On the Laplacian coefficients and Laplacian-like energy of unicyclic graphs with fixed diameter

Xinying Paia*

College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R. China

Abstract Let G be a graph of order n and let $\Phi(G, \lambda) = det(\lambda I_n - L(G)) = \sum_{k=0}^n (-1)^k c_k(G) \lambda^{n-k}$ be the characteristic polynomial of the Laplacian matrix of a graph G. In this paper, we identify the minimal Laplacian coefficients of unicyclic graphs with n vertices and diameter d. Finally, we characterize the graphs with the smallest and the second smallest Laplacian-like energy among the unicyclic graphs with n vertices and fixed diameter d.

Keywords Laplacian coefficients; unicyclic graph; diameter; Laplacianlike energy

AMS Subject Classification 05C50

^{*}Corresponding author. E-mail address: paixinying@upc.edu.cn (X. Pai). The research has been supported by the Fundamental Research Funds for the Central Universities (No. 15CX02082A) and by NSF of China (Nos. 11371372, 61201455).

1 Introduction

Let $G = (V_G, E_G)$ be a simple undirected graph with n vertices and L(G) = D(G) - A(G) be its Laplacian matrix. The Laplacian polynomial of G is the characteristic polynomial of its Laplacian matrix. That is

$$\Phi(G,\lambda) = \det(\lambda I_n - L(G)) = \sum_{k=0}^n (-1)^k c_k(G) \lambda^{n-k}.$$

The Laplacian matrix L(G) has non-negative eigenvalues $\mu_1 \ge \mu_2 \ge \ldots \ge \mu_{n-1} \ge \mu_n = 0$ [1]. In particular, we have $c_0(G) = 1, c_1(G) = 2|E(G)|, c_n(G) = 0$ and $c_{n-1}(G) = n\tau(G)$, where $\tau(G)$ is the number of spanning trees of G.

Recently, the study on the Laplacian coefficients attracts much attention. Mohar [2] proved that among all trees of order n. Stevanovic and Ilic [3] showed that among all connected unicyclic graphs of order n. He and Shan [4] proved that among all bicyclic graphs of order n. Pai, Liu and Guo [5] showed that among all connected tricyclic graphs of order n, Ilic, Ilic and Stevanovic[6] verified the Wiener index and Laplacian coefficients of graphs with given diameter or radius.

Motivated by the results in [3-7,11,13] concerning the minimal Laplacian coefficients and Laplacian-like energy of some graphs and the minimal molecular graph energy, this article will characterize the unicyclic graphs with n vertices and diameter d, which minimize Laplacian-like energy.

A unicyclic graph is a connected graph in which the number of vertices equals the number of edges. We will use \mathcal{U}_n^d to denote the set of all the unicyclic graph with n vertices and diameter d.

2 Transformations and Lemmas

In this section, we introduce some lemmas. The Laplacian coefficients $c_k(G)$ of a graph G can be expressed in terms of subtree structures of G by the following result of Kelmans and Chelnokov [8]. Let F be a spanning forest of G with components T_i , i = 1, 2, ..., k having n_i vertices each, and let $\gamma(F) = \prod_{i=1}^k n_i$.

Lemma 2.1([8]) The Laplacian coefficient $c_{n-k}(G)$ of a graph G is given by $c_{n-k}(G) = \sum_{F \in \mathscr{F}_k} \gamma(F)$, where \mathscr{F}_k is the set of all spanning forests of G with exactly k components.

Let $T' = \delta(T, v)$, (see [10] for more details).

Lemma 2.2([10]) Let T be an arbitrary tree, rooted at the center vertex. Let vertex v be on the deepest level of tree T among all branching vertices with degree at least three. Then for the δ -transformation tree $T' = \delta(T, v)$ and $0 \le k \le n$ holds $c_k(G) \ge c_k(G')$.

