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Abstract

The subdivision graph S(G) of a graph G is the graph obtained
by inserting a new vertex into every edge of G. Let G and G2 be two
vertex disjoint graphs. The subdivision-vertex corona of Gy and Ga,
denoted by G ® G3, is the graph obtained from §(G1) and |V (Gh1)|
copies of G, all vertex-disjoint, by joining the ith vertex of V(G;) to
every vertex in the ith copy of G2. The subdivision-edge corona of G1
and Ga, denoted by G1 © Ga, is the graph obtained from S(G;) and
|I(G1)| copies of G2, all vertex-disjoint, by joining the ith vertex of
I(G)) to every vertex in the ith copy of G2, where I(G)) is the set of
inserted vertices of S(G1). In this paper we determine the generalized
characteristic polynomial of Gy ® G2 (respectively, G1 © G2). As
applications, the results on the spectra of G; ® G2 (respectively,
G10G3) enable us to construct infinitely many pairs of ®-cospectral
graphs. The adjacency spectra of G1 ® G3 (respectively, G1 © G3)
help us to construct many infinite families of integral graphs. By
using the Laplacian spectra, we also obtain the number of spanning
trees and Kirchhoff index of G; ® G2 and G, © G2, respectively.
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1 Introduction

Throughout this paper, we consider simple graphs. Let G = (V(G), E(G))
be a graph with vertex set V(G) = {v;,v2,...,v,} and edge set E(G). The
adjacency matriz of G, denoted by A(G), is the n x n matrix whose (¢, 7)-
entry is 1 if v; and v; are adjacent in G and O otherwise. Let dg(v;) be
the degree of vertex v; in G. Denote D(G) to be the diagonal matrix with
diagonal entries dg(v1),...,dg(vn). The Laplacian matriz of G and the
signless Laplacian matriz of G are defined as L(G) = D(G) — A(G) and
Q(G) = D(G) + A(G), respectively. Let ¢(A(G);z) = det(zl, — A(G)),
or simply ¢(A(G)), be the adjacency characteristic polynomial of G. Simi-
larly, ¢(L(G)) (respectively, ¢(Q(G))) denotes the Laplacian (respectively,
signless Laplacian) characteristic polynomial of G. Denote the eigenval-
ues of A(G),L(G) and Q(G) by A (G) 2 X(G) 2 -+ 2 M(G), 0 =
#1(G) < p2(G) < -+ < pn(G), v1(G) £ 12(G) < - -+ < vn(G), respectively.
The eigenvalues (together with the multiplicities) of A(G), L(G) and Q(G)
are called the A-spectrum, L-spectrum and @Q-spectrum of G, respectively.
Graphs with the same A-spectra (respectively, L-spectra, Q-spectra) are
called A-cospectral (respectively, L-cospectral, Q-cospectral) graphs. Unde-
fined terminology is consistent with [5,6].

Consider a graph G with adjacency matrix A(G) and diagonal matrix
D(G). In [5], Cvetkovié et al. introduced a bivariate polynomial, denoted
by ®c(z,t) = det (zI, — (A(G) — tD(G))) (or ®¢ or simply ® if no con-
fusion arises), which were defined as the generalized characteristic polyno-
mial of G in {14]. The polynomial ®¢(z,t) generalizes some well known
characteristic polynomials of graph G, e.g. the characteristic polynomials
of A(G), L(G) and Q(G) are equal to ®¢(z,0), (—1)\VOdgs(-x,1) and
®¢(x, —1), respectively. Two graphs G and H are called ®-cospectral if
®c(z,t) = Py(z,t). If G and H are called ®-cospectral, then they are
A-cospectral, L-cospectral and Q-cospectral.

The corona of two graphs was first introduced by R. FRUCHT and F.
HARARY in (8] with the goal of constructing a graph whose automorphism
group is the wreath product of the two component automorphism groups.
Then, I. Gutman [11] and V. R. Rosenfeld [21] studied rooted product of
some graphs. It is known that the A-spectrum (respectively, L-spectrum,
Q-spectrum) of the corona of any two graphs can be expressed by that of
the two factor graphs (1,4,20,22]. Similarly, the A-spectrum (respectively,
L-spectrum, Q-spectrum) of the edge corona [13] of two graphs, which is
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a variant of the corona operation, was completely computed in [4,13,22].
Another variant of the corona operation, the neighbourhood corona, was
introduced in [9)] recently. The A-spectrum (respectively, L-spectrum, Q-
spectrum) of such operation was investigated in [9,19).

