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Abstract

The subdivision graph S(G) of a graph G is the graph obtained
by inserting a new vertex into every edge of G. The set of inserted
vertices of S(G) is denoted by I(G). Let G, and G2 be two vertex dis-
joint graphs. The subdivision-edge-vertez join of G and G2, denoted
by G ® G2, is the graph obtained from S(G,) and S(Gz) by joining
every vertex in I(G1) to every vertex in V(G2). The subdivision-edge-
edge join of G, and G2, denoted by G1 © Gy, is the graph obtained
from S(G1) and S(G2) by joining every vertex in I(G1) to every ver-
tex in I(G2). The subdivision-vertez-edge join of G1 and G2, denoted
by G1 ® G2, is the graph obtained from S(G,) and S{G2) by joining
every vertex in V(G)) to every vertex in I(G3). In this paper, we
obtain the formulas for resistance distance of Gy ® G2, G1 © G2 and
G, ®G,.
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1 Introduction

All graphs considered in this paper are simple and undirected. Let
G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G).
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Let Ag denote the adjacency matrix of a graph G, and D¢ denote the
diagonal matrix of vertex degrees of G. The Laplacian matrix of G is
defined as Lg = Dg — Ag. Let G be a graph with n vertices and m edges.
We use [(G) to denote the line graph of G.

Let G be a connected graph. For two vertices u, v in a connected G, the
resistance distance between u and v is defined to be the effective resistance
between them when unit resistors are placed on every edge of G. It is a
distance function on graphs introduced by Klein and Randié [7]. As usual,
we use 7,,(G) to denote the resistance distance between u and v in G.
Recently, many results on resistance distance were obtained. The reader is
referred to [1,4,7,9-11] to know more.

Example 1.1. Let P, denote a path of order n. Figure 1 depicts the
subdivision-edge-vertez join Py ® Ps, subdivision-edge-edge join Py © P
and subdivision-vertez-edge join Py ® Ps.

*—e —0 *—o—o

Py ® Ps.

Fig. 1: An example of subdivision-edge-vertez join, subdivision-edge-edge
join and subdivision-vertez-edge join.

The subdivision graph S(G) of a graph G is the graph obtained by
inserting a new vertex into every edge of G. The set of inserted vertices of
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S(G) is denoted by I(G). Let G, and G2 be two vertex disjoint graphs.
The subdivision-edge-vertez join of G; and G, denoted by G; ® Gs, is the
graph obtained from S(G;) and S(G3) by joining every vertex in I(G))
to every vertex in V(Gq). The subdivision-edge-edge join of G1 and G,
denoted by G1©Gy, is the graph obtained from S(G,) and S(G2) by joining
every vertex in I(G1) to every vertex in J(G2). The subdivision-vertez-edge
join of G and G, denoted by G, ® Ga, is the graph obtained from §(G;)
and S(G3) by joining every vertex in V(G1) to every vertex in I{G2).

In this paper, we obtain the formulae for resistance distance of G1 ®Ga,
G, © G2 and G; ® G,, respectively.

2 Preliminaries

Let M be a square matrix. The {1}-inverse of M is a matrix X such
that MXM = M. The group inverse of M, denoted by M#, is the unique
matrix X suchthat MXM =M, XMX = X and MX = XM. It is known
that M# exists if and only if rank(M) = rank(M?). If M is real symmetric,
then M# exists and M# is a symmetric {1}-inverse of M (see [2]).

We use M(V to denote any {1}-inverse of matrix M. Let (M), denote
the (u,v)-entry of M.

Lemma 2.1. (See (2] [1])Let G be a connected graph. Then
@) = (), +() - (), - (68).

= (28),,+(c8),,2(28)..,

Let 1 denote the all-ones column vector.

Lemma 2.2. (See [3]) Let S be a real symmetric matriz such that S1 = 0.
Then S#1 =0, 175# =0.

A B
Lemma 2.3. (See [12]) Let M = (C D) be a nonsingular matriz. If A

and D are nonsingular, then

At A~!+ A-1BS-1CA-! —A-1BS-!
B -§-1cA™1 5-1
_ ((a-BD-'c)”" -A"1BS™
—§-1CA™? st )’
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where S = D~ CA-!B.

