wo,b1, Pry,wy,ba, P2, ws, b3, P13, w3, bo, wp)
are two cycles of even length. Let M, (resp. M) be the perfect match-
ing of Cy (resp. Cj) containing e (resp. f). Thus M, U My U My \
{bow, bywo, vouh, vhuo} is a perfect matching of BH,, containing M (see
Fig. 9, heavy lines mean edges of My, dotted lines mean edges of M, and
My). (|

4 Conclusions

In this paper, we consider mnatching extendability of BH,, and use
induction to prove that BH, is (2n — 2)-extendable. As there exists a
matching M of BH,, with |M| = 2n—1, which cover neighbors of the samne
vertex, thus M can not be extended to a perfect matching of BH,,. For
example. let u and w be two distinct vertices differing only the inner index.
Additionally, assume that b; (1 < i < 2n) be all the neighbors of u and w.
One may assume that M covers all but one neighbors of u and w, say by,
so M can not cover u and w simultaneously. Ohviously, one of u and w can
not be saturated hy any perfect inatching (see Fig. 10, heavy lines mean
edges of M). Therefore, our result is optimal. Moreover, it is of interest to
consider matching extendability of other famous interconnection networks.
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Fig. 10. Ilustration for the case that M with 2n — 1 edges can not be
extended to a perfect matching of BH,,.
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