The subdivision graph S(G) of a graph G is the graph obtained by in-
serting a new vertex into every edge of G [6]. We denote the set of such new
vertices by I(G). In [15], two new graph operations based on subdivision
graphs: subdivision-vertez join and subdivision-edge join were introduced,
and the A-spectrum of subdivision-vertex join (respectively, subdivision-
edge join) of two regular graphs were computed in terms of that of the two
graphs. More work on their L-spectra and Q-spectra were presented in [17].
In [18], the authors defined two new graph operations hased on subdivi-
sion graphs: subdivision-vertez neighbourhood corona and subdivision-edge
neighbourhood corona. They determined the A-spectrum, the L-spectrum
and the Q-spectrum of the subdivision-vertex neighbourhood corona (re-
spectively, subdivision-edge neighbourhood corona) of a regular graph and
an arbitrary graph.

Motivated by the work above, we define two new graph operations based
on suhdivision graphs as follows.

Definition 1.1. The subdivision-vertez corona of two vertex-disjoint graphs
G, and G3, denoted by G; ® G, is the graph obtained from S(G;) and
|[V(G,)| copies of G, all vertex-disjoint, by joining the ith vertex of V(G})
to every vertex in the i¢th copy of Ga.

Definition 1.2. The subdivision-edge corona of two vertex-disjoint graphs
G; and G2, denoted by G; © G, is the graph obtained from S(G;) and
|[I(G1)| copies of G2, all vertex-disjoint, by joining the ith vertex of I(G;)
to every vertex in the ith copy of Gs.

Let P, denote a path on n vertices. Figure 1 depicts the subdivision-
vertex corona P; ® P, and subdivision-edge corona P; © P,, respectively.
Note that if G, is a graph on n; vertices and m, edges and G5 is a graph on
ny vertices and my edges, then the subdivision-vertex corona G; ® G3 has
n1(14+ny) +m; vertices and 2m; +ny(ng +my) edges, and the subdivision-
edge corona G; © G2 has m, (1 + ng) + n; vertices and my(2 + ng + m2)
edges.
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P, B
POP, POP,

Fig. 1: An example of subdivision-vertex and subdivision-edge coronae.

In this paper, we will determine the A-spectra, the L-spectra and the
Q-spectra of Gy ® G2 (respectively, G; © G2) with the help of the coronal
of a matrix and the Kronecker product. The M-coronal T'p(z) of ann x n
matrix M is defined (4, 20] to be the sum of the entries of the matrix
(I, — M)~L, that is, Tp(z) = 1Z(zl, — M)~ 11,, where 1, denotes the
column vector of size n with all the entries equal one. It is well known [4,
Proposition 2] that, if M is an n x n matrix with each row sum equal to a

constant t, then
n

Tm(z) = —. (L.1)
In particular, since for any graph G, with ng vertices, each row sum of
L(G3) is equal to 0, we have

FL(GQ)(:B) = 112/1?. (12)

The Kronecker product A® B of two matrices A = (a;j)mxn and B =
(bij)pxq is the mpxng matrix obtained from A by replacing each element aij
by ai; B. This is an associative operation with the property that (A® B)T =
AT ® BT and (A® B)(C ® D) = AC ® BD whenever the products AC
and BD exist. The latter implies (A® B)~! = A~! ® B! for nonsingular
matrices A and B. Moreover, if A and B are n X n and p x p matrices,
then det(A® B) = (detA)P(detB)™. The reader is referred to [12] for other
properties of the Kronecker product not mentioned here.