. _ L1 L2
Lemma 2.4. (See [3]) Let L = (Lg' L3

nected graph. If each column vector of L% is —1 or a zero vector, then N =

-1
(Lé S(:*) is a symmetric {1}-inverse of L, where S = L3 — LY L7 L,.

Lemma 2.5. (See [3]) Let L be the Laplacian matric of a graph of order
n. For any a>0, we have (L +al - —Jn,m) (L +aI)_1 - —J,,xn

) be a Laplacian matriz of a con-

3 Resistance distances of G; ® G2

In this section, we obtain the formulae for the resistance distances in
G\ ® Gy, for G a regular graph and G, an arbitrary graph.

Theorem 3.1. Let Gy be an d;-regular(d,>0) graph of order ny, and G,
be a graph with ny vertices and my edges. Let X = Lyc,) + dinal,, and

Y= -;-LG2 + myl,,. Then the following hold:

(1) For anyi,j € V(G1), we have

dy
15 (G1®G2) =247 +di? Y 1,1, (GL1 @O G)

u,v=1
2 Zreuev(Gl ©G2 Zr.fufv(cl ©G2)1
u<lv u<v
where ey,...,eq, are dy edges incident to i in Gy, fi,... , fa, are dy edges

incident to j in G1;
(2) For anyi,j € V(G.), we have r:;(G1© G2) = Y;; ' + Yj‘ 2Yu_ ;
(3) For anyi,j € I(G1), we have r:j(G1®G2) = dy (X3' + Xj;' —2X ") ;
(4) For any i = ujv, j = ugve € I(Gq), we have

Tij (Gl ® G2) =1+~ ['ruxuz(Gl ® Gz) + Ty,vug (Gl © G2)
+ru102 (Gl O] G2) + Tvyus (Gl © Gy)
_Tuw, (Gl @ G2) - rugu; (Gl © Gz)] ;
(5) ForanyieV(G,), j € I(Gl), we have
ri;(G1©Go) = dy ! +dy! E 76 i(G10G2) —di2 ¥ Te e, (G1®G2), where

u<lv
e1,...,eq, ared; edges mczdent to i in Gy;
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(6) For any i € V(G3), j = wv € I(G2), we have
1 1
ri;(G1@G2) = 3 + 1 [2r:u(G1 ® G2) + 27, (G1 @ G2) — 74 (G1 © G2)]

(7) For any i € V(G,), 7 = wv € I(G3), we have r;(G, ® G2) = di! +
T1;(G1 @ G2), where k € I(Gy);
(8) For anyie€ V(Gz), j € I(G,), we have ;;(G, ® G2) = Yi! +d1X_.,."jl -
1
mlng;
(9) Foranyi€ V(Gy), j € V(G2) , we have rij(G, ®G2) = di ' +7jx(G1 ®
Gs), where k € I(G,);

1
(10) For any i € I1(Gy), j = uv € I(G2), we have r;;(G1 ® Ga) = 3 +
Liy- - _ - 1
Z (Yuul + lfvul + 2Yuvl) + dIXiz'l - m1n2’

Proof. Let R be the vertex-edge incidence matrix of G. Then the Lapla-
cian matrix of G; ® G5 can be written as

dil,, -R, Ony xma Ony xng
Lores, = —RT  (na+2Im; Omyxm;  —Jmyxna

Omyxny  Omgxmy 2I,,, —RT

Onaxny  —Jngxms —R, Dg, +mil,,

Let
L= diln, -R, .
—R'{ (n2 + 2) 1,
By Lemma 2.3, we have

3 a7 ny +d7 Ry (Lyey + dinalmy) "' RT Ri (Lyey) + dinalm,) ™!
L" —
1

(L'(Gl) + d)ﬂz[ml)-l R{ dy (L‘(Gl) + dlnzfml)_x

Then, let

Ly = ( L O(ml‘l‘ﬂl)xm?) ’
Omgx(m;+n1) 21"12

By Lemma 2.4, we get
Ll_l 0(m1+n1)><mz
L;l = 1 .
Omz x(m, +n,) §Im2
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Let

