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Abstract

A hypergraph is intersecting if any two different edges have ex-
actly one common vertex and an n-quasicluster is an intersecting
hypergraph with n edges each one containing at most n vertices
and every vertex is contained in at least two edges. The Erdés-
Faber-Lovész Conjecture states that the chromatic number of any
n-quasicluster is at most n. In the present note we prove the correct-
ness of the conjecture for a new infinite class of n-quasiclusters using
a specific edge coloring of the complete graph.

Introduction

A hypergraph H = (V, €) consists of a finite no empty set V, the vertices of
‘H, and a finite collection £ of subsets of V, the edges of H. It is assumed
that each vertex belongs to at least one edge. A hypergraph H = (V,€) is
linear if [ ENF| < 1, for all E, F € €, and H is intersecting if |[ENF| =1,
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for all E, F € £. In the remainder of this note each edge contains at least
two vertices.

Let {1,2,...,k} be a set of k colors. A k-vertez-coloring of H is a
surjective map ¢ : V — {1,2,...,k} such that if u,v € V are adjacent,
then ¢(u) # ¢(v). In other words, no two vertices with the same color
belong in the same edge. The chromatic number of H, denoted by x(H),
is the minimum & € N for which there is a k-vertex-coloring of H.

Thus, in the hypergraph setting the original Erdés-Faber-Lovasz Con-
jecture states:

Conjecture 0.1. If H is a linear hypergraph consisting of n edges, each
one containing n vertices, then x(H) = n.

An n-quasicluster is an intersecting hypergraph consisting of n edges,
each one with at most n vertices and each vertex is contained in at least
two edges.

Conjecture 0.2. If H is an n-quasicluster, then x(H) < n.

It is not difficult to prove that the conjecture 0.1 and the conjecture 0.2
are equivalent. For this, consider an n-quasicluster and add new vertices
in each edge such that the edges of this new intersecting hypergraph H has
size n. By assumption Conjecture 0.1 is true for intersecting hypergraphs,
the hypergraph H has an n-vertex-coloring, which in turn induces an n-
vertex-coloring to m-quasicluster. On the other hand, consider a linear
hypergraph 1 which satisfies the conjecture 0.1. By the theorem 3 of [18]
there exists an intersecting hypergraph H consisting of n edges, each of size
n, such that x(H) = x(H). Now, deleting from H vertices of degree one
we get an n-quasicluster H’. Assuming that Conjecture 0.2 is true we have
X(H') < n and this coloring can be easily extended to n-vertex-coloring to

~

H (using non-used colors to each vertex of degree one), thus x(H) = n.

In the present note we say that H is an instance of the conjecture or
theorem, if H satisfies the hypothesis of its statements.

There exist works related with some equivalences of Conjecture 0.1 and
also many advances, but it is clear that its proof is, in this moment, far
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from being attained. There are some results about upper bonds on the
number of colors required. Specifically, Mitchem [16], and independently
Chang and Lawler [6] had shown that if H is an instance of the conjecture
0.1, then the chromatic number of H is at most [3} — 2]. Kahn [14] had
proved, as an asymptotic result, that if H is an instance of the conjecture
0.1, then the chromatic number of H is at most n + o(n). There are some
works about specific classes of linear hypergraphs that satisfy the conjec-
ture 0.1; see for example (2], [4], [13], [17], [18] and [20]. Also there are
interesting equivalences of this conjecture; see for example [11], [12], [15]
and [19]. Recently, Faber [10] proved that for regular and uniform hyper-
graphs of fixed degree there can only be a finite number of counterexamples
for conjecture 0.1.

In this work we expose a new method to approach it, using a spe-
cific edge coloring of the complete graph, giving a new infinite class of
n-quasiclusters that satisfy the conjecture 0.2.

1 The result

Let G be a simple graph. A decomposition of G is a collection D =
{G, ..., Gk} of subgraphs of G such that every edge of G belongs to exactly
one subgraph in D, denoted by (G, D) a decomposition of G.

Let {1,...,k} be a set of k colors. A k-D-coloring of (G,D) is a
surjective map ¢’ : D — {1,...,k} such that for every G,H € D if
V(G)NV(H) # 0 then ¢'(G) # ¢'(H). Here ¢’ means that every edge
of the subgraph G is colored with the color ¢/'(G). The chromatic index
of a decomposition (G, D), denoted by x'((G,D)), is the minimum k € N
for which there is a k-D-coloring of (G,D). Now the (K,,D) denotes a
decomposition where the elements of D are complete subgraphs of K.

It is not difficult to see that there exists a bijection between the decom-
positions (K, D) and the n-quasiclusters 1, Because, if we have a decom-

1The elements of the decomposition (Kn,D) can be thought as the cliques of the
intersection graph of the corresponding n-quasicluster (see [12], [15), [17], [22]).
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position (Kpn, D), each vertex of K, is associated with an edge of the n-
quasiclusters and each element G € D with a vertex of the n-quasiclusters;
the intersection vertex of the edges associated with the vertices of G. Then
a k-vertex-coloring of an n-quasicluster H is a k-D-coloring of (K,, D) and
vice-versa. Therefore, the Conjecture 0.2 is equivalent to:

Conjecture 1.1. If (K,,D) is a decomposition, then x'((Kn,D)) < n.

