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Abstract

In 1982, Beutelspacher and Brestovansky determined the 2-color
Rado number of the equation

T1+Ta+ + Tmel =Tm

for all m > 3. Here we extend their result by determining the 2-color
Rado number of the equation

1+ T2+ FTn =Nty -+ + Yk

for all n > 2 and k > 2. As a consequence, we determine the 2-color
Rado number of

zi+z2+- -+ T =01y + 0+ QeYe

in all cases where n > 2 and n > a1 + --- + a¢, and in most cases
wheren>2and 2n> a1 + -+ ae.

1. Introduction

A special case of the work of Richard Rado [5] is that for all positive
integers n and k such that n 4+ k > 3, and all positive integers a1,...,an
and by,...,bk, there exists a smallest positive integer » with the following
property: for every coloring of the elements of the set [r] = {1,...,7} with
two colors, there exists a solution of the equation

1T, + aZg + -+ + AnZp = biyr + boya + -+ - + by

using elements of [r] that are all colored the same. (Such a solution is called
monochromatic.) The integer r is called the 2-color Rado number of the

equation.
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In recent years there has been a considerable amount of work aimed at
determining the Rado numbers of specific equations. One of the earliest
results in this direction appeared in a 1982 paper of Beutelspacher and
Brestovansky (1], where it was proved that for every m > 3, the 2-color
Rado number of

Ty +T2+ -1 =T,

is m2 —m — 1. In 2008 Guo and Sun [2] generalized this result by proving
that, for all positive integers a;,...,am_1, the 2-color Rado number of the
equation

a1y + a2+ -+ + 0m—1Tm—1 = Tm
is aw? + w — @, where @ = min{a;,...,am—1}and w=a; 4+ -+ apm_y. In
the same year, Schaal and Vestal [8] dealt with the equation

T+ ZTo 4+ Tl = 2Ty,

They proved, in particular, that for every m > 6, the 2-color Rado number
is [271[2217]. Building on the work of Schaal and Vestal, we investigated
the equation

T +x2+"'+zm—l =aTm, (1)
for a > 3, in [6] and [7].

Notation. We will denote [2=1[2=11] by C(m,a), and we will denote
the 2-color Rado number of equation (1) by Ra(m,a).

Fact 1 ([7], Theorem 3). Suppose a > 3. If 3|a then Ry(m,a) = C(m,a)
when m > 2a + 1 but Rj(2a,a) = 5 and C(2a,a) = 4. If 3 { a then
Ry(m,a) = C(m,a) when m > 2a + 2 but Ry(2a + 1,a) = 5 and
C(2a+1,a) =4.

We note that, by the results of [8], the statements in Fact 1 remain valid
when a = 2.

Results have been obtained for a number of other variations of the equa-
tion zy + - - + T;m—1 = Ty, most of which have had the property that one
side of the equation involves only one variable. Our first purpose here is to
determine the 2-color Rado number of the equation

Ty+Zo+- -+ Tpn=y1+ Y2+ + Yk, (2)
forallmn > 2and k > 2.

Notation. We denote the 2-color Rado number of equation (2) by r(n, k).
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To determine ry(n, k) for all n and k it clearly suffices to consider the
case n > k. We will deal with this case by relating equation (2) to the
equation

T+ +z, =ky (3

and using results from (7] (and [1] and [8], for the cases k = 1, 2).

Theorem 1. If n > 2 and n > k, then rq(n, k) = Ra(n + 1, k).

The relevant values of Rp(n + 1,k) are determined by [1], (8], Fact 1
and the following additional information from [7].

Fact 2 ([7], Theorem 2). Suppose a+1 < m < 2a + 1. Then Ry(m,a) =1
ifm=a+1.Ifa+2 <m < 2a+1, then Ry(m,a) € {3,4,5}, and we have:

Ry(m,a)=3if m< % +1anda=m—1 (mod 2).
Ry(m,a) = 4 iff either:

(i) m<$ +1landa#Em—1(mod?2),or
(if)y m>32 +1anda=m—1 (mod 3).

Ry(m,a)=5iff m >3 +1and e #m—1 (mod 3).
If n < k. then Theorem 1 yields ra(n,k) = ro(k,n) = Ra(k + 1,n),
but for the purposes of Theorem 3 (below) we will need to know that

ro(n, k) = Ra(n + 1,k) in most cases where 2n > k > n.