Oﬂl Xng
S = DGz + mlInz - (Ongxnl _anxrrh —'RZ) L2_1 -ij Xng
—R{

- 1
= Dc,v2 -[»-1’)'1.1.[1;2 — (Jnngﬂil (danIml + Ll(G,)) 1 Jmlx,;, + §R2Rg‘)

1 1
—Ac;2 - —D02

my
= D02 +mlIn2 - n—angxnz - ) 2

1
= §ch +mal,, —

m

_1 J naxng-.
2

Lemma 2.5 implies that

1
mn;

an Xng -

-1
1
S# = <§L02 +m11n2) -

Let X = dinaln,, + LI(G,) and Y = %Lc,'2 + myl,,. By Lemma 2.4, the
following matrix

di'L,, +d7'Ry X-1RT R, X! Oy xmg 0p, xnz
X~'R{ d X1 Ony xma Oy xns
Oy Omaxms glms + {RES#Ry RIS (3.1)
On xms - SS*R, s*

is a symmetric {1}-inverse of Lg,eq,.

For any i,j € V(G)), let ey,...,eq4, are d; edges incident to i in G,
and fy,..., fa, are d; edges incident to j in G;. by Lemma 2.1 and Matrix
(3.1), we have
7i;(G1 © G2)

2

==+ dil (Rix~'RT), +

1 -1pTy _ 2 -1pT
2 (RiX7E]),, - 2 (RXR])

dy ii i

dy
=271 4+d7? ) 70,1, (G1@G2) —d7? Y 7o, (G1 ©Gy)

uu=1 u<<v

—dr?Y 1, (C1OGy).

u<lv

304



For any ¢,j € V(Gs), by Lemma 2.1 and Matrix (3.1), we have

r;(G1@Ga) = Sft + ST, — 28F = Y1 +Yj;! - 2v; .

For any i,j € I(G;), by Lemma 2.1 and Matrix (3.1), we have

r5(G1©G2) = (i X™1) + (diX7Y),, —2(h X7,
=dy (X7'+ X5 —2X5").

For any i = ujv;, j = ugve € I(G2), by Lemma 2.1 and Matrix (3.1), we

have ) ] 1

r5(G1@G2) =1+ ¢ (RTS*Ry),, + n (R7S*Ry),. — 3 (R S*Rs),;

1
=1+ Z [rulu2 (Gl 1©] G2) + Tuug (Gl ® G2) + Tuyv, (Gl ® Gz)

+Tup0y (G1 © G2) = Ty 0, (G1 © G2) — T30, (G1 © G2)].-
For any i € V(@,), j € I(Gy), let e1,...,eq, be d; edges incident to i in
G, by Lemma 2.1 and Matrix (3.1), we have
T,'j(Gl ©@G3) = drl + dl_l (RIX“Rf)“ + lej'jl -2 (RIX—I)ij

dy
=di 447 1, j(G1®G2) = d7? Y Te e, (G1© Ga).

u=1 u<v

For any i € V(G3), j = uv € I(G3), by Lemma 2.1 and Matrix (3.1), we
have .

1
r:i(G1 ®G) = ST + 5+1 (RTS*Rs),; — (S*Rs),

1 1
=3+7 [2r:x(G1 ® G2) + 214y (G1 @ G2) — T4y (G1 ® G3)].

For any i € V(G,), j = uwv € I(G2), k € I(G1), by Lemma 2.1 and Matrix
(3.1), we have

1.1
ri;(GC1®Gy) =dit +d7 (RiX 'R, + 5+3 (R7S*Rs),,
1 _ 1 _ _ _ 1
=g +dil+3 (RIY™'Ry),, +d7* (RaX™'R]),; - —_—

=dy! +1;(G1 © G2)

For any i € V(G2), § € I(G1), by Lemma 2.1 and Matrix (3.1), we have
- - - 1

r5(C1©Ga) = S + di X3! = Y7 + di X5} — ——
For any i € V(G,), j € V(G?), k € I(G;), by Lemma 2.1 and Matrix (3.1),
we have
ri(G1 ®Ga) = di* +d7* (RuX'RY),, + SE = d' +1jx(G1 @ G2).
For any i € I(G,), j = uwv € I(G,), by Lemma 2.1 and Matrix (3.1),
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1 1
1;;(G1 © G2) = lei:l + 3 + 1 (R'{S#Rg)jj

1 1, _ _ _ _ 1
= 5 + Z (l/uul + Yvul + 2Yuvl) + leiil - mins .
This completes the proof. o

4 Resistance distances of G; © G,

In this section, we obtain the formulae for the resistance distances in
G1 © G, for G, aregular graph and G a regular graph.

