ARC-TRANSITIVE PENTAVALENT GRAPHS OF
ORDER FOUR TIMES A PRIME POWER
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ABSTRACT. In this paper, we study arc-transitive pen-
tavalent graphs of order 4p™ with p a prime and n a posi-
tive integer. It is proved that no such graph exists for each
prime p > 5, and all such graphs with p = 2 or 3 which
are G-basic (that is, G has no non-trivial normal subgroup
such that the graph is a normal cover of the corresponding
normal quotient graph) are determined. Moreover, as an
application, arc-transitive pentavalent graphs of order 4p®
and 4p® are determined.
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1. INTRODUCTION

For a finite, simple and undirected graph I', let VI' denote
its vertex set, and let Autl" denote its full automorphism group.
If there is G < Aut!l” such that G is transitive on the vertex set,
edge-set or arc-set of I', then I is called G-vertez-transitive, G-
edge-transitive or G-arc-transitive, respectively. If I is a regular
graph (that is, each vertex of I is adjacent to the same number
of vertices in I'"), denote by val(I") its valency. Then I is called
a pentavalent graph if val(I") = 5.

For a positive integer s, an s-arc of I is a sequence vg, v1, . . ., Us
of s+ 1 vertices such that v;_;,v; are adjacent for 1 <i < s and
Vi_y # vip1 for 1 < i < s—1. If G < Autl is transitive on the
set of s-arcs of I', then I' is called (G, s)-arc-transitive; if I is
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(G, s)-arc-transitive but not (G, s + 1)-arc-transitive, then I' is
simply called (G, s)-transitive.

One of the most important methods for studying transitive
graphs is taking normal quotient graphs. Let I" be a G-vertex-
transitive graph with G < Autl’. For an intransitive normal
subgroup N of G, the normal quotient graph of I" relative to
N, denoted by Iy, is defined with vertices the orbits of N on
VI and two orbits B, C are adjacent if and only if some oo € B
is adjacent in I' to some 8 € C. If I and I'y have the same
valency, then I' is called a normal cover of I'y, that is, the
induced subgraph on B U C for adjacent B and C is a perfect
matching.

Transitive graphs of order a small number times a prime pow-
er have been received quite a lot attention with numerous refer-
ences in the literature, based on that these graphs not only have
independent interest but also (may be more important) their
characterizations would be applied for the studying of many oth-
er more general families of transitive graphs since these graphs
often appear as normal quotient graphs. For example, Chao [3]
classified arc-transitive graphs of prime order, Cheng and Oxley
[4] classifyied edge-transitive graphs of order twice a prime, Feng
and Kwak [8] classified cubic symmetric graphs with order small
number times a prime or a prime-square, and these papers have
been high cited for studying a lot of other families of transitive
graphs.

The main purpose of this paper is to characterize arc-transitive
pentavalent graphs of order 4p™ for each prime p and positive
integer n. We remark that, transitive graphs of order 4p have
been extensively studied by [6, 9, 18, 22, 26], transitive graph-
s of order 4p? and valency 3 and 4 have been investigated by
(7, 10, 27], and there are rare results for the case where n > 3.

The first result of this paper is the following assertion, which
reduces our discussion to the cases where p = 2 and 3.

Theorem 1.1. There is no connected arc-transitive pentavalent
graph of order 4p™ for each prime p > 5 and positive integer n.
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The proof of Theorem 1.1 depends on the classification of
finite simple groups. Noticing that Theorem 1.1 is not true for
p = 2 and 3, the 5-dimensional hypercube Qs with order 32 and
Ke,6 — 6K with order 12 are examples.

Theorem 1.1 has the following consequence which classifies
arc-transitive pentavalent graphs of order 4p? and 4p®, where
Ci6 denotes the Clebsch graph, a non-bipartite arc-transitive
pentavalent graph of order 16 (refer to [1]), and Gss is an arc-
transitive pentavalent graph of order 36 (see [13, Construction

I)).
Corollary 1.2. Let p be a prime. Then
(1) Ci6 and Gsg are the only connected arc-transitive pen-
tavalent graphs of order 4p?;
(2) Qs is the unique connected arc-transitive pentavalent gra-
ph of order 4p®.