As example of our interpretation consider an n-quasicluster where each
vertex is a member of exactly two edges, that is, each vertex has degree two,
then the elements of corresponding decomposition (K, D) are subgraphs
of order two, namely D = E(K,). Then a x'((Kn,D))-edge-coloring of
(Kn, D) is equivalent to x'(K,,)-edge-coloring of K, and by Vizing’s Theo-
rem we have that x'((Kn,D)) < n.

In this note we will work with a specific n-edge-coloring of the complete
graph K, given by the following: suppose that K, = (Z,,E) and that
{c1,...,cn} is a set of n different colors. If ab € E is an edge then the
associated color for this edge is co4s (with a + b € Z,). This assignment
is an n-edge-coloring of K, (for every n > 2). Let Go,...,Gn_1 be the
n chromatic classes of K,, with respect to this coloring. If we think that
Gi = (Zn,E;), where E; = {ab€ E: a+b=1i mod n}fori=0,...,n—1,
then these subgraphs satisfy:

1. Fori =0,...,n — 1, the degree of the vertices of G; is at most one.

2. If n is odd then the subgraph G; has an isolated vertex, say u; and
G; — u; is a perfect matching. If n is even and i is even then the
subgraph G; has two isolated vertices, say u; and v; and G; — u; — v;
is a perfect matching. When ¢ is odd the subgraph G; is a perfect
matching,.

For example, Figures 1 and 2 show the subgraphs corresponding to K5 and
K, respectively.

Our results are related with a previous result given by Romero and
Sénchez-Arroyo in [18]. We define some similar concepts like them, but
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Figure 1: Subgraphs corresponding to the 5-edge-coloring of Ks.
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Figure 2: Subgraphs corresponding to the 6-edge-coloring of K.
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their approach to solve this is totally algorithmic. On the other hand, our
method, as we previously exposed, is related with edge colorings in the
complete graph.

In [18] the following concepts were defined: A nonempty set W of
nonnegative integers is compact, if either |W| = 1, or there is an order
(@1,...,aw) on W, such that a;4y = a; + 1, for i =1,...,|W| — 1. Let
H = (V, ) be a hypergraph with n edges. H is edge conformable if there is
a bijection ¥ : £ — {0,...,n — 1}, called conformal labeling, such that for
each vertex v € V, the set F(v) = {¢(E) : v € E € £} can be partitioned
into two compact sets. The main result of [18] is that any intersecting
hypergraph consisting of n edges, each of size n, and edge conformable has
an n-vertex-coloring.

Now we introduce the following definitions: Let W = {w1,...,w,} be a
subset of Z,,; W is k-arithmetic if w;1)—w; =kmod n,fori=1,...,r—1
and some k € {1,...,[%2]}. A decomposition (K,,D) is called arithmetic
decomposition, if there exists a bijection ¢ : V(K,) — Z,, called arith-
metic labeling, such that for every G € D either V(G) is k-arithmetic or
V(G) can be partitioned into two k-arithmetics sets of same cardinality,
for some k € {1,...,|%]}. Let (K,,D) be an arithmetic decomposition
and G be an element of D, where V(G) = {v1,...,u} has odd cardinality,
then Vi is called the central vertez of G. Also, we say that a decompo-
sition (K,,D) has different central vertices if any pair of central vertices
(corresponding to elements of D of odd order) are different.

Theorem 1.2. Let (K,,D) be an arithmetic decomposition with different
central vertices, then x'((Kn,D)) < n.

Proof

Let (K, D) be an arithmetic decomposition, G be an element of D and

{ci1...,¢n} be a set of n different colors.

Case (i) If V(G) = {v1,...,u} is k-arithmetic, for some k € {1,...,|%]}
then by hypothesis vi}1 —v; = kmod n, fori =1,...,i — 1. The edges
of G will be colored as follows:
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(i.a) If V(G) has even cardinality, then vi + vy = vo+vi1 =... =
vt = j, for some j € Z,,. Assign the color c; to the edges
M = {vlv;,vzvl_l,...,v%v%_,_l}. As M is a perfect matching
then there are no incident edges to M of color c; different from
M, so that we can assign the color ¢; to all edges of G.

(i.b) If V(G) has odd cardinality, let vg = Vi1 € V(G) be the
central vertex of G. Thenvi + vy =ve+ v =... = Viz1 +
v = j, for some j € Zn, so that we can assign the color ¢;
to all edges of G — vg as Case (i.a).