Theorem 4.1. Let G be an d;-regular(d, > 0) graph of order n,, and G,
be an da-regular(dz > 0) graph of order ny. Let X = Ly,)+dimaly,, and
Y= Ll(G’z) + domy I, . Then the following hold:

(1) For anyi,j € V(Gy) (i # j), we have
dy
5 (G1©G2) =247 +d7? Y 7¢,1,(G1©Go)

u,v=1

—d7%) 1o (G10G2) —d?) 14,1, (G1OGY),

u<v u<lv
where €1,...,eq4, are d; edges incident to ¢ in Gy, f1,..., f4, are d) edges

incident to j in Gy;
(2) For anyi,j € V(G2) (i # j), we have
d;
75(C10G2) =2d3" +d3% ) 70,4,(G1OGa)

u,v=1

—d5? Y reue (G1O©G2) —d72 Y 74 1 (G1OG),

uvy u<y
where ey,...,eq, are dy edges incident to i in G, f1,..., f4, are dy edges

incident to j in Go;
(3) Foranyi, j € I(G1), we haver;;(G10G2) = dy (X' + Xt - 2X5%);
(4) Foranys, j € I(Ga), we have 145(G1 0 Ga) =dy (Yi! + YJ;I - 2Y,-’j'1) ;
(8) For anyi € V(Gy), j € I(G1), we have
d
ri(G10G2) = d +d7t 35 1o, ;(G10G2) —dT2 Y Te,e, (G1OG), where
u=1 u<lv

e1,...,eq, are d; edges incident to i in Gy;
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(6) For anyie€ V(Gy), j € I(G2), we have
d
ry(G10Gs) = g +d5? 3. 70, (G10G2) ~d5? T 7e,e,(G10G), where
u=l

u<v

€1,...,ed, are dy edges incident to i in Ga;

(7) For any i€ V(Gs3), j € I(G1), we have 1:(G1 © G2) =d3 ' +7jx(G1 ©
G3), where k € I(Gy);

(8) For any i€ V(Gy), j € I(G2), we have r;(G1 © G2) = di! +4;(G1©
Gsz), where k € I(G,);

(9) For eny i € V(Gy), j € V(Gs2) , we have r;(G, © Gg) = d7! +d3' +
Thk(Gl S Gz), where h € I(Gl) and k € I(Gg);

(10) For any i € I(G1), j € I(G2), we have 7;(G, © Ga) = di X! +

1
-1
DY e

Proof. Let R be the vertex-edge incidence matrix of G. The Laplacian
matrix of G} © G2 has the following form

diln, -R On, xn, Oy xms
Loyoc, = "RT (m2+2)m; Omyxn,  —Jmyxmy
Ongxny Onyxm,y dol,, —R;
Omyxny  —Jmaxm, —RT  (my+2)Im,

dy1 -R
LetLy=[ ™ ! .
—RT (m2 + 2)11111

By Lemma 2.3, we have

1= (d,-’l,., +d7 Ry (Lygyy +dimalm, ) ' RT Ry (Lyay +d,m21,,.,)“)
! (Lugy) +dimalm;) ™! RT di (Ligy) + dimalm,)”!
L 0 ni+my)xng
Then, let Ly = ( .
0112X(n1+m1) d2In2

Ll_l 0(n1+m1)xnz)

By Lemma 2.4, we have L;! = ( s
Onax(n1+m1) d2 Iﬂz
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Let

0n;x:-n2
§= (ml + 2)Im3 - (Omzxm —ngxm1 —Rg‘) L;l —Jm, xXmgy
—-R,
-1 -
= (my + 2)I;n, — d1Jmyxm, (Lyy) + d1malm,) ™ Jmyxm, — dg "R Ry
dom

= d2_1 (Ll(Gg) + domy I, — 21 szxmg)

Lemma 2.5 implies that
-1 1
S# =dy (Lg(cg) + dngIm,) - m.]mzxmz.