It seems difficult to classify arc-transitive pentavalent graphs
of order 4p™ with p = 2 or 3 yet. We here classify such graphs
that are G-basic, which will play important role for approaching
a possible general classification. Recall that, a G-arc-transitive
graph I' is called G-basic if G has no non-trivial normal subgroup
N such that I' is a normal cover of I'y. Then, there naturally
arises a 'two-steps’ strategy for studying G-arc-transitive graph-
s: determining G-basic graphs, and reconstructing the original
graphs from the basic graphs by using covering techniques.

The terminologies and notations used in this paper are stan-
dard, refer to [5] or [15]. For example, for a positive integer
n, denote by Z,, Ds,, A, and S, the cyclic group of order n,
the dihedral group of order 2n, the alternating group and sym-
metric group of degree n, respectively. For two groups N and
H, denote by N x H the direct product of N and H, by N.H
an extension of N by H, and by N : H instead of N.H if the
extension is split.

The next result determines all G-basic arc-transitive pentava-
lent graphs of order four times a prime power, where |;2 denotes
the Icosahedron graph, a non-bipartite arc-transitive pentava-
lent graph of order 12 (refer to [13]), Mo denotes the stabilizer
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r (G,Ga) s Autl

1 |12 (A5, Zs) 1 A5 X Zg

2 Ks,s - 6K2 (Ss, DIO) 1 Ss X Z2
(SGa A5) 2

3 C16 (Zg . Zs,Zs), (Zg : D10, DlO) 1 Zg : S5
(Zg . A5,A5), (Zg : Ss, Ss) 2

4 G (A¢, D1o), (PGL(2,9),D20) 1 Ag.Z3
(Se, Fao), (Ag.Z3,Foo X Zp) 2
(M10, F20) 2

TABLE 1. G-basic arc-transitive pentavalent
graphs of order 4p™

of the Mathieu simple group M;; acting naturally on 11 points,
and Fy denotes the unique Frobenius group of order 20.

Theorem 1.3. Let I" be a connected G-basic arc-transitive pen-
tavalent graph of order 4p™, where G < Autl’, p is a prime and
n>1 Thenp=2or3, n=1o0r2 and I is (G, s)-transitive
with s = 1 or 2. Further, the triple (I, G, G,) is listed in the
following Table 1, where a € VI

We remark that a graph may be G-basic for some arc-transitive
automorphism group G, but not H-basic for another arc-transitive
automorphism group H. For example, I = Kg g — 6K is Ss-basic
and Sg-basic arc-transitive, but it is not AutI-basic since Autl”
has a normal subgroup Z, such that I' is the standard double
cover of Iz, = Kg; similarly, |5 is As-basic arc-transitive but
not Autl'-basic arc-transitive.

This paper is organized as follows. After this introduction sec-
tion, some preliminary results are presented in Section 2. Then,
Theorems 1.1 and 1.3 are proved in Sections 3 and 4 respectively.

2. PRELIMINARIES

In this section, we collect certain preliminary results which
will be used later.
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Let G be a group and H a subgroup of G. We use Cg(H)
and Ng(H) to denote the centralizer and normalizer of H in G,
respectively.

Lemma 2.1. ([15, Chapter I, Theorem 4]) The quotient group
Ne(H)/Ca(H) is isomorphic to a subgroup of the automorphism
group of H.

For a group G, the Fitting subgroup of G is the largest nilpo-
tent normal subgroup of G. Clearly, the Fitting subgroup is a
characteristic subgroup.

Lemma 2.2. ([21, P. 30, Corollary]) Let F be the Fitting sub-
group of a group G. If G # 1 is soluble, then F # 1 and
Ce(F) < F.

The following is the well known Maschke’s Theorem on group
representation theory. For simplicity, we state it in terms of
group theory.

Theorem 2.3. ([23, THEOREM 14]) Let G = N : H be a
split extension, where N is an elementary abelian p-group with
p a prime and not dividing the order of H. If H normalizes a
nontrivial subgroup N; of N, then there exists a subgroup Ny of
N such that N = N; x Ny and H normalizes N,.