The paper is organized as follows. In Section 2, we compute the gener-
alized characteristic polynomial of subdivision-vertex coronae, and obtain
the A-spectra, the L-spectra and the Q-spectra of the subdivision-vertex
corona G1 ® Gz for a regular graph G; and an arbitrary graph G (see
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Theorems 2.1, 2.3). Section 3 mainly investigates the generalized charac-
teristic polynomial of subdivision-edge coronae, and obtain the A-spectra,
the L-spectra and the @Q-spectra of the subdivision-edge corona G; © G,
for a regular graph G; and an arbitrary graph G, (see Theorems 3.1, 3.3).
As we will see in Corollaries 2.2, 3.2, our results on the spectra of G; ® G2
and G; © G, enable us to construct infinitely many pairs of ®-cospectral
graphs. Our constructions of infinite families of integral graphs are stated
in Corollaries 2.6, 2.7, 3.6, 3.7. In Corollaries 2.8, 2.9, 3.8, 3.9, we com-
pute the number of spanning trees and the Kirchhoff index of G; © G,
(respectively, G; ® G») for a regular graph G; and an arbitrary graph Gs.

2 Subdivision-vertex coronae

Let G; be an arbitrary graphs on n; vertices and m; edges, and G»
an arbitrary graphs on ng vertices, respectively. We first label the ver-
tices of G1 ® G as follows. Let V(G1) = {v1,ve,...,vn, }, I(G1) =
{e1,e2,...,em,} and V(G3) = {uy,uz,...,Un,}. Fori =1,2,...,n, let
uj,ub,...,u}, denote the vertices of the ith copy of Ga, with the under-
standing that uj is the copy of u; for each j. Denote W; = {u},ud,...,u}"}
for j =1,2,...,n9. Then V(G1)UI(G1)U[WLUWLU---UW,,] is a par-
tition of V(G; ® G3). The adjacency matrix of G) ® Gz can be written as

0"1 Xny R 152 ® In)
A(Gl © G2) = RT Oml xXmy Oml Xning
17!2 ® Inl Onlng xmy A(GZ) ® Inl
where 0,y; denotes the s x ¢ matrix with all entries equal to zero, R is the
incidence matrix [5] of G1, I, is the identity matrix of order n, 1, is the
column vector with all entries equal to 1. It is clear that the degrees of
the vertices of G1 ® G; are: dg,0q, (Vi) = n2+dg, (v;) for i = 1,2,...,n,,
dc,0c,(e;) = 2 for i = 1,2,...,my, and dg,0c,(¥}) = dg,(y;) + 1 for
i=1,2,...,n1,7 = 1,2,...,n2. Then the degree matrix of subdivision-
vertex coronae can be written as follows
("'l + n2)In1 On; xmy Om Xning
D(Gl O] G2) = oml XN, 2Im1 Oml Xning
Onlnzxnl Onmz xmy (D(Gﬁ) + Iﬂz) ® Inl
where D(G3) denotes the degree matrix of G,.
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2.1 Generalized characteristic polynomial of G; © G,

Theorem 2.1. Let Gy be an r)-regular graph on ny vertices and m; edges,
and Gy an arbitrary graph on ns vertices. Then the generalized character-
istic polynomial of subdivision-vertexr coronae can be obtained as follows:

n
86,00, (2,t) = (T +26)™ ™ - (Bg, (z + 4, £))™ - [] (2 + (2t + try +tng)z
1

1=

= (Z 4+ 28)T A(G,)—tD(Gy) (T + £) + 23(r1 + ng) — Ai(Gh) — 71).

Proof. Let R be the incidence matrix [5] of G;. Then, with respect to the
adjacent matrix and degree matrix of V(G ® G;), the generalized matrix
of G} ® Gs is given by

A(G, ©G2) —tD(G1 ® Ga)

—{(try + tnz)I,,, R 13;2 ® I“l
= RT -Ztlrnl Oml Xnjng
lng ® Inl Onlnz Xmy (A(G2) - tD(C2) - tlnz) ® Inl

Thus the generalized characteristic polynomial of G; ® G2 can be obtained:
®c 10G: (5C ’ t)

(z +tr1 + tn2)ln, -R —1:2 ® In,
=det —RT (z+2t)""l 0m1 Xnyng
—1:-2 ® Inl 0n|n2 Xmy ((I + t)lnz - (A(G'I) - tD(G2))) ® In.l

= det (((z + t) I, — (A(G2) — tD(G2))) ® I,) - det(S)

