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1 Introduction

Let G = (Vg, Eg) be a simple undirected graph with n vertices
and L(G) = D(G) — A(G) be its Laplacian matrix. The Laplacian
polynomial of G is the characteristic polynomial of its Laplacian
matrix. That is

n
®(G, \) = det(\I, — L(G)) = Y_(—1)*ck(G)A"*.
=0

The Laplacian matrix L(G) has non-negative eigenvalues u; >
B2 2 ... 2 pa-1 2 pn = 0 [1]. In particular, we have co(G) =
1,c1(G) = 2|E(G)|, cn(G) = 0 and ¢4—1(G) = n7(G), where 7(G) is
the number of spanning trees of G.

Recently, the study on the Laplacian coefficients attracts much
attention. Mohar [2] proved that among all trees of order n. Ste-
vanovic and Ilic (3] showed that among all connected unicyclic graphs
of order n. He and Shan [4] proved that among all bicyclic graphs
of order n. Pai, Liu and Guo [5] showed that among all connected
tricyclic graphs of order n, Ilic, Ilic and Stevanovic[6] verified the
Wiener index and Laplacian coefficients of graphs with given diam-
eter or radius.

Motivated by the results in [3-7,11,13] concerning the minimal
Laplacian coefficients and Laplacian-like energy of some graphs and
the minimal molecular graph energy, this article will characterize
the unicyclic graphs with n vertices and diameter d, which minimize
Laplacian-like energy.

A unicyclic graph is a connected graph in which the number of
vertices equals the number of edges. We will use % to denote the
set of all the unicyclic graph with n vertices and diameter d.
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2 Transformations and Lemmas

In this section, we introduce some lemmas. The Laplacian co-
efficients c(G) of a graph G can be expressed in terms of subtree
structures of G by the following result of Kelmans and Chelnokov (8].
Let F be a spanning forest of G with components T;,¢ = 1,2,...,k
having n; vertices each, and let v(F) = Hf=1 n;.

Lemma 2.1([8]) The Laplacian coefficient ¢,_x(G) of a graph G is
given by ¢,—k(G) = 3_peg, 7(F), Where & is the set of all spanning
forests of G with exactly k components.

Let T' = §(T,v), (see [10] for more details).

Lemma 2.2([10]) Let T be an arbitrary tree, rooted at the cen-
ter vertex. Let vertex v be on the deepest level of tree T' among
all branching vertices with degree at least three. Then for the é-
transformation tree 7' = (T, v)and 0 < k < n holds cx(G) > ci(G').

Let C(ay,...,aq-1) be a caterpillar obtained from a path Fy :
{vo,v1,...,va} by attaching a; pendent edges to vertex v;. For sim-
plicity, Cp, g = C(0,... » 0|4} 0,...,0) (see [6] for more details).
Lemma 2.3([6]) Among connected acyclic graphs on n vertices and
diameter d, caterpillar C(0, ..., ajg), 0,...,0), where a4 = n—-d-1,
has minimal Laplacian coefficients ck, for every £k =0,1,...,n.

Let G,y is a a-transform of G, (see [13] for more details).
Lemma 2.4([13]) Let G, = a(G). Then cx(G) > ck(Guwo), With
equality if and only if k € {0,1,n — 1,n} when uv is a cut edge or
k € {0,1,n} otherwise.

Let Gy == m3(G), (see [12] for more details).

Lemma 2.5([12]) Let G2 = m3(G). Then for every £ =0,1,...,n,
cx(G) > ck(Gs), with equality if and only if k € {0,1,n}.

Let G* = 73(G)(see [12] for more details).

Lemma 2.6([12]) Let G be a connected unicyclic graph with n ver-
tices, G* = m3(G). Then for every k = 0,1,...,n, cx(G) = cx(G*),
with equality if and only if k € {0,1,n — 1,n}.
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3 Main results

For G € 2% wehave n > 3and1 <d<n-2 Ifd=1,
then G = Cj3. Therefore, in the following, we assume that d > 2 and
n >4,

Let A2 be an n-vertex graph obtained from a triangle by attach-
ing n — d — 2 pendent edges and a path of length [‘5' | at one vertex
of the triangle, and a path of length [ -;f;'[ — 1 to another vertex of the
triangle, respectively. Let Aﬁ' be an n-vertex graph obtained from
a triangle by attaching n — d — 2 pendent edges and a path of length
[4] — 1 at one vertex of the triangle, and a path of length 1] to
another vertex of the triangle, respectively.