The next lemma is from [11, P. 12-14].

Lemma 2.4. Let T be a simple group such that |T| has ezactly
three distinct prime divisors. Then the couple (T, |T|) is listed
in the following table.

T As As PSL(2,7) PSL(2,8)
|T| 22-3-5 2%.32.5 28.3.7 28.3%.7
T  PSL(2,17) PSL(3,3) PSU(3,3) PSU(4,2)
|T) 2¢.32.17 2¢.3%.13 25.3%.7 26.3%.5

In particular, if T is a {2, 3, 5}-simple group, then T = As, Ag
or PSU(4, 2).
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The stabilizers of arc-transitive pentavalent graphs are known,
which were first obtained by Weiss [24], and improved by [12,
Theorem 1.1] and (28, Theorem 4.1].

Lemma 2.5. Let I' be a pentavalent (G, s)-transitive graph,
where G < Autl” and s > 1. Then |G,| divides 2° - 3% - 5 with
a € VI', and one of the following statements holds.
(a) If G, is soluble, then s < 3 and the couple (s,Ga) is
listed in the following table.

s 1 2 3
Ga | Zs, Dio, Do | Foo, Foo X Zg | Foo X Z4

(b) If G4 is insoluble, then 2 < s < 5, and the couple (s, Gq)
is listed in the following table.

s |2 3 4 5
Go, A5, Ss A4 X As, S4 X Ss Z%GL(z, 4) ZgGL(2, 4)
(A4 X As)Zg Z‘él"L(Z, 4) ZgFL(2, 4)

For a graph I, let I'(a)) = {8 € VI' | B is adjacent to a},
the neighbor set of a vertex a in I'. Then I is called G-locally-
primitive with G < Autl" if the vertex stabilizer G,: = {g € G |
of = a} acts primitively on I'(a) for each vertex a. Obviously,
an arc-transitive graph with prime valency is locally-primitive.

A permutation group G < Sym({2) is called quasiprimitive if
each non-trivial normal subgroup of G is transitive, while G is
called bi-quasiprimitive if each non-trivial normal subgroup of
G has at most two orbits and there exists one which has two
orbits on 2. We claim that a bipartite graph cannot admit
a vertex-quasiprimitive arc-transitive automorphism group G,
for if not, the stabilizer of G on the biparts is normal in G
with index 2 and has two orbits on the vertex set, which is a
contradiction. Similarly, a non-bipartite graph cannot admit a
vertex bi-quasiprimitive arc-transitive automorphism group.

328



The following theorem provides a reduction method for the
studying of locally-primitive graphs (refer to [17, Lemma 2.4]),
which slightly improves a remarkable result of Praeger [20, The-
orem 4.1].

Theorem 2.6. Let I' be a G-vertez-transitive locally-primitive
graph, and let N < G have at least three orbits on VI', where
G < AutI". Then N is semiregular on VI, G/N < Autl'y, I'n
is G/N-locally-primitive and I' is a normal cover of I'y.

In particular, each vertez-transitive locally-primitive graph is
a normal cover of a vertez-quasiprimitive or vertez-biguasiprimi-
tive locally-primitive graph.

Theorem 2.6 particularly says that a G-arc-transitive graph of
prime valency is G-basic if and only if G is either quasiprimitive
or bi-quasiprimitive on the vertex set of the graph.

The final lemma of this section collects certain characteriza-
tions of arc-transitive pentavalent graphs.

Lemma 2.7. (1) The graphs li2 and K¢ — 6K2 are the only

connected arc-transitive pentavalent graphs of order 4p
with p a prime, see [13, Proposition 3.2];

(2) Each connected arc-transitive pentavalent Cayley graph
of an abelian group is isomorphic to Kg, Ks 5, Keg — 6K,
Ci6 or Qs, see [1, Theorem 1.1);

(3) The graph Cyg is the unique connected arc-transitive pen-
tavalent graph of order 16, see {14, Theorem 1].

(4) The graph Gse is the unique connected arc-transitive pen-
tavalent graph of order 36, see (13, Theorem 4.1].