Let $C(a_1, \ldots, a_{d-1})$ be a caterpillar obtained from a path P_d : $\{v_0, v_1, \ldots, v_d\}$ by attaching a_i pendent edges to vertex v_i . For simplicity, $C_{n,d} = C(0, \ldots, a_{\lfloor \frac{d}{2} \rfloor}, 0, \ldots, 0)$ (see [6] for more details).

Lemma 2.3([6]) Among connected acyclic graphs on n vertices and diameter d, caterpillar $C(0, \ldots, a_{\lfloor \frac{d}{2} \rfloor}, 0, \ldots, 0)$, where $a_{\lfloor \frac{d}{2} \rfloor} = n - d - 1$, has minimal Laplacian coefficients c_k , for every $k = 0, 1, \ldots, n$.

Let G_{uv} is a α -transform of G, (see [13] for more details).

Lemma 2.4([13]) Let $G_{uv} = \alpha(G)$. Then $c_k(G) \geq c_k(G_{uv})$, with equality if and only if $k \in \{0, 1, n - 1, n\}$ when uv is a cut edge or $k \in \{0, 1, n\}$ otherwise.

Let $G_2 \triangleq \pi_2(G)$, (see [12] for more details).

Lemma 2.5([12]) Let $G_2 = \pi_2(G)$. Then for every k = 0, 1, ..., n, $c_k(G) \ge c_k(G_2)$, with equality if and only if $k \in \{0, 1, n\}$.

Let $G^* = \pi_3(G)$ (see [12] for more details).

Lemma 2.6([12]) Let G be a connected unicyclic graph with n vertices, $G^* = \pi_3(G)$. Then for every k = 0, 1, ..., n, $c_k(G) \ge c_k(G^*)$, with equality if and only if $k \in \{0, 1, n-1, n\}$.

3 Main results

For $G \in \mathcal{U}_n^d$, we have $n \geq 3$ and $1 \leq d \leq n-2$. If d=1, then $G \cong C_3$. Therefore, in the following, we assume that $d \geq 2$ and $n \geq 4$.

Let Δ_n^d be an n-vertex graph obtained from a triangle by attaching n-d-2 pendent edges and a path of length $\lfloor \frac{d}{2} \rfloor$ at one vertex of the triangle, and a path of length $\lceil \frac{d}{2} \rceil - 1$ to another vertex of the triangle, respectively. Let $\Delta_n^{d'}$ be an n-vertex graph obtained from a triangle by attaching n-d-2 pendent edges and a path of length $\lceil \frac{d}{2} \rceil - 1$ at one vertex of the triangle, and a path of length $\lceil \frac{d}{2} \rceil - 1$ at one vertex of the triangle, respectively.

Note that if d = n - 2 or $d \equiv 1 \pmod{2}$, then $\triangle_n^d \cong \triangle_n^{d'}$.

Theorem 3.1 Let \triangle_n^{2t} and $\triangle_n^{2t'}$ be the two graphs shown in Fig.

Fig.1 Graphs A and A"

1. Suppose that $2 \le t \le \lfloor \frac{n-3}{2} \rfloor$. Then for every $k = 0, 1, \ldots, n$,

$$c_k(\triangle_n^{2t'}) \ge c_k(\triangle_n^{2t}),$$

with equality if and only if $k \in \{0, 1, n - 1, n\}$.

Proof. It is easy to see that $c_0(\triangle_n^{2t'}) = c_0(\triangle_n^{2t}) = 1, c_1(\triangle_n^{2t'}) = 2|E(\triangle_n^{2t'})| = 2|E(\triangle_n^{2t})| = c_1(\triangle_n^{2t}), c_n(\triangle_n^{2t'}) = c_n(\triangle_n^{2t}) = 0, c_{n-1}(\triangle_n^{2t'}) = n\tau(\triangle_n^{2t'}) = 3n = n\tau(\triangle_n^{2t}) = c_{n-1}(\triangle_n^{2t}).$