Let X = Ll(G;) +dimoly,, and Y = Ll(Gz) +damil,,,. By Lemma 2.4, the
following matrix

dr n, +d7'RIX'RT Ry X! Onyxng Ony xmyp
X-'RT dy X1 Om xng Omyxmy @
Onzxny Ongxmy @3 'In, +d72R:S®RT  d7'RyS*
Omgxn, Omyxm,y d;‘S#R;' s#

is a symmetric {1}-inverse of L¢,aq,-
For any i,5 € V(G)) (i # j), let e4,...,eq, are d; edges incident to ¢ in G,
and fi,..., f4, are dy edges incident to j in G;. By Lemma 2.1 and Matrix
(4.1), we have
7i5(G1©G2) = 2d7 " + d7H(RiX " 'RT)ii + d7 (Ri X~ 'RT);;

— 27 (R X 'RT),

d
= 2d7" +dp! i XL, +drt Z X7 —2dy! }: L

u,v=1 u,v=1 u,uv=1

dy
=27 +d;? ) e, (C1OG) = di? ) e, (G1OG)

u,u=1 u<v

—di® Y 71.7,(G10G).
u<<v
For any i,j € V(G2) (¢ # j), let e1,...,eq, are dy edges incident to i in G,
and f1,..., f4, are da edges incident to j in G3. By Lemma 2.1 and Matrix
(4.1), we have
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ri;(G1 © G2)
=2d3' + d7*(RoS*RY)ii + d32(R2S¥ R} );; — 2d5%(R2S*R] )5

dz
=247 +d3% ) 7e,7,(G1©G2) —d;2 ) 7e,e, (G1OG2)

u,v=1 ulv

—d;2) 111, (C1OGy).

u<y

For any 7,7 € I(G;), by Lemma 2.1 and Matrix (4.1), we have

ri;(Gr @ Ga) = dy (X' + X7 —2X5").

For any i,j € I(G2), by Lemma 2.1 and Matrix (4.1), we have
rii(G1O©G) = dp (Y71 + Y71 —2Y71).

For any i € V(Gy), j € I(G1), let ey,...,eq, be d; edges incident to ¢ in
G). By Lemma 2.1 and Matrix (4.1), we have

rij(G1©G2) =d7 + dl‘l(RlX“RT)i,- +di X5 - 2(R1X“),-,-

=di' +di X5 +dp! Z XL, -22){;‘,

u,v=1 u=1

= dl + dl ! z Teud (Gl © GZ o2 Z Teyey (Gl © G2)

u=1 u<lv
For any i € V(G2), j € I(G2), let ey,...,€eq, be d2 edges incident to 7 in
G2. By Lemma 2.1 and Matrix (4.1), we have
Tij (G10Gs) = d;l + dz_l(Rzy_lR’gr)ﬁ + szj;l - 2(R2Y'—l)ij

dz
=dz' +d5' ) e, j(G10G2) —dg? Y 1eue,(C10G).

u=l u<v
For i € V(Gs), j € I(G1), k € I(G2), by Lemma 2.1 and Matrix (4.1), we
have

ri(G1©Ga) = d5t + d5 (RyY " RD )it + dy X35 — —

mims

=d;' +1;x(G1 © Ga).
For i € V(G4), j € I(G2), k € I(G,), by Lemma 2.1 and Matrix (4.1), we
have

1
r5(G1©Ga) = di* +d (ReX TR )is + &Y —

mymsy

= dl_l + Tkj(Gl (S Gg).
For i € V(Gy), j € V(Gs), h € I(G1), k € I(G2), by Lemma 2.1 and
Matrix (4.1), we have
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7:;(G1 © G2)