3. PROOFS OF THEOREM 1.1 AND COROLLARY 1.2.
For a positive integer m = pi'p5? - - - pi* with p1,pe, ..., ps dis-
tinct primes, we denote m,, = p;', the p;-part of m.

Lemma 3.1. Let T be a nonabelian simple group. Suppose that
|T| divides 2'*-3%-5.-p", and 5p™ divides |T'|, where p is an odd
prime and n > 2. Thenp =3, and T = Ag or PSU(4,2).

Proof. If |T'| has exactly three prime divisors, it follows directly
from Lemma 2.4 that p = 3, and T = Ag or PSU(4,2). Thus,
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suppose that |T'| has four prime divisors in the following. Then
p>5, |T|s =5 and |T|, = p*. We will prove that no example
appears in this case, so the lemma is true.

First, by [11, P. 135-136], T is not a sporadic simple group.
If T = A, is an alternating group, since |T’| has four prime
divisors, 7 < m < 10. On the other hand, as |T|, = p® with
p > 5 and n > 2, we also have m > 14, which is a contradiction.

Now, assume that T' = X(q) is a simple group of Lie type,
where X is one type of Lie groups, and ¢ = r° is a prime power
with 7 a prime and s > 1.

If r = 5, by [11, P. 135], 52 divides |T| with the only exception
T = PSL(2,5) = As, yielding a contradiction.

If r = 3, since |T|; divides 9, ¢ does not divide |T|, by [11,
P. 135], the only possibility is T = PSL(2,q). Then, as |T|3 =
q = 3°, we have s = 1 or 2. However, PSL(2, 3) is not a simple
group, and |PSL(2,9)| = |As| has exactly three prime divisors,
which is a contradiction.

Suppose r = 2. If T = 2Fy(q), then 2!2 divides [2F4(2)|, which
is a contradiction as |T'|, divides 2!'. If T' = Sz(g), then s > 3 is
odd, and as |T'|; = 2% divides 2!, we have s = 3 or 5. However,
7 - 13 divides |Sz(2%)|, and 5 divides |[Sz(2%)|, a contradiction
occurs. For other Lie simple groups, since 3% | (26 — 1)(22 — 1)
and |T'|3 divides 9, we have (¢° — 1)(¢? — 1) does not divide |T],
then by [11, P. 135] and noting that 7 - 31 divides |PSL(5, 2)|,
we conclude that the only possibilities are as following:

T = PSL(n,2°) with n < 4, T = PSU(n, 2°) with 3 < n < 5,
or T = PSp(4, 2°).

Since g2 —1 = 2% — 1 is an odd divisor of |T'|, we have (g>—1) |
32.5.p" Since (g—1,g+1) =1, at least one of g— 1 and g+ 1
divides 45, implying ¢ = 2,4, 8 or 16. However, by checking the
orders, all the corresponding simple groups do not satisfy the
assumptions of Lemma 3.1, no example appears.

Suppose finally » > 5. By [11, P. 135], we always have ﬂ%‘—lz
divides |T'|. Since p is the unique prime divisor bigger than
5 of |T|, we have r = p, and so 9% divides 2!' - 32.5. If
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9;—1 is even, as (9-;—1, 9‘{—1) = 1, we obtain 9-*2'—1 | 45, it follows
g = 17,29 or 89. Further, as 7 | (292 — 1) and 11 | (892 — 1),
g = 29 and 89 are not the cases. Hence ¢ = 17. Similarly,
if 9*2'—1 is even, we obtain ¢ = 7,11 or 31. Now, for each q €
{7,11,17, 31}, one easily checks that Gy(q) and 3D4(q) give rise
no example. Further, as (¢ — 1)(¢* — 1) is a multiple of 3* or
52, (g2 —1)(g* — 1) does not divide |T'|. Then by [11, P. 135], we
conclude that T = PSL(2, ¢), PSL(3, g) or PSU(3, ¢). However,
a simple computation shows that these groups for ¢ = 7,11, 17
and 31 cannot give rise to example. a

We now prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that, on the contrary, I" is a
connected G-arc-transitive pentavalent graph of order 4p™ with
the smallest order, where G < Autl’, p > 5 is a prime and n is
a positive integer. By Lemma 2.7(1), n > 2.