= (Dg,(z +t,t))"* - det(S),
where

. ((:z: +try + tng) I, -R ) _ (—152 ®Im)
—-RT (z + 2t) Iy, Orm, xnyng
) (((:z: + t)Inz - (A(G2) - tD(G2))) ® In:)_l (_lnz ® Inn Omnzxml)
((:z:+tr1 +tny — L aGy)-t0(Gy) (T +¢)) In, -R
—~RT (z+ 2t)Im,)
is the Schur complement [24] of ((z + t)In, — (A(G2) —tD(G2))) ® I,,,. It

is well known (6] that RRT = A(G1)+711,,. Thus, the result follows from
det(S)

RRT
= (z + 2t)™ - det ((x +tr; 4+ tng — rA(Gg)—-tD(G;)(-'B + t)) In, - —)
z+ 2t
n
= (z+2)™ ™ J](® + (2t + try +tno)z — (z + 2t)
i=1
‘T A(G)~tD(G2) (T + 1) + 26%(r1 + ng) — Ai(G1) — 1), d

346



Corollary 2.2. (a) If G, and Gy are ®-cospectral r-regular graphs, and
H is an arbitray graph, then G, ©® H and G, © H are ®-cospectral. (b)
If G is an regular graph, and H, and H, are ®-cospectral graphs with
FA(HI)—tD(Hx)(x) = PA(H;)—:D(Hz)(z)’ then G © Hy and G © Hy are -
cospectral.

Theorem 2.3. Let G be an ry-regular graph on n, vertices and m, edges,
and Gy an arbitrary graph on ny vertices. Then

(1) The adjacency characteristic polynomial as follows: ¢ (A(G1 © G2);x) =
™™ ($(A(G2); )™ - TTiL, (332 ~Taey@)z -1 = )\i(Gl))-

(2) The Laplacian characteristic polynomial as follows:
$(L(G10Ga)iz) = (x — 2™ - T[, (2 — 1 — wi(Ga)™ - T, (=° -
(3 +71 +n2)x? + (2 + 71 + pi(G1) + 2n2)T — ui(al)).

(8) The signless Laplacian characteristic polynomial as follows:
$(Q(G10Ga)iz) = (z - 2™ ™™ -2, (z — 1 - wi(G2))™ - T2, (372 -
(2 +7m +ne+ FQ(G;)(-'L' - 1))$ + 2(’!‘1 +no + FQ(GQ)(:L’ - 1)) - V,‘(Gl)).

Proof. (1) By the equation ¢ (A(G1 ® G2); z) = ®¢,00,(z,0) and Theo-
rem 2.1
¢ (A(G1 0 Gy);z)
ny
=™ . (8¢, (2,0)™ - [] (""2 ~ Ty (@) —r = /\i(Gl))
i=]
. ni
= xml—nl . (¢(A(G2), J:))n1 . H (12 - FA(GZ)(III).’E -7 - A.(Gl))
i=1
(2) By the equation ¢ (L(G; ® G2);z) = (—1)IV(610CN @4 o6, (~z,1), for
an arbitrary graph G, with ny vertices , we have the coronal of Laplacian
matrix I'(g,) = F_1(g,) = 52, the minmun eigenvalues of Laplacian ma-
trix is 0, as we all know X;(Gy) = r1 — u:i(G1)(2 = 1,2,...,n1) and by virtue
of Theorem 2.1:
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¢ (L(G1 © G2); z)
= (_1)n1(1+n2)+m1 (2 =g)™mm . (‘I)Gg(“x +1, 1))1!1

1
. H (:1:2 —(2+r+n)x+2r +2n2— (—z+2)T g (—z +1)

=1
+ wa(G) - 2r1)
=(z—-2)™ ™. (H(L(G2)iz — 1)) - (z—1)7"

1

I (3:3 — (3471 +n2)z® + (2 + 71 + 202 + pi(Gh))z — P'i(Gl))

i=1
= @-2m I (-1 - mien)™
=2

ny
. H (333 — (3471 +7n2)z® + (2 + 71+ 2n2 + pi(Gh))z — #i(Gl))
i=1
(3)By the equation ¢ (Q(G) © G2);z) = ®¢,06,(z, —1), as we know,
Ai(G1) = vi(Gh) — (i = 1,2,...,n1) and by virtue of Theorem 2.1:
¢ (Q(G1 0 Gy);x)
ny