Note that if d = n — 2 or d = 1(mod2), then A% = AZ',

Theorem 3.1 Let A2 and A2 be the two graphs shown in Fig.

o —9 o o o
%

]

n-u-2 a7

n-u-2

Fig.\ Graphs 8¥ and 8’

1. Suppose that 2 <t < ["T""J Then for every £k =0,1,...,n,
(A 2 er(DY),

with equality if and only if k € {0,1,n — 1,n}.

Proof. It is easy to see that co(AZ') = co(AZ) = 1,¢(A2) =
2|B(A%)| = 2|E(AY)| = c1(A%), ca(A2') = ca(A2) = 0, ey (A
=n7(A2) = 3n = nT(A%) = ¢y (AZ).
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Now, consider the coefficients c,—x(G) (k # 0,1,n — 1,n). Let
Fi and F| be the sets of spanning forests of AZ and A2 with
exactly k components, respectively. Obviously, by the Definition
of the spanning forest, the cycle C = vvsy1va4ov; satisfies that
C¢Fe Fand C¢F € &, where F and F' are the arbitrary
forests in #j, and #}, respectively. Now, we distinguish the following
three cases.

Case 1. We remove vv;41 in A2 and A2, respectively. We can
get Ty and T}, (see fig. 2). Obviously, T1 = C(0,0,...,a:-1,0,...,0),

n-2-2

Fig.2 Tand T,

1] = C(0,0,...,a:41,0,...,0), where a;_1 = ag41 = n — 2t — 2. At
the same time, the diameters of 71 and T} are 2t + 1, vs41, U2t42 8Te
the two central vertices of i and 2t+1, vy 1, Vo2 are the two central
vertices of T}, too. By Lemma 2.3, we know for every k = 0,1,...,n,

ce(Th) < ex(TY). (3.1)

Case 2. We remove vz, 10242 in A2 and remove vv2s42 in A2,
We can get 75 and Tj. w1 is the central vertex of T and T3,
respectively. It is easy to see that n > 2t + 2, and if n = 2t + 3,
we have Ty = T). When n > 2t + 2, and n # 2t + 3, we know that
Ty, = §(T},v:). Then using Lemma 2.2, we can get that for every
k=0,1,...,n,

ck(T2) < Ck(Té). (32)
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Case 3. We remove v;vg;42 in A% and remove vy 1vg:49 in A2
We can get T3 and Tj. w4 is the central vertex of T3 and T3,
respectively. We know that T3 = §(T3,v;). Then using Lemma 2.2,
we can get that for every £ =0,1,...,n,

ck(T3) < ck(T3)- (3.3)

From Egs. (3.1)—(3.3), according to Lemma 2.1, we have that
for every k = 0,1,...,n, ct(A%) < ci(A2), with equality if and
onlyif k€ {0,1,n—1,n}. O

Let V&(3) (2 < i < d+ 1) be an n-vertex graph obtained from a
triangle by attaching n — d — 3 pendent edges and a path of length
i — 1 at one vertex of the triangle, and a path of length d —i + 1 to
the same vertex of the triangle, respectively (see Fig. 3).

n-d-2

Fig3 vi()and A% ()

Let A%(3) (2 <4 < d+ 1) be an n-vertex graph obtained from a
triangle by attaching n — d — 2 pendent edges and a path of length
¢ — 1 at one vertex of the triangle, and a path of length d — i to
another vertex of the triangle, respectively (see Fig. 3). Note that
ifi=2o0ri=d, then A%(i) = V(). And when3<i<d-1,
D3(3) = V(1) — varavass + varovis.

Theorem 3.2 Suppose that 3 < i < d—1. Then for every k =
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0,1,...,n,
cx(Va(@) 2 ck(Da(0)),

with equality if and only if k € {0,1,n — 1,n}.

Proof. It is easy to see that co(VE(2)) = co(A%(2)) = 1,e1(VE(D)) =
2|E(VE(&))| = 2B(AL(5))] = c1(La(5)), en(VE(E) = ca(DE(2)) = 0,
cn-1(Va(0)) = nr(V4a (i) = 3n = n7(A5(1)) = ca1(AZ(2))-

Now, consider the coefficients ¢,—x(G) (k # 0,1,n — 1,n). Let
Zi and Z] be the sets of spanning forests of V(i) and Ad(s) with
exactly k components, respectively. Let F' € &, and T be the com-
ponent of F. If vgiav4r3 € E(T), we define F' with V(F) = V(F’)
and E(F') = E(F) — va4+2vd+3 + vd+2vi+1. By the definition of span-
ning forest, we know that v; ¢ V(T).