Theorem 2. If n > 2 and 2n > k > n, then r3(n, k) = Ra(n + 1, k) except
in the following cases:

r2(2,3) = 4 while Ry(3,3) =9,

r2(2,4) = 5 while Ry(3,4) =10,

72(3,5) = 5 while Ry(4,5) =9, and

if 10 < k < 14 then ra(k — 5,k) = 5 while Ry(k — 4,k) = 6.

The proof of Theorem 2 relies on the following two results from [7].
Fact 3 ([7], Theorem 4). If £ +1 <m < a, then:

for a = 3 we have Ry(a,a) =9, and
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for a > 4 we have

Ry(m,a) =3 ifa=m—1 (mod 2) and
Ry(m,a) =4 ifa#£m—1 (mod 2).

Fact 4 ([7], Theorem 5). If 2 +1<m < % +1 (so a > 4) then:
for a = m — 1 (mod 3) we have Ry(m,a) = 4, and
for a # m — 1 (mod 3) we have Ry(m,a) =5 except that
R3(3,4) = 10 and Ry(4,5) =9, and

Ra(m,a)=6ifl10<aea<1l4and m=a - 4.
We will show that Theorems 1 and 2 have the following consequence.

Theorem 3. Let n > 2, let a4,...,a; be positive integers, and let A =
a1 + - - + ag. Then the 2-color Rado number of

Ti+r2t -+ Ta =1y + 0+ aeye

is at least r2(n, A) and at most Rz(n+1, A). If n > A, the 2-color Rado num-
ber is Ra(n+1, A). If 2n > A > n, the same conclusion holds provided that
the pair (n, A) is none of (2,3),(2,4),(3,5),(5,10),(6,11),(7,12), (8,13),
(9,14).

For the case A > 2n we have the following.

Theorem 4. If n > 2, A=a; +---+a; and A > 2n, then the 2-color
Rado number of

Tyttt Ta=a1yn + o+ aeye

is at least [4[47] and at most Ra(n + 1, A).

The values of Ry(n+1, A) for A > 2n are not provided by Facts 1 and 2,
but the lower bound [£[£]] might be useful in determining these values.

2. Proofs of the Theorems

Lemma. For any n > k, we have

C(n+1,k) < ra(n, k) < Ra(n+1,k).
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Proof. The second inequality is clear, since any monochromatic solution of
equation (3) provides a monochromatic solution of equation (2).

To prove the first inequality it suffices to consider n > k and exhibit
a 2-coloring of [C(n + 1,k) — 1] that yields no monochromatic solution
of equation (2). Let the elements of [[£] — 1] be colored red and let the
remaining elements of [C(n+1, k) —1] be colored blue. For any red solution
of equation (2), the left side has total value at least n and the right side
has total value at most k([£] —1) < n, so there is no red solution. For any
blue solution the left side has total value at least n[%] and the right side
has total value at most k([E[%]] —1) < n[%], so there is no blue solution.
a

Proof of Theorem 1. Theorem 1 is obviously true when k = 1, so we assume
k>2.

If 3|k and n > 2k or if 3 { k and n > 2k+1 then by Fact 1 and [8) we have
Ry(n+1,k) = C(n+1, k), so by the Lemma we have r3(n, k) = Rz(n+1, k).
To complete the proof, it suffices to consider the cases where k < n < 2k.

Note that ro(n, k) = 1 iff n = k iff Ra(n + 1,k) = 1, so we can suppose
that k +1 < n < 2k. Then by coloring 1 and 2 differently, we see that
r2(n, k) cannot be 2, so r2(n, k) > 3. We have Ry(n +1,k) € {3,4,5} by
Fact 2. We now consider the mutually exclusive cases indicated in Fact 2.

First suppose that n < 32'5 and k = n (mod 2). Then by Fact 2 we have
Ray(n +1,k) = 3. By the Lemma, 72(n, k) can only be 3.

Next suppose that n < %- and k Z n (mod 2). Then Ry(n + 1,k) =4
by Fact 2. By the Lemma, ra(n, k) = 3 or 4. If we 2-color (3] by coloring 1
and 3 red and 2 blue, then since k # n (mod 2) there is no red solution of
equation (2), and since k # n there is no blue solution. So ra(n, k) = 4.