Now, consider the coefficients $c_{n-k}(G)$ $(k \neq 0, 1, n-1, n)$. Let \mathscr{F}_k and \mathscr{F}'_k be the sets of spanning forests of Δ_n^{2t} and $\Delta_n^{2t'}$ with exactly k components, respectively. Obviously, by the Definition of the spanning forest, the cycle $C = v_t v_{t+1} v_{2t+2} v_t$ satisfies that $C \notin F \in \mathscr{F}_k$ and $C \notin F' \in \mathscr{F}'_k$, where F and F' are the arbitrary forests in \mathscr{F}_k and \mathscr{F}'_k , respectively. Now, we distinguish the following three cases.

Case 1. We remove $v_t v_{t+1}$ in Δ_n^{2t} and $\Delta_n^{2t'}$, respectively. We can get T_1 and T_1' , (see fig. 2). Obviously, $T_1 = C(0, 0, \dots, a_{t-1}, 0, \dots, 0)$,

 $T_1' = C(0,0,\ldots,a_{t+1},0,\ldots,0)$, where $a_{t-1} = a_{t+1} = n-2t-2$. At the same time, the diameters of T_1 and T_1' are 2t+1, v_{t+1},v_{2t+2} are the two central vertices of T_1 and 2t+1, v_{t+1},v_{2t+2} are the two central vertices of T_1' , too. By Lemma 2.3, we know for every $k=0,1,\ldots,n$,

$$c_k(T_1) \le c_k(T_1'). \tag{3.1}$$

Case 2. We remove $v_{t+1}v_{2t+2}$ in \triangle_n^{2t} and remove v_tv_{2t+2} in $\triangle_n^{2t'}$. We can get T_2 and T_2' . v_{t+1} is the central vertex of T_2 and T_2' , respectively. It is easy to see that $n \geq 2t+2$, and if n=2t+3, we have $T_2 \cong T_2'$. When $n \geq 2t+2$, and $n \neq 2t+3$, we know that $T_2 = \delta(T_2', v_t)$. Then using Lemma 2.2, we can get that for every $k=0,1,\ldots,n$,

$$c_k(T_2) \le c_k(T_2'). \tag{3.2}$$

Case 3. We remove $v_t v_{2t+2}$ in Δ_n^{2t} and remove $v_{t+1} v_{2t+2}$ in $\Delta_n^{2t'}$. We can get T_3 and T_3' . v_{t+1} is the central vertex of T_3 and T_3' , respectively. We know that $T_3 = \delta(T_3', v_t)$. Then using Lemma 2.2, we can get that for every $k = 0, 1, \ldots, n$,

$$c_k(T_3) \le c_k(T_3'). \tag{3.3}$$

From Eqs. (3.1)-(3.3), according to Lemma 2.1, we have that for every k = 0, 1, ..., n, $c_k(\triangle_n^{2t}) \leq c_k(\triangle_n^{2t'})$, with equality if and only if $k \in \{0, 1, n-1, n\}$. \square

Let $\nabla_n^d(i)$ $(2 \le i \le d+1)$ be an *n*-vertex graph obtained from a triangle by attaching n-d-3 pendent edges and a path of length i-1 at one vertex of the triangle, and a path of length d-i+1 to the same vertex of the triangle, respectively (see Fig. 3).

Let $\Delta_n^d(i)$ $(2 \le i \le d+1)$ be an *n*-vertex graph obtained from a triangle by attaching n-d-2 pendent edges and a path of length i-1 at one vertex of the triangle, and a path of length d-i to another vertex of the triangle, respectively (see Fig. 3). Note that if i=2 or i=d, then $\Delta_n^d(i)\cong \nabla_n^d(i)$. And when $3\le i\le d-1$, $\Delta_n^d(i)=\nabla_n^d(i)-v_{d+2}v_{d+3}+v_{d+2}v_{i+1}$.