Let S contain a > 1 in the paths P = v;yy,...,v(i+p)(1 <p <
d—1i+1). Assume the orders of the components of F’ different from
T and S are ny,ng,...ng_o. We have

k-2 k-2
Y(F)=y(F)=Ra=1a+ D] [Jri=(@-1) [Jni = (a= DN,

i=] i=1

where N = i:f n;.

It is easy to see that a > 1, so (e — 1)N > 0. Since at least one
vertex is in P, there exists one forest F' such that a > 1, and then
(a=1)N >0, i.e. ¥(F) > ~(F').

If vy4ov443 € E(T), we define E(F') = E(F), so y(F) = ~y(F’).

Therefore, by using Lemma 2.1, we get cx(V2(3)) > cx(A2(3)),
with equality if and only if k € {0,1,n — 1,n}. This completes the
proof of Theorem 3.2. O

Let Uy be the unicyclic graph of order d + 2 shown in Fig. 6.
Let Uo(pa, - - -, Pd, Pd + 2) be a graph of order n obtained from Up by
attaching p; pendent vertices to each v; € V{(Up)\{v1,vd+1}, respec-
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tively, where pg+2 = 0 when k =1 or k£ = d. Denote

d
% ={Us(p2, ... Pa,Pas2) : D _Pi+Paya =n—d—2}
=2
and Z2 = {Uo(0,...,0,p,0,...,0) : p; > O}.
Theorem 3.3 Let G € ?/,{’\37:. Then there is a graph G* € 7/—:
such that for every k =0,1,...,n,

ck(G) = ck(G"),

with equality if and only if k € {0,1,n — 1,n}.

Proof. Suppose G € 47/}\72. If pay2 > 1, such that vgyouy, vayous,
-+, Ud42Up,,, are pendent edges incident with vgyo. Let G* =
G—Vd42U1—Vdy2Ua—. . . —~Vd42Upayy TVit1U1HV1U2+ . . AVt 1Upy, 5.
It is easy to see that co(G*) = co(G) = 1,a1(G*) = 2|E(G*)| =
2lE(G)| = a1(G),en(G*) = ¢n(G) =0, cn1(G*) = n7(G*) = 3n =
n7(G) = cn-1(G).

Now, consider the coefficients ¢,—x(G) (k # 0,1,n—1,n). Let Z;
and &} be the sets of spanning forests of G and G* with exactly k
components, respectively. Obviously, by the Definition of the span-
ning forest, the cycle C' = v;v;41v44+2v; satisfies that C € F € %
and C ¢ F* € &, where F' and F* are the arbitrary forests in
& and F;, respectively. The next proof is similar to the proof of
Theorem 3.1. Then we have that c¢x(G) > cx(G*).

When pgy2 = 0, let 2 < r < © be the smallest index such that
ar >0, and let ¢ + 2 < s < d be the largest index such that a, > 0.
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We can apply m3—transformation to vertex v, or v, and get the
graph G* obtained by moving pendent vertices to the vertex vr41
or vs; of a path. After applying the algorithm, we finally get the
graph G* € 7/7, According to Lemma 2.6, we have that for every
k=01,...,n c&(G) > cx(G*), with equality if and only if k €
{0,1,n—1,n}.

From the above proof, we know there is a graph G* € ?_/i such
that for every k = 0,1,...,n, ck(G) = cx(G*), with equality if and
onlyifke {0,1,n—1,n}. O
Theorem 3.4 For any graph G € ?7,?, 3<d<n-2, we have that
forevery k=0,1,...,n,

cx(G) 2 ex(D7),

with equality if and only if k¥ € {0,1,n}.
Proof. By the proof of Theorem 3.3, we have if p; > 0, then j =1
or j =1+ 1. Next, we only need to prove that ¢ = [3‘2!].

Otherwise, without loss of generality, suppose that { = 2, we
denote the graph H. If i = [%], we denote the graph G.

Obviously, co(H) = co(G) = 1, ai(H) = a1(G) = n, ca(H) =
en(G) =0, enoy(H) = cn1(G) = 3.