=(z-2)™ ™. (g, (z-1,-1))" . H (:z:2 -(2+4+r+n)z+2n

i=1
+ 2np — (ZZ? - 2)PQ(G2)($ - 1) - )\,'(Gl) —_ 7‘1)

ni

=(z=2)™"™ . ($(Q(G2)iz—1))™ -] (a:2 - (2+7r1+no)r+2n

i=1

+2n3 — (z -2l (-2 +1) - ”‘(G‘))

2.2 Some conclusions of A-spectrum of G; © G,

Theorem 2.3 enables us to compute the A-spectra of many subdivision-
vertex coronae, if we can determine the A(G2)-coronal T 4(g,)(z). Fortu-
nately, we have known the A(G2)-coronal for some graph G2. For exam-
ple, if G2 is an rp-regular graph on n; vertices, then [4,20] T 4(g,)(z) =
na/(z — r2), and if G = K 4 which is the complete bipartite graph with
P,q 2 1 vertices in the two parts of its bipartition, then [20] T'4(g,)(z) =
((p+9)z +2pq)/(x? — pg). Thus, Theorem 2.3 implies the following results
immediately.
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Corollary 2.4. Let G, be an r-regular graph on n; vertices and m, edges,
and Gy an ro-regular graph on ng vertices. Then the A-spectrum of G;©OG,
consists of: (a) A;i(G2), repeated n; times, for each i =2,3,...,n2; (b) 0,
repeated my — n, times; (c) three roots of the equation x3 — roz® — (r; +
2 (G1) + n2)z 4+ ra(r1 + A;(G1)) =0, for each j =1,2,...,n;.

Corollary 2.5. Let G be an r-regular graph on n vertices and m edges
with m 2 n, and let p,q > 1 be integers. Then the A-spectrum of GO Kp q
consists of: (a) 0, repeated m + (p + q — 3)n times; (b) four roots of the
equation z* — (pg + p + ¢ + r + A;(G))z® — 2pgz + pg(r + A;(G)) = 0, for
eachj=1,2,...,n.

A graph whose A-spectrum consists of entirely of integers is called an
A-integral graph. The question of “Which graphs have A-integral spectra?”
was first posed by F. HARARY and A.J. SCHWENK in 1973 [7]. A-integral
graphs are very rare and difficult to be found. For more properties and
constructions on A-integral graphs, please refer to an excellent survey [2].

The complement G of a graph G is the graph with the same vertex set
as G such that two vertices are adjacent in G if and only if they are not
adjacent in G. Note that the complete graph K, is (n — 1)-regular with
the A-spectrum (n — 1)1, (—1)»~!, where a® denotes that the multiplicity
of a is b. Then, by Corollary 2.4, the A-spectrum of K,, ® K,, consists
of (£v2i; —2F 1ig) |, (/A1 = 2F )™, 0m(ma=D+m1 which implies
that K, (DK_,,2 is A-integral if and only if \/2n; — 2 + ny and vVn1 — 2 4+ ng
are integers. Now we present our first construction of an infinite family of
A-integral graphs (see Figure 2 for an example).

Fig. 2: Ks ® K7 with A-spectrum (£3)!, (£2)*, 0'°.

Corollary 2.6. K., ® K,, is A-integral if and only if n, = s — h? and
ng=2h% —s2+2 forh=2,3,..., s=3,4,..., and h? < s> < 2h% + 2.
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Proof. From the above statement, K,, ® K, is A-integral if and only if
V2n; =2+ ng and /n; — 2 + n, are integers. Let /2n; — 2 + ng = s and
VN1 — 2+ ny = h, where s, h are nonnegative integers. Solving these two
equations, we obtain that n; = s2 — h?, ny = 2h%2 — s2 + 2, Since n; > 0
and ny > 0, we have that 2 > 2, s > 3 and h? < 52 < 2h% 4 2. O

Notice that the complete bipartite graph K, 5 is n-regular with the A-
spectrum (£n)!, 02*~2. By Corollary 2.4, the A-spectrum of Ky, n, ® Ky,

consists of (£v2n1 F71z) > (VA1 F12) 72, (2y/mz) ', 02mme—2mtmy
which implies that Ky, n, © K, is A-integral if and only if v/2n; + ng,
v/n1 ¥ nz and /ni7 are integers. Here, we present our second construction
of an infinite family of A-integral graphs.

Corollary 2.7. K, n, © Ky, is A-integral if n) = 4st*(2s®> +3s+ 1) and
ng =13(2s2 - 1)2 fors =1,2,3,...,t=1,2,3,....