Theorem 3.2 Suppose that $3 \le i \le d-1$. Then for every k =

$$0, 1, \ldots, n,$$

$$c_k(\nabla_n^d(i)) \ge c_k(\triangle_n^d(i)),$$

with equality if and only if $k \in \{0, 1, n-1, n\}$.

Proof. It is easy to see that $c_0(\nabla_n^d(i)) = c_0(\triangle_n^d(i)) = 1, c_1(\nabla_n^d(i)) = 2|E(\nabla_n^d(i))| = 2|E(\triangle_n^d(i))| = c_1(\triangle_n^d(i)), c_n(\nabla_n^d(i)) = c_n(\triangle_n^d(i)) = 0, c_{n-1}(\nabla_n^d(i)) = n\tau(\nabla_n^d(i)) = 3n = n\tau(\triangle_n^d(i)) = c_{n-1}(\triangle_n^d(i)).$

Now, consider the coefficients $c_{n-k}(G)$ $(k \neq 0, 1, n-1, n)$. Let \mathscr{F}_k and \mathscr{F}'_k be the sets of spanning forests of $\nabla^d_n(i)$ and $\Delta^d_n(i)$ with exactly k components, respectively. Let $F \in \mathscr{F}_k$ and T be the component of F. If $v_{d+2}v_{d+3} \in E(T)$, we define F' with V(F) = V(F') and $E(F') = E(F) - v_{d+2}v_{d+3} + v_{d+2}v_{i+1}$. By the definition of spanning forest, we know that $v_i \notin V(T)$.

Let S contain $a \geq 1$ in the paths $P = v_{i+1}, \ldots, v(i+p) (1 \leq p \leq d-i+1)$. Assume the orders of the components of F different from T and S are $n_1, n_2, \ldots n_{k-2}$. We have

$$\gamma(F) - \gamma(F') = [2a - 1(a+1)] \prod_{i=1}^{k-2} n_i = (a-1) \prod_{i=1}^{k-2} n_i = (a-1)N,$$

where $N = \prod_{i=1}^{k-2} n_i$.

It is easy to see that $a \ge 1$, so $(a-1)N \ge 0$. Since at least one vertex is in P, there exists one forest F such that a > 1, and then (a-1)N > 0, i.e. $\gamma(F) > \gamma(F')$.

If $v_{d+2}v_{d+3} \notin E(T)$, we define E(F') = E(F), so $\gamma(F) = \gamma(F')$.

Therefore, by using Lemma 2.1, we get $c_k(\nabla_n^d(i)) \geq c_k(\triangle_n^d(i))$, with equality if and only if $k \in \{0, 1, n-1, n\}$. This completes the proof of Theorem 3.2. \square

Let U_0 be the unicyclic graph of order d+2 shown in Fig. 6. Let $U_0(p_2, \ldots, p_d, p_d + 2)$ be a graph of order n obtained from U_0 by attaching p_i pendent vertices to each $v_i \in V(U_0) \setminus \{v_1, v_{d+1}\}$, respec-

Fig.4 Graph Uo

tively, where $p_{d+2} = 0$ when k = 1 or k = d. Denote

$$\widetilde{\mathscr{U}}_n^d = \{U_0(p_2,\ldots,p_d,p_{d+2}) : \sum_{i=2}^d p_i + p_{d+2} = n-d-2\}$$

and $\overline{\mathcal{U}}_n^d = \{U_0(0,\ldots,0,p_i,0,\ldots,0) : p_i \geq 0\}.$

Theorem 3.3 Let $G \in \widetilde{\mathcal{U}}_n^d \setminus \overline{\mathcal{U}}_n^d$. Then there is a graph $G^* \in \overline{\mathcal{U}}_n^d$ such that for every $k = 0, 1, \ldots, n$,

$$c_k(G) \ge c_k(G^*),$$

with equality if and only if $k \in \{0, 1, n - 1, n\}$.