Let « € VI'. By Lemma 2.5, |G,| divides 2° - 3% . 5, so |G]
divides 2! - 32.5.p™. Let R be the soluble radical of G, that is,
R is the largest soluble normal subgroup of G.

(i) Assume first R = 1. Let N be a minimal normal subgroup
of G. Then N = T with T nonabelian simple and d > 1, so |N|
does not divide |VI'| = 4p®. By Theorem 2.6, N has at most
two orbits on VI', and so p" divides |N : N,|. Moreover, since
| N : N,| divides 4p®, N, # 1, and since I" is connected, we have
1 # NF® 9 GLE® . 5o 5 divides |N,| as G5 is transitive of
degree 5. Hence, 5p" divides |N|.

If p =5, then T is a {2,3,5}-nonabelian simple group, by
Lemma 3.1, T = As, Ag or PSU(4,2). Since 3% does not divide
IN|, T # PSU(4,2). If T = As or As, then |T|5 = 5, and as 5°
divides |N| = |T'|%, we have d > 3, and so 3? divides | N|, yielding
a contradiction. Suppose p > 5. Then (|T|%)s = |N|s = 5, so
d =1and N = T. Noting that |T| divides 2!! - 3%2-5 - p", and
5p™ divides |T'| with n > 2. By Lemma 3.1, we have p = 3, also
yielding a contradiction.
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(ii) Assume now R # 1. Let F be the Fitting subgroup of
R. By Lemma 2.2, 1 # F < G and Cg(F) < F. Further, as
[VI| = 4p™, F = O2(R) x Op(R), where O2(R) and O,(R)
denote the largest normal 2- and p-subgroups of R, respectively.
Observing that both O2(R) and O,(R) have at least four orbits
on VI, by Theorem 2.6, Oz(R) and O,(R) are semiregular on
VI, so |Oz(R)| divides 4, and |O,(R)| divides p™.

If Op(R) # 1, by Theorem 2.6, the normal quotient graph
I'o,(r) is a connected arc-transitive pentavalent graph of order
4p™ for some m < n, which contradicts the minimality of the
order of I'. So F = Oq(R). If |F| = 4, then I'r is arc-transitive
of odd valency 5 and odd order p", which is not possible. Thus,
F = Z,. By Lemma 2.2, Cg(F) = F, then by Lemma 2.1,
R/F < Aut(F) =1, implying R = F & Z,.

Now, I'g is a connected G/ R-arc-transitive pentavalent graph.
Since the soluble radical of G/R is trivial, |VIg| = 2p™ and
n > 2, with almost the same argument as in part (i) above, one
may also draw a contradiction. O

Proof of Corollary 1.2. Let I" be a connected G-arc-transitive
pentavalent graph of order 4p? or 4p®, where G < Autl’. By
Theorem 1.1, we have p = 2 or 3.

Suppose |V I'| = 4p®. Then |V I'| = 16 or 36, by Lemma 2.7(3-
4), I' = Cyq or Gse.

Suppose |VI'| = 4p®. Then |VI'| = 32 or 108. By Magma
(2], there is a unique connected arc-transitive pentavalent graph
of order 32, and there is no connected arc-transitive pentavalent
graph of order 108, so I = Q5. O

4. ProoF oF THEOREM 1.3.

We first give a simple observation.

Lemma 4.1. Let I' be a connected G-arc-transitive graph of
prime valency, where G < Autl’. Suppose that G has a nor-
mal subgroup N which is not semiregular on VI'. Then N, is
trensitive on I'(a) for a € VI, and either
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(i) N is transitive on VI, and I' is N-arc-transitive; or
(i) N has two orbits on VI and I' is N-edge-transitive.