Proof. From the above statement, K,, », ® -I_(T, is A-integral if and
only if v/2ny + nz , /n1 + nz and \/7; are integers. Let /2n; + nz = a,
vn1 +ng = band \/nz = ¢, where a, b, ¢ are nonnegative integers. Solving
these equations, we obtain that n, = a2 —b2 and ny = 2b2—a2 = ¢2. Notice
that 252 —a? = ¢? is equivalent to (a+b)(a—b) = (b+c)(b—c). Let u = a+b,
v=a—-b,x=>b+cand y = b—c Then we obtain that vv = zy and
u — v =z + y. Combining these two equations and eliminating u, we have
2v% = (z—v)(y—v). Let z—v = 2us and s(y—v) = v for s =1,2,.... Then
z=2vs+v=b+candy =% +v=>b-c Thus, a=btv=vs+2w+ £,

b=vs+v+g;andc=vs— 3. Letv=2stfort =1,2,.... Then we have
a =252t +dst +t, b= 2s% + 2st + ¢ and ¢ = 2s% — t, which imply that
ny = 4st?(2s2 + 3s + 1) and ny = ¢® =t2(2s2 — 1)2. o

2.3 Some conclusions of L-spectrum of G; ® G,

Let #{(G) denote the number of spanning trees of G. It is well known
(5] that if G is a connected graph on n vertices with Laplacian spectrum
0= 1(G) < p2(G) < -+ < pn(G), then t(G) = £2(8)=6n(G) By Theorem
2.3, we can readily obtain the following result.

Corollary 2.8. Let G;i be an ri-regular graph on ny wvertices and m;
edges, and Gy an arbitrary graph on ny wvertices. Then t(G; © G3) =

2™ (24 4+2n2)n 4(G1) T1E2, (p:(G2)+1) ™
ni+mitning '
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The Kirchhoff index of a graph G, denoted by K f(G), is defined as the
sum of resistance distances between all pairs of vertices [3,16]. At almost
exactly the same time, Gutman et al. [10] and Zhu et al. [23] proved that
the Kirchhoff index of a connected graph G with n(n > 2) vertices can
be expressed as Kf(G) = n) i, mlﬁi’ where p3(G),...,un(G) are the
non-zero Laplacian eigenvalues of G. Theorem 2.3 implies the following
result.

Corollary 2.9. Let Gy be an r1-regular graph on n, vertices and m, edges,
and G2 an arbitrary graph on ng vertices. Then Kf(Gy ® Ga) = (n1(1 +

- 2
ng)+my) x (s 4 Shoubes 4 Zendlu . K F(Gh) + T, matey)-

3 Subdivision-edge coronae

We label the vertices of G1©G3 as follows. Let V(G;) = {v1,v2,..-,¥n, }»
I(Gy) ={ey,e2,...,em, }and V(Ga) = {u1,u2,...,un, }. Fori=1,2,...,my,
let u},u},...,uf, denote the vertices of the ith copy of G2, with the under-
standing that uf is the copy of u; for each j. Denote W; = {u},u3,...,u]"}
for j =1,2,...,n2. Then V(G1)UI(G1)U[Wy UWoU-..UW,,] is a par-
tition of V(G © G3). The adjacency matrix of G; © G can be written as

Onl Xny R Oﬂl Xmina
A(G1 ©® Gz) = RT L — 1,7,:2 ® Iml
Omlnzxnl 1712 ® Imx A(G2) ® Im;
It is clear that the degrees of the vertices of G; ® G; are: dg,oc,(vi) =
dg,(v) for i = 1,2,...,n1, dg,06,(e:) =2+ ng for i =1,2,...,my, and
dc,ecz(u;) =dg,(u;)+1fori=1,2,...,m1, j=1,2,...,n2. The degree
matrix of G; © G4 can be written as

rlIn‘ 0111 Xmy 0n1 Xmineg
D(Gl © G2) = 0m1 xny (2 + '"-2)Im1 Om, Xmng
Omlng XNy Om;nz Xmy (D(G2) + Inz) ® Im!