Proof. Suppose $G \in \widetilde{\mathscr{U}}_n^d \setminus \overline{\mathscr{U}}_n^d$. If $p_{d+2} \geq 1$, such that $v_{d+2}u_1, v_{d+2}u_2, \ldots, v_{d+2}u_{p_{d+2}}$ are pendent edges incident with v_{d+2} . Let $G^* = G - v_{d+2}u_1 - v_{d+2}u_2 - \ldots - v_{d+2}u_{p_{d+2}} + v_{i+1}u_1 + v_{i+1}u_2 + \ldots + v_{i+1}u_{p_{d+2}}$. It is easy to see that $c_0(G^*) = c_0(G) = 1, c_1(G^*) = 2|E(G^*)| = 2|E(G)| = c_1(G), c_n(G^*) = c_n(G) = 0, c_{n-1}(G^*) = n\tau(G^*) = 3n = n\tau(G) = c_{n-1}(G)$.

Now, consider the coefficients $c_{n-k}(G)$ $(k \neq 0, 1, n-1, n)$. Let \mathscr{F}_k and \mathscr{F}_k^* be the sets of spanning forests of G and G^* with exactly k components, respectively. Obviously, by the Definition of the spanning forest, the cycle $C = v_i v_{i+1} v_{d+2} v_i$ satisfies that $C \notin F \in \mathscr{F}_k$ and $C \notin F^* \in \mathscr{F}_k^*$, where F and F^* are the arbitrary forests in \mathscr{F}_k and \mathscr{F}_k^* , respectively. The next proof is similar to the proof of Theorem 3.1. Then we have that $c_k(G) \geq c_k(G^*)$.

When $p_{d+2}=0$, let $2 \le r \le i$ be the smallest index such that $a_r>0$, and let $i+2 \le s \le d$ be the largest index such that $a_s>0$.

We can apply π_3 -transformation to vertex v_r or v_s , and get the graph G^* obtained by moving pendent vertices to the vertex v_{r+1} or v_{s-1} of a path. After applying the algorithm, we finally get the graph $G^* \in \overline{\mathscr{U}}_n^d$. According to Lemma 2.6, we have that for every $k = 0, 1, \ldots, n$ $c_k(G) \geq c_k(G^*)$, with equality if and only if $k \in \{0, 1, n-1, n\}$.

From the above proof, we know there is a graph $G^* \in \overline{\mathscr{U}}_n^d$ such that for every $k = 0, 1, \ldots, n$, $c_k(G) \geq c_k(G^*)$, with equality if and only if $k \in \{0, 1, n-1, n\}$. \square

Theorem 3.4 For any graph $G \in \widetilde{\mathscr{U}}_n^d$, $3 \le d \le n-2$, we have that for every $k = 0, 1, \ldots, n$,

$$c_k(G) \ge c_k(\Delta_n^d),$$

with equality if and only if $k \in \{0, 1, n\}$.

Proof. By the proof of Theorem 3.3, we have if $p_j > 0$, then j = i or j = i + 1. Next, we only need to prove that $i = \lceil \frac{d}{2} \rceil$.

Otherwise, without loss of generality, suppose that i=2, we denote the graph H. If $i=\lceil \frac{d}{2} \rceil$, we denote the graph G.

Obviously, $c_0(H) = c_0(G) = 1$, $c_1(H) = c_1(G) = n$, $c_n(H) = c_n(G) = 0$, $c_{n-1}(H) = c_{n-1}(G) = 3n$.