Now, consider the coefficients ¢, (k # 0,1,n — 1,n). Let &
and &, be the sets of spanning forests of H and G with exactly k
components, respectively. Obviously, by the Definition of the span-
ning forest, the cycle Cy = vovsvg42ve and Cg = Urd1V[4141Y+2V14)
satisfie that Cy € F € %, and Cg ¢ F1 € &#,, where F and F are
the arbitrary forests in & and %, , respectively. The next proof is
similar to the proof of Theorem 3.1. O

From the proof of Theorems 3.3 and 3.4, we have
Theorem 3.5 For any graph G € ‘?Zfi\{Af,} with d = 0(mod2) and
4 < d < n—3, we have that for every £k =0,1,...,n,

cx(G) = ce(Ad),
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with equality if and only if £ € {0, 1,n}.
Theorem 3.6 Let G be a graph in %, d > 1. Then for every
k=0,1,...,n,

ck(G) = (D7),

with equality if and only if k € {0, 1,n}.

Proof. If d =1, then G = C;. If d = 2, then G = Cy, G = Cs
or G & A2. Thus, by Lemma 2.4, the result holds for d = 1, 2.
Therefore, we can assume that 3 <d<n-—2.

Choose G € %2 such that the Laplacian coefficients of G are
as small as possible. Let P = vjv2...v441 be the induced path of
length d and let C, be the only cycle in G. We first proof the next
claim.

Claim: V(C,) NV (Py) # 0.

Otherwise, since G is connected, there exists an path vvg-- -y
connecting C, and P, where v; € V(Cy), vi € V(Py) and v, - - , v
€ V(GI\(V(Cq) U V(Py)). We can get Gy, = a(G), according
Lemma 2.4, we have ¢x(G) > cik(Gyw,), @ contradiction. Then,
V(Cy) NV(Py) # 0.

Since V(Co) NV (FPy) # 0, let Cq = uy---wwy -+ -vsuy (s > 1),
where uy, -+ ,u; = V(Cp) NV (Fy) and vy, -+ ,v, = V(Cy)\V(Py).
If 1 > 2, we can apply mo-transformation on C, as long as C, # Cs.
According to Lemma 2.5, we have that for every £k = 0,1,...,n
ck(G) 2 cx(G*), with equality if and only if k € {0,1,n — 1,n}.

Let P = vjv3...v44; be the induced path of length d. Every
v(2 < i < d) on the path P is a root of a tree T; with a;(ag <
1,anday < 1) vertices, that does not contain other vertices of P. We
apply a—transformation on trees T5,73,...,T;—; and the cycle C,
as long as we get the graph G* ¢ %2 or G* ¢ {V2(i)|2 < i < d}. By
Lemma 2.4, it is easy to see that for every k = 0,1,...,n, cx(G) >
cx(G*), with equality if and only if k € {0,1,n}, and G* € %2.

On the basis of Theorems 3.2 and 3.3, we know that there exists
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G* € T such that for every k = 0,1,...,n, ck(G*) > cx(G*™),
with equality if and only if £ € {0,1,n — 1,n}. By Theorem 3.4,
Theorem 3.6 follows immediately. OJ

Theorem 3.7 For any graph G € 2\{A2} with d = 0(mod2) and
4 < d < n -3, we have that for every k =0,1,...,n,

ck(G) = cx(AY),

with equality if and only if k € {0,1,n}.

4 Laplacian-like energy of unicyclic graphs
with fixed diameter

The Laplacian-like energy of graph G, LEL for short, is defined
as follows: LEL(G) = Z;i Vie(k), where g > p2 > -+ 2 pin =0
are the Laplacian eigenvalues of G. This concept was introduced by
Liu and Liu [7], where it was demonstrated it has similar feature as
molecular graph energy (for more details see [8]). Stevanovié in [9)
presented a connection between LEL and Laplacian coefficients.
Theorem 4.1([9]) Let G and H be two graphs with n vertices. If
ck(G) < cx(H) for k = 1,2,--- ,n — 1, then LEL(G) < LEL(H).
Furthermore, if a strict inequality cx(G) < cx(H) holds for some
1<k<n-1,then LEL(G) < LEL(H).

Corollary 4.2. Let G be a graph in %2. Then if G % Ag', and
G 2 A, LEL(G) > LEL(A%") > LEL(AZ).
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