Proof. Since I' is G-arc-transitive of prime valency, AL

primitive. Since 1 # N, < G, and I" is connected, we have
1 # NI@ g GE@ it follows that NJ(® is transitive. Then,
as N < G is not semiregular on VI', by Theorem 2.6, N has at
most two orbits on VI, the lemma follows. O

A graph I is called a Cayley graph of a group H if there is a
subset S C H \ {1} with § = S~ := {s7! | s € S}, such that
VI = H and z is adjacent to y if and only if yz~! € S. This
Cayley graph is denoted by Cay(H, S). It is well known that a
graph is isomorphic to a Cayley graph of a group H if and only
if it has an automorphism group which is isomorphic to H and
regular on its vertex set. For a G-arc-transitive graph I' with
G < Autl', if G contains a normal subgroup H which is regular
on VI, then I is called a G-normal arc-transitive Cayley graph
of H, see [16] for some nice properties of normal arc-transitive
Cayley graphs.

Lemma 4.2. Let I' be a G-edge-transitive graph with G <
Autl", and suppose that G has an abelian normal subgroup H
which acts semiregularly and has two orbits on VI'. Then I is
a Cayley graph of a group (H, o), where o is an involution such
that h® = h~! for each h € H.

In particular, if H = ZT is an elementary abelian 2-group,
then I' is an abelian Cayley graph of Z’Z"‘"l.

Proof. Let H = {hy,hs,...,h,}, and let A; and A, be the
two orbits of H on VI'. Then A; = {u? | 1 < i < n} and
Ay = {vh |1 < i < n}forue A and v € A,. Since I' is
G-edge-transitive and H < G, it is easy to show that there is no
edge in each of A; and A,. Suppose val(I’) = k. Then k < n
and without loss of generality, we may assume I'(u) = {v™ |
1<i<k} ThenF(v) {u =_I|1<z<k} Define
o uti T o Ul for1<i<n
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Clearly, o is a permutation on VI" with order 2. Since N
is abelian, it is routine to check that o is an automorphism of
I'. Further, for each h,h; € H, we have (u")7" = (vhi')he =
(UPTR) = uhTh = (uh )P, and similarly, (v%)7he = (vh)R
Hence, h° = ocho = h~}, and (H,0) = H : Z,. Since (H,0) is
regular on VI, I' is a Cayley graph of (H, o).

The final statement of the lemma is now obviously true. 0O

For a group G, denote by soc(G) the socle of G, that is, the
product of all minimal normal subgroups of G.

Proof of Theorem 1.3. We first prove that, for each triple
(I',G, G,) listed in Table 1 of Theorem 1.3, I' is really a con-
nected G-basic arc-transitive pentavalent graph. Noting that,
by Lemma 2.7, all the graphs I" in Table 1 are connected arc-
transitive pentavalent graphs, so (Autl"), is transitive on I'(c).
Also, it is easy to check that, for each graph in Table 1, the
corresponding candidates of (G, G,) exist.

Suppose first (I',G,Ga) = (li2,As,Zs). Since |G : Gao| =
12 = |V(l12)|, G is transitive on V(l;2), and as G < Aut(l;,),
Lemma 4.1 implies that l;2 is G-arc-transitive. Clearly, G is
quasiprimitive on V(l}3). So |5 is G-basic arc-transitive.

Suppose I' = Kgg — 6Ky If (G,Ga) = (Ss,Dy0), then G is
transitive on VI', and as G, contains a Sylow 5-subgroup of
(Autl"), = S5, G, is transitive on I'() by [25, Theorem 3.4], so
I' is G-arc-transitive. Since G = S5 has a unique conjugate class
isomorphic to Djg, we have G, = D is contained in soc(G) =
As, 50 (s0¢(G))o = Go = Dyg and |soc(G) : (soc(G))a| = 6, that
is, soc(G) has two orbits on VI'. Hence, G is bi-quasiprimitive
on VI', and I' is Ss-basic arc-transitive. For the case where
(G, Ga) = (Se, As), noting that both G and soc(G) = Ag have
two conjugate classes isomorphic to As, we also have G, & Aj is
contained in soc(G), then with similar discussion, one may show
that I' is Sg-basic arc-transitive.