Now, consider the coefficients c_{n-k} $(k \neq 0, 1, n-1, n)$. Let \mathscr{F}_k and \mathscr{F}_{k_1} be the sets of spanning forests of H and G with exactly k components, respectively. Obviously, by the Definition of the spanning forest, the cycle $C_H = v_2 v_3 v_{d+2} v_2$ and $C_G = v_{\lceil \frac{d}{2} \rceil} v_{\lceil \frac{d}{2} \rceil + 1} v_{d+2} v_{\lceil \frac{d}{2} \rceil}$ satisfie that $C_H \notin F \in \mathscr{F}_k$ and $C_G \notin F_1 \in \mathscr{F}_{k_1}$, where F and F_1 are the arbitrary forests in \mathscr{F}_k and \mathscr{F}_{k_1} , respectively. The next proof is similar to the proof of Theorem 3.1. \square

From the proof of Theorems 3.3 and 3.4, we have **Theorem 3.5** For any graph $G \in \widetilde{\mathcal{U}}_n^d \setminus \{\Delta_n^d\}$ with $d \equiv 0 \pmod{2}$ and $4 \leq d \leq n-3$, we have that for every $k=0,1,\ldots,n$,

$$c_k(G) \ge c_k(\Delta_n^{d'}),$$

with equality if and only if $k \in \{0, 1, n\}$.

Theorem 3.6 Let G be a graph in \mathcal{U}_n^d , $d \geq 1$. Then for every $k = 0, 1, \ldots, n$,

$$c_k(G) \ge c_k(\Delta_n^d),$$

with equality if and only if $k \in \{0, 1, n\}$.

Proof. If d=1, then $G\cong C_3$. If d=2, then $G\cong C_4$, $G\cong C_5$ or $G\cong \triangle_n^2$. Thus, by Lemma 2.4, the result holds for d=1,2. Therefore, we can assume that $3\leq d\leq n-2$.

Choose $G \in \mathcal{U}_n^d$ such that the Laplacian coefficients of G are as small as possible. Let $P = v_1 v_2 \dots v_{d+1}$ be the induced path of length d and let C_q be the only cycle in G. We first proof the next claim.

Claim: $V(C_q) \cap V(P_d) \neq \emptyset$.

Otherwise, since G is connected, there exists an path $v_iv_k\cdots v_l$ connecting C_q and P_d , where $v_i\in V(C_q), v_l\in V(P_d)$ and $v_k,\cdots,v_{l-1}\in V(G)\setminus (V(C_q)\cup V(P_d))$. We can get $G_{v_iv_k}=\alpha(G)$, according Lemma 2.4, we have $c_k(G)\geq c_k(G_{v_iv_k})$, a contradiction. Then, $V(C_q)\cap V(P_d)\neq\emptyset$.

Since $V(C_q) \cap V(P_d) \neq \emptyset$, let $C_q = u_1 \cdots u_l v_1 \cdots v_s u_1$ $(s \geq 1)$, where $u_1, \dots, u_l = V(C_q) \cap V(P_d)$ and $v_1, \dots, v_s = V(C_q) \setminus V(P_d)$. If $l \geq 2$, we can apply π_2 -transformation on C_q as long as $C_q \neq C_3$. According to Lemma 2.5, we have that for every $k = 0, 1, \dots, n$ $c_k(G) \geq c_k(G^*)$, with equality if and only if $k \in \{0, 1, n-1, n\}$.

Let $P=v_1v_2\dots v_{d+1}$ be the induced path of length d. Every $v_i(2\leq i\leq d)$ on the path P is a root of a tree T_i with $a_i(a_2\leq 1,anda_d\leq 1)$ vertices, that does not contain other vertices of P. We apply α -transformation on trees T_2,T_3,\dots,T_{d-1} and the cycle C_q as long as we get the graph $G^*\notin \widetilde{\mathscr{U}}_n^d$ or $G^*\notin \{\nabla_n^d(i)|2\leq i\leq d\}$. By Lemma 2.4, it is easy to see that for every $k=0,1,\dots,n,\ c_k(G)\geq c_k(G^*)$, with equality if and only if $k\in\{0,1,n\}$, and $G^*\in\widetilde{\mathscr{U}}_n^d$.