Now suppose that n > 3£ and k = n (mod 3). Then by Fact 2 we
have Ry(n + 1,k) = 4, so again r2(n,k) = 3 or 4. Since n > %’5, we have
Cn+1,k) = [2[211 2 [%-2] and £-2 > 3, so it follows from the Lemma
that ro(n, k) > 4, and therefore ra(n, k) = 4.

Finally, if n > 3£ and & # n (mod 3), then Ry(n +1,k) = 5 by Fact 2.
As in the preceding paragraph, we have r2(n,k) > 4. If we 2-color [4] by
coloring 1 and 4 red and 2 and 3 blue, then for any blue solution of equation
(2) the left side has total value at least 2n and the right side has total value
at most 3k. Since 2n > 3k, there is no blue solution. For any red solution
the left side of the equation has total value congruent to n (mod 3) and
the right side has total value congruent to k¥ (mod 3). Since k # n (mod 3)
there can be no red solution. So r3(n, k) =5 = Ra(n+1,k). O

Proof of Theorem 2. Since k > n, we have ro(n, k) = r2(k,n) = Ra(k+1,n),

by Theorem 1. To evaluate Ra(k + 1,n) we will use Fact 2. Note that we
can do so since the condition a +2 < m < 2a+ 1 of Fact 2, with a = n and
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m=k+1, becomes n+2 < k+1<2n+1, which holds since 2n > k£ > n.
Case 1: k>n> 23—"

In this case, if £ = 3 then n = 2. We have r2(2,3) = R2(3 +1,2) =4
by [8], while Re(n + 1, k) = R3(3,3) =9 by Fact 3.

We claim that if k£ > 4 then ro(n, k) = Ra(n+1,k), e, Ro(k+1,n) =
. Rp(n+ 1,k). Note that since k < 32, Fact 2 (witha =nandm =k +1)
yields Ry(k + 1,n) = 3 if n = k (mod 2) and Ra(k+1,n) =4 if n £ k
(mod 2). To determine Rp(n + 1,k) we can use Fact 3 (with e = k and
m=n+1),since & +1<n+1<k Wefind that Ro(n + 1,k) = 3 if
k =n (mod 2) and Ry(n + 1,k) = 4 if £ # n (mod 2). This concludes the
proof in Case 1.

CaseQ:%’ﬁ>n2§.

Using Fact 2 with @ = n and m = k + 1, we note that since k > 3¢
we have Ra(k+1,n) =4 ifn =k (mod 3) and Rp(k+1,n) =5ifn #£ k
(mod 3). Using Fact 4 with a = k and m = n+ 1 (which is legitimate since
£+1<n+1< 2% +1) we find that Rp(n+1,k) = 4 if k = n (mod 3) and
Ry(n+1,k) =5 if k # n (mod 3) (and therefore ra(n,k) = Ra(n + 1,k))
unless the pair (n+1,k) is (3,4), (4,5), or (k—4,k) for some 10 < k < 14,
in which case Ry(n + 1,k) is 10, 9, or 6, respectively. O

Proof of Theorem 3. The 2-color Rado number of

T+ Ta+ o+ T =0y + o+ agye (4)
is at least that of

Tyttt zTa=n 4+ ya (5)

and at most that of
Ty + T4+ Tp = Ay, (6)

since any monochromatic solution of equation (4) yields a monochromatic
solution of equation (5) and any monochromatic solution of equation (6)
yields a monochromatic solution of equation (4). This proves the first
assertion of the theorem. We have r3(n, A) = Rz(n + 1, A) by Theorem 1
when n > A and by Theorem 2, with the stated exceptions, when 2n >
A > n. Thus the 2-color Rado number of equation (4) is Ry(n + 1, A) if
n> Aorif 2n > A > n and (n, A) is not one of the indicated exceptional
pairs. O

Proof of Theorem 4. As above, the 2-color Rado number of equation (4) is

at least that of equation (5), which is R2(A + 1,n) by Theorem 1. Since
A>2n,wehave A+12>2n+2,s0 Rp(A+1,n) = [%[%ﬂ by Fact 1.
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The upper bound is established as in the proof of Theorem 3. O
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