Let (I', G, Ga) = (Ci6,Z3 : Zs,Zs). Then Autl’ = Z4 : S5 and
(Aut(G))a = Ss. Since |G : Go| = 16 = |V I'|, G is transitive
on VI'. Since (Autl’), is transitive of degree 5, and G, & Zs
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is a Sylow 5-subgroup of (Autl"),, by (25, Theorem 3.4], G, is
transitive on I'(a), so I" is G-arc-transitive. We now claim: G
is primitive on VI'. If the claim is not true, then G, is not
maximal in G, and so G, normalizes a nontrivial subgroup of
N, where N = Z% is the normal Sylow 2-subgroup of G. By
Theorem 2.3, we may assume N = N; x Ny, where N; = Z} and
Ny, & Zg" with 1 < I < 3, such that G, normalizes both N;
and N,. Since Aut(Z}) with ¢ = 1,2, 3 are of order coprime to 5,
by Lemma 2.1, G, & Zs centralizes both N; and N,. It follows
that G is abelian, which contradicts that G is arc-transitive on
I'. Hence G is primitive on VI', and Cy¢ is (Z3 : Zs)-basic arc-
transitive. For the other three candidates of (G, G4) in row 3 of
Table 1, G is always an overgroup of the group Z3 : Zs above,
so G is also primitive on VI" and arc-transitive on I, that is, I"
is G-basic arc-transitive.

Let (I',G,G,) satisfy row 4 of Table 1. Then, one easily
checks that for all the candidates of (G,G,) there, soc(G) =
soc(Autl") = Ag is transitive on VI', so G is always quasiprimi-
tive on I, and since Autl” is arc-transitive on I', by Lemma 4.1,
I' is Ag-arc-transitive. Hence, Gsg is G-basic arc-transitive.

Now, assume that I is a connected G-basic arc-transitive pen-
tavalent graph of order 4p®. By Theorem 1.1, p = 2 or 3, and
by Theorem 2.6, G is quasiprimitive or bi-quasiprimitive on V' I".
Let N be a minimal normal subgroup of G. Then N = T has at
most two orbits on V' I", where T is a simple group and d > 1. By
Lemma 2.5, |G| divides 2°-32-5, so either |G| divides 27+!!.32.5
if p = 2, or |G| divides 2! - 3"*2.5 if p = 3. In particular, 5
divides |G| but 25 does not divide |G|.

Case 1. Assume p = 2.

Then |VI'| = 2"*2. Suppose N is nonabelian. Then T is a
nonabelian simple group. Since |N| = |T|? divides 2"*1! - 32. 5,
we have d = 1 and N = T is a {2,3,5}-simple group. By
Lemma 2.4, N & As, Ag or PSU(4,2). However, by [5], each
of As, Ag and PSU(4, 2) has no subgroup with index a 2-power,
which is a contradiction.
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Thus, N is abelian. Since [V I'| = 2"*2, we have T & Z; and
N = Z4 If N, # 1, by Lemma 4.1, N, is transitive on I'(a),
so 5 divides | N,|, which is a contradiction. Hence N, = 1, and
either N & Z2*2 if N is transitive on VI, or N = Z3*! if N has
exactly two orbits on VI'.

Assume N = Z2*! has exactly two orbits on VI'. Then I'
is a bipartite graph, and by Lemma 4.2, I" is a Cayley graph
of an abelian group N x Z; = Z3*2. Since |V I'| is a 2-power
and Cj6 is not a bipartite graph, by Lemma 2.7(2), the only
possibility is I' & Qs. Then Autl’ = M : (Autl'), = Z3 Ss,
where M 2 Z3 is a normal subgroup of Autl". By the wreath
action of S5 on M, Sy centralizes an involution a € M. Since
N 2 Z} is normal in G and semiregular on VI', G = N : H,
where Go C H &2 Go2. f MNN =1, then Z§ & N &
MN/M < Autl'/M = Ss, which is a contradiction. Thus, 1 #
MNN <G, and hence M NN = N as N is a minimal normal
subgroup of G. If a € G, then (a) = Z, is normal in G and has
16 orbits on V' I', which contradicts that G is bi-quasiprimitive
on VI'. Thus, agG, M = (N,a) = N x (@) and GNM = N.
Now, as Go.2 2 H =2 G/N 2 GM/M < Autl'/M = S5, and 5
divides |G4|, we conclude that H & D, Zs : Z4 or Ss. Suppose
H = (Gq,b) for some b € G. Then we may write b = a'zy,
where ¢ = 1 or 2, z € N and y € (Autl'),. If i = 2, then
asx € N C G, we have y € GN (Autl"), = G, it follows
G = (N,H) = (N,Gq,zy) = N : G,, which is a contradiction.
Thus, i = 1. Then we have G = (N, H) = (N,G,,a), so a € G,
also yielding a contradiction.