1
=di' +d3 (RiX'RT)ii + d3 ' + d7 {(RY " Ry)j5 —

mimy

=di' +d;! + 7 (G1 © Gy).
For ¢ € I(Gy), j € I(G2), by Lemma 2.1 and Matrix (4.1), we have

rij(G1© G2) = diY7! +da¥j5! ~ myma’
This completes the proof. o

5 Resistance distances of G; ® G,

In this section, we obtain the formulae for the resistance distances in
G1 ® G, for Gy an arbitrary graph and G, a regular graph.
Theorem 5.1. Let Gy be a graph with ny vertices and m; edges, and G,
be an dy-regular(dy > 0) graph of order np. Let X = -;-Lc‘ + mol,, and
Y = Lyg,) + dan1Im,. Then the following hold:
(1) For anyi,j € V(G,), we have 7;; (G1 ® G2) = X,.;‘ + Xj'j1 - 2X,§1;
(2) For anyi,j € V(G2), we have

dz
5 (C1®Gs) =2d;" +d3% Y 7e,1,(G1 ®Go)

u,v=1
—d5%) Tee,(G1®G2) ~d3? Y 74,1, (C1 @ Ga),
uly u<v
where ey, ...,eq, are dy edges incident to i in Ga, fi,..., fa, are dp edges

incident to j in Gg;
(3) For any i = uyvy, j = ugvy € I(G;), we have
rij(G1 ® G2) = 1+ § [ruus (G1 ® Gz) + 74,0,(C1 @ G)
+7uy0,(G1 ® G2) + 74,4, (G1 ® G2)
~Tu,0,(G1 ® G2) — Tuy0,(G1 ® Go)];
(4) For anyi, j € I(Gs), we have r45(G1 ® G2) = da (Y7 ' + Y;;' —2Y;71);
(8) For anyi=wuv € I(G1), j € V(G1), we have
ri;(G1 ® Go) = % + ‘11 [274(G1 ® G2) + 2r,;(G1 ® G2) — T4 (G1 ® G2)]
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(6) For any i€ V(Gz), j € I(Gs), we have
dg
T,;j(G1®G2) = d-2-1+d2—1 Z T'e.,j(Gl @Gz)—dz_z E 'r‘euev(G1 @Gg), where
u=1 u<lv
€1,...,€eq, are dy edges incident to i in Gg;
(7) For any i = wv € I(G}), j € V(G2), we have ri;(G1 ® Gg) = d3' +
rik(G1 ® Gy), where k € I(Gs);
(8) Foranyic V(G1), j € I(Ga), we have 14;(G1 ® G2) = X;;' +do¥;' —
1
nyme’
(9) For anyic V(G)), j € V(Gz) , we have ri;(G1 ®G2) = d3 ' +1i(G1 ®
G3), where k € I(G,);

+

N =

(10) For any i = wv € I(G1), j € I(G2), we have r;;(G1 ® G3) =
1
nlmg'

1 -
$ K + X!+ 2XG) + Y5

Proof. Let R be the vertex-edge incidence matrix of G. The Laplacian
matrix of G; ® G2 has the following form

Py —RT Omyxnz  Omyxms
Loses, = —Ry  Di+moln, Opixn, —Jnixmg
Oy xrm,y Onyxny dol,, —-R,
Omyxmy  —Jmaxm -RYT  (n1 +2)Im,

Let r
21, -R
Li=("™ ! .
_Rl DG] + m2In;
By Lemma 2.3, we have

1 1 T 1 -t 1 T 1 -t
-2-1"" + ZRI ELGl +maln, R, ERl ELG‘ +m21n‘

-1 _
L= 1/1 -1 1 -t
3 (ELGI +m21n1) Ry (ELGI + mzfn,)

L, 0(n1+m1)><ﬂ2)

0n2><("1+m1) dzI"z .
Ll_ 0(n1+m1)><n3)

Oﬂzx(n1+m1) dEIInz

Then, let Ly = (

By Lemma 2.4, we have L;l = (
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Let