On the basis of Theorems 3.2 and 3.3, we know that there exists

 $G^{**} \in \overline{\mathscr{U}}_n^d$ such that for every $k = 0, 1, \ldots, n$, $c_k(G^*) \geq c_k(G^{**})$, with equality if and only if $k \in \{0, 1, n - 1, n\}$. By Theorem 3.4, Theorem 3.6 follows immediately. \square

Theorem 3.7 For any graph $G \in \mathcal{U}_n^d \setminus \{\triangle_n^d\}$ with $d \equiv 0 \pmod{2}$ and $4 \leq d \leq n-3$, we have that for every $k=0,1,\ldots,n$,

$$c_k(G) \ge c_k(\Delta_n^{d'}),$$

with equality if and only if $k \in \{0, 1, n\}$.

4 Laplacian-like energy of unicyclic graphs with fixed diameter

The Laplacian-like energy of graph G, LEL for short, is defined as follows: $LEL(G) = \sum_{k=1}^{n-1} \sqrt{\mu(k)}$, where $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0$ are the Laplacian eigenvalues of G. This concept was introduced by Liu and Liu [7], where it was demonstrated it has similar feature as molecular graph energy (for more details see [8]). Stevanović in [9] presented a connection between LEL and Laplacian coefficients.

Theorem 4.1([9]) Let G and H be two graphs with n vertices. If $c_k(G) \leq c_k(H)$ for $k = 1, 2, \dots, n-1$, then $LEL(G) \leq LEL(H)$. Furthermore, if a strict inequality $c_k(G) < c_k(H)$ holds for some $1 \leq k \leq n-1$, then LEL(G) < LEL(H).

Corollary 4.2. Let G be a graph in \mathcal{U}_n^d . Then if $G \ncong \triangle_n^{d'}$, and $G \ncong \triangle_n^d$, $LEL(G) > LEL(\triangle_n^{d'}) > LEL(\triangle_n^d)$.

References

- [1] D.Cvetkovic, M.Doob, H. Sachs, Spectra of graphs-Theory and Application, 3rd edition, Johann Ambrosius Barth Verlag, 1995.
- [2] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra Appl. 722(2007)736-741.

- [3] D. Stevanovic, A. Ilic, On the Laplacian coefficients of unicyclic graphs, Linear Algebra Appl. 430(2009)2290-2300.
- [4] C. X. He, H. Y. Shan, On the Laplacian coefficients of bicyclic graphs, Discrete Math. 310(2010)3404-3412.
- [5] X. Y. Pai, S. Y. Liu, J. M. Guo, On the Laplacian coefficients of tricyclic graphs, J. Math. Anal. Appl. 405(2013)200-208.
- [6] A. Ilic, A. Ilic, D. Stevanovic, On the Wiener index and Laplacian coefficients of graphs with given diameter or radius, MATCH Commun. Math. Comput. Chem. 63(2010)91-100.
- [7] J. Liu, B. Liu, A Laplacian-energy-like invariant of a graph, MATCH Commun. Math. Comput. Chem. 59(2008)397-419.
- [8] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz. 103(1978)1-22.
- [9] D. Stevanovic, Laplacian-like energy of trees, MATCH Commun. Math. Comput. Chem. 61(2009)407-417.
- [10] A. Ilic, M. Ilic, Laplacian coefficients of trees with given number of leaves or vertices of degree two, Linear Algebra Appl. 431(2009)2195-2202.
- [11] S. C. Li, X. C. Li, Z. X. Zhu, On tricyclic graphs with minimal energy, MATCH Commun. Math. Comput. Chem. 59(2008)397-419.
- [12] X. Y. Pai, S. Y. Liu, On the Laplacian coefficients and Laplacian-like energy of unicyclic graphs with n vertices and m pendent vertices, Journal of Applied Math., Volume 2012.
- [13] S. W. Tan, On the Laplacian coefficients of unicyclic graphs with prescribed matching number, Discrete Math. 311(2011)582-594.