Therefore, N = Z2%2 is transitive on VI, so G is quasiprimi-
tive on VI' and I' is a non-bipartite graph. By Lemma 2.7(2),
I'=Cg. Then N=Zj and G=N:G, < Aut(Cig) = N : Ss,
implying G, < Ss. Since G, is transitive on I'(a), we have 5
divides |G4|, it follows that G, = Zs, D19, A5 or Ss, as in row 3
of Table 1 of Theorem 1.3.

Case 2. Assume p = 3.
Since G is quasiprimitive or bi-quasiprimitive on VI", |N :
Na| =4-3"or 2-3" so T is a nonabelian simple group. Since
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|G| divides 2! - 3"*2 .5, so is [N| = |T|¢, hence d = 1, and
by Lemma 2.4, N = Ajs, Ag or PSU(4,2). If G has another
minimal normal subgroup M, then we also have M = Aj, Ag
or PSU(4,2), so 25 divides |M x N|, which is a contradiction.
Thus, N = T is the unique minimal normal subgroup of G, and
G is almost simple. Hence G = T'.0 with 0 < Out(T), the outer
automorphism group of 7.

Suppose first that G is quasiprimitive on VI'. Then I is a
non-bipartite graph, T is transitive on VI", and |T : To| = 4-3".
Since T = As, Ag or PSU(4,2), by [5], all the possibilities of
(T, T,) are as following:

(T, Ta) = (A5, Zs), (As, DIO); (PSU(4, 2), ZgZZ5), (PSU(4, 2), Ss)

Assume (T,T,) = (As,Zs). Then |VI'| = 12, and since
I’ is non-bipartite, by Lemma 2.7(1), we have I' = l;5, and
G < Aut(llg) = A5 X Zg. Since G < AUt(A5) = Ss, we fur-
ther conclude that (G, Ga) = (As,Zs), as in row 1 of Table 1 of
Theorem 1.3.

Assume (T',T,) = (As,D10). Then |VI'| = 36. By Lem-
ma 2.7(4), I' & Gss. Since Out(Ag) = Z3, by [5], we con-
clude that G = Ag, Ss, PGL(2,9), Mo or Aut(Asg), and G, =
D10, F20, Do, Fao or Fag X Z, respectively, as in row 4 of Table 1
of Theorem 1.3.

Assume (T, T,) = (PSU(4,2),S6¢). Then G, > S, which is
not possible by Lemma 2.5(b). Similarly, for the case (T, Ty) =
(PSU(4,2),Z% : Zs), as Out(PSU(4,2)) = Z;, we have G <
PSU(4,2).Z,, and Z3 : Zs < G, < Z} : Zs.Zy, which is impossi-
ble by Lemma 2.5(a).

Suppose now G is bi-quasiprimitive on VI'. Then T < G, I
is a bipartite graph, and |T : T,| = 2 - 3". By [5], we have

(T, To) = (As, D1o), (As, As) or (PSU(4,2),Z3 : Dio).

For the former two cases, |VI'| = 12, by Lemma 2.7(1), I" =
Kes — 6Ko. If (T, T,) = (As,Dio), since Out(As) = Z, we
have G = S5, and G, = Ty = Dyo; if (T, T,) = (A¢, As), then
Ag < G < Autl’ = Sg X Zo and G < Aut(T) = AG.Z%, we
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conclude G = S¢, and G, = T, = As, as in row 2 of Table 1 of
Theorem 1.3.

For the last case, as Out(PSU(4,2)) = Z,, we have G = T.2
and G, = T, = Z§ : Dy, which is not possible by Lem-
ma 2.5(a). O
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