0m| Xmg
§= (nl + Z)Imz - (0m2xml —szxnx _Rg) Lz_l _Jﬂlxmz
_R2

1 - 1
= (nl + 2)Imz - szxnx (mZInl + §LG1) Jnlxmg - d—ZRZRz
= 51 ( Ly, + damadm, — 2005,
= 42 1(G3) 271 dm, ma mapxXmy |} ¢

1
nimsy

Let X = 5L, +maln, and ¥ = Lyg,) + dami ;. By Lemma 2.4, the

following matrix

Lemma 2.5 implies that S# = dj (Lyg,) + dﬁnlInz)_l -

sz Xma-

1 1
%I"‘l + ZR?X_IRl ERTX_I oml Xng Omlxmz

1

—X-‘Rl x-? onlxng qu Xmg

2 (5.1)

I, + = R:S*RT  LR,s* .

n m 0 — — —

0 2Xmy ngxXny a2 ng :‘ dg 2 Rg ds 2

Omgxm, Omgxny d_zs#Rg‘ s#

is a symmetric {1}-inverse of Lg,@q,-

For any ¢,j € V(G,), by Lemma 2.1 and Matrix (5.1), we have r;;(G; ®
Ga) = X'+ X! - 2X;;.

For any i,5 € V(G3), let e,...,eq4, are dy edges incident to i in G, and
Jiy..+, fd, are dy edges incident to j in G3. By Lemma 2.1, Matrix (5.1),
we have

T,-j(Gl ®Gz)
=2 4+ LR,y 'RD) + L(ReY'RD),; — Z(RyY'RD);s
&4 2 Jii dz 2 /43 do k4

d
=257 +d;% ) e 1, (G1®G2) — 457 ) Te,e, (G1 ®G)

u,v=1 u<v

-d3?Y 71,5, (G1®Gy).

u<v

For any @ = ujvy, j = ugvz € I(G1), by Lemma 2.1 and Matrix (5.1), we
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have
1
rs(G1®Ga) =1+ 7 [(RIX'R1) + (RTX 'Ry, - 2 (RT X' Ry)
1
= 1 + Z [’rulu, (Gl ® Gz) + rulvz (Gl @ G2) + ru102 (Gl @ Gz)
+rv1ug (Gl ® G2) — Tu vy (Gl ® G2) — Tugug (Gl ® GZ)] .

For any 4, j € I(G2), by Lemma 2.1 and Matrix (5.1), we have r;;(G1 ®
G2) = dz (V' + Y —2V;57)

For any i = wv € I(G1), j € V(G1), by Lemma 2.1 and Matrix (5.1), we
have

1.1 - - -
r§(G1@G2) = 5 + (RTX ' Ry)ii + X3! — (RTX ™),
1 1
= 5 + Z [zruj(Gl ® G2) + 27'uj(G1 ® G2) - ruv(Gl ® G2)]

For any i € V(G,), j € I(G2), let ey,...,eq, be d edges incident to j in
G3. By Lemma 2.1 and Matrix (5.1), we have
ri5(G1 ® Ga) = (d5 I, + d7 2R S*RY) , + ST — 2457 (RyS%)

d2
=d;' +d5' Y 1e,(C1®Ga) —dg? ) e, (C1©G)

u=1 u<v

For any i = wv € I(G1), j € V(G2), k € I(G2), by Lemma 2.1 and Matrix
(5.1), we have

1 1 _ _ - 1
ri(G1@G2) = 5 + Z(RTX'IRl)ii +d3' +d; (RY'RY) 5 -

nimas

=dy! +7ik(G1 ® Ga)
For any i € V(G,), j € I(Gz), by Lemma 2.1 and Matrix (5.1), we have
. y-1 -1
’I‘ij(Gl ® Gz) = X“ + dZ)/jj - e .
For any i € V(G)), j € V(G2), k € I(G2), by Lemma 2.1 and Matrix (5.1),
we have
ri(G1®Ga) = X5 + (d3 ' In, + d; ' ReY 'R]) . —

1
nima

=dy' + (G ® G3)
For any i = uv € I(G,), j € I(G2), by Lemma 2.1 and Matrix (5.1), we

1 1, _ _ -
have 4;(G1 ® Ga) = 5 + (X&l + X3! +2X0)) + Y5" — e
This completes the proof. m}
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