Note that the color ¢; is not incident to vg: otherwise there exists
ug € V(K,) such that vg + ug = j mod n. As V(G) is k-arithmetic
and vg is the central vertex of G then (vg —rk) + (vg +rk) = j mod
n,forr=1,... Jl’.@i).l:_l, that is 2ve = j mod n. Since 2vg = j mod
n and by hypothesis vg + ug = j mod n then 2vg = vg + ug mod n;
this implies that ug = vg mod n, which is a contradiction. Therefore
there are no incident edges to vg of color ¢;, and so we can assign
the color ¢; to all edges of G.

Case (ii) Now, if V(G) can be partitioned into two k-arithmetic sets of
same cardinality, for some k € {1,...,| 3]} then the subgraph G will
be colored as follows: suppose that V(G) = {vs,...,u}U{u1,...,u}.
By hypothesis {vi,...,u} and {ui,...,w;} are k-arithmetics, for
some k € {1,...,[5]}. Then vi41 —vi = wip1 —wi = k mod n, for
i=1...,n—1;sothat v +u = vo+ui_; =... = vi+u; = j, for some
J € Z,,. Assign the color ¢; to the edges M = {viur, voui—1,...,viw1}.
As M is a perfect matching, there are no incident edges to M of color
¢; different from M, so that we can assign the color ¢; to all edges of
G.

Remains prove that for all G,H € D, with V(G) NV (H) = {v} and
different central vertex (in case of having it) have different colors. Let
G,H € D, then

Case (i) If V(G) and V(H) have even cardinality then the corresponding
perfect matching of G and H does not share edges (by linearity),
therefore they have different colors.
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Case (ii) Suppose that V(G) and V(H) have odd cardinality and the
edges of G have the same color that the edges of H. Let vg and vy
be the central vertices of G and H respectively.

(ii.a) If {v} = V(G)NV(H) ¢ {vg, v} then there exists ug € V(G)
and uyg € V(H) such that ug +v = vy +v = j mod n, for some
J € Zy,, implying that ug = ugy mod n, which is a contradiction.

(ii.b) If vy = V(G) NV (H) then there exists ug € V(G) such that
ug + vy = (vyg — k) + (vg +rk) mod n, for r = 1,...M%l|—_—1.
Since 2vy = (vy — k) + (vg +7k), for r =1,... ll’_(%)_l-_l then
ug = vy mod n, which is a contradiction.

Therefore E(G) and E(H) have different colors.

Case (iii) Finally, if V(G) and V(H) have different cardinality it is not
difficult to see that the edges of G and H have different colors because
if ug € V(G) is the central vertex of G then the perfect matching
of G — ug and the perfect matching of H does not share edges (by
linearity), and so they have different colors. O

To continue, in Figure 3, we exhibit the theorem giving an example. Let
V(Go) = {0,3,6}, V(G1) = {1,4,7}, V(G2) = {5,8,2}, V(Ho) = {0,2,4}
V(H,) = {4,6,8}, V(H2) = {8,1,3} and V(H3) = {3,5,7} be the vertices
of the complete graphs of D of cardinality larger than two and the rest of
the elements of D are edges.

Note that:

1. V(G;) is 3-arithmetic and V' (Hj) is 2-arithmetic, for i = 0,1,2 and
j=0,1,2,3.

2. The central vertices of V(Go), V(Gy), V(G2), V(Ho), V(H1), V(Hz),
V(H3) are 3,4,8,2,6,1 and 5 respectively.

Hence, this decomposition is a (Ky, D) arithmetic decomposition. By
the Theorem 1.2 this decomposition satisfies the conjecture 0.2.
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Figure 3: Elements of D with order larger than two.

To finish this note, it is important to establish which is the correspon-
dence, regarding the previous definitions, given in arithmetic decomposi-
tions to n- quasiclusters. We state the Theorem 1.2 in these terms. To do
this we give the definitions in terms of hypergraphs (or n-quasiclusters).

Let H = (V,€) be an n-quasicluster. H is edge arithmetic if there is
a bijection ¢ : £ — Z,, that we call arithmetic labeling, such that for
each vertex u € V, the set F(u) = {p(F) : u € E € £} is k-arithmetic or
can be partitioned in two k-arithmetic sets of same cardinality. Let H be
an n-quasicluster edge arithmetic, u be a vertex of H of odd degree and
F(u) = {E1,...,E}, then Et_~;_1 is called central edge of u. We say that
an n-quasicluster edge arithmetic has different central edges if any pair of
central edges (corresponding to vertices of odd degree) is different. Then,
the main result (Theorem 1.2) in terms of hypergraphs states:

Theorem 1.3. Let H be an n-quasicluster. If H is edge arithmetic and
has different central edges, then x(H) < n.

Finally we can note that any edge arithmetic n-quasicluster H which
has at most one vertex of odd degree in each edge immediately has different
central edges and then we have the following:

Corollary 1.1. Let H be an n-quasicluster edge arithmetic with all the
edges with at most one vertex of odd degree, then x(H) < n.
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