3.1 Generalized characteristic polynomial of G; © G»

Theorem 3.1. Let G; be an r1-reqular graph on n, vertices and m; edges,
and G, an arbitrary graph on ny vertices. Then the generalized character-
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istic polynomial of subdivision-edge coronae can be obtained as follows
@Glecz (z, t)

= (z+2t+ngt =T ag)-n@n(@+1)" - (Ras(z +1t,8)™

n1

. H (.’1:2 + (2t +tr) +tng)z — (z + trl)FA(Gz)—tD(Gg)(x +1t)

i=]1

+ t2(2r1 + nary) — Ai(G1) —11).

Proof. Let R be the incidence matrix [5] of G;. Then, with respect to the
adjacent matrix and degree matrix of V(G; © G2), the generalized matrix
of G; © G is given by

A(G10G,) —tD(G, © Gy)

—31‘1],.1 R onl Xming
= RT —(2t + nat)Im, 17, ® I,
o'nlng Xnq 1n2 ® Irnl (A(GZ) - tD(Gz) bt t!nz) ® Im)

Thus, the generalized characteristic polynomial of G; ©G3 can be obtained:
%6 06, (2 t)

(z + try)n, -R Onyxmyng
=det [ -RT (z + 2t + nat)lun, 17, ®Im, ]
Omyngxng —1ny ®Im, ((z + )1, — (A(G2) — tD(G2))) ® Im,
= det (((z + t)Jn, — (A(G2) — tD(G2))) ® In,) - det(S)
= (det(( + t)In, — (A(G2) — tD(G2))))™ - (det(Im,))™ - det(S)
= (®g, (z +1,t))™ - det(S),

where
((I + trl)Inl -R
s o=
—-RT (z+2t+t+ tng)]ml)

oﬂ Xmin
| T ) (2 4 Dlag — (A(G3) ~ tD(G2))) © Imy )™
—1"2 ®Im‘

: (Omlnzxnl "lnz ® I’"l)
((I+t1‘1)lnl -R )
—-RT (I+2t+ tng — PA(G;)—:D(Gg)(‘”"'t)) I"‘l

is the Schur complement (24] of ((z + t)In, — (A(G2) — tD(G2))) ® Im,.
It is well known [6] that RRT = A(G)+r11,,. Thus, the result follows from
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det(S)

n RRT
= (z+try)™ - det ((m 4 2t + ngt — rA(Gg)—tD(Gg)(x + t)) Im, — poury trl)

ny
= (z+2t+nst —Tay-tneny(@+1)" - ] (22 + (2t + tnz + tr1)z

=1

—(z+ t"'l)FA(Gz)—tD(Gg)(:L' +1) + t2(21'1 +ng) — Ai(Gh) — 7’1). O
Corollary 3.2. (a) If G, and G2 are ®-cospectral r-regular graphs, and H
is an arbitrary graph, then Gy © H and Gy © H are ®-cospectral. (b)
If G is an regular graph, and H, end H, are ®-cospectral graphs with
FA(H;)—tD(H;)(x) = PA(H;)—tD(Hz)(x); then G © H, and G © Hs are ®-
cospectral.
Theorem 3.3. Let G, be an ry-regular graph on n; vertices and m; edges,
and Go an arbitrary graph on ng vertices. Then

(1) The adjacency characteristic polynomial as follows:
ni
$(A(G1 0 Ga);z) = (H(A(G2); @)™ - (z =T a@n(@)™ ™ - [[ (-
i=1
T a(Ga) (@) — Ai(G1) = 11).
(2) The Laplacian characteristic polynomial as follows:
¢(L(G1 0 Ga);z) = (22 = B3+ n2)z +2) ™ T - [122, (z — 1 — pi(Ga))™ -
H::l (213 - (3 + ™ + n2)$2 + (2 +7r 4+ ring + u,-(Gl)):r - P'i(Gl))~
(3) The signless Laplacian characteristic polynomial as follows:
$(Q(G10Ga);z) = (x—2—nz —Toepyz—1)" " - [I2,(z-1-
vi(G2))™ T (“’2—(2+Tx+n2+1"Q(Gz)($-1))w+rl(2+n2+FQ(Ga>(x-

i=1

D) - w(G)).

Proof. (1) By the equation ¢ (A(G1 © G2);z) = ®¢,06,(z,0) and Theo-
rem 3.1 o
¢ (A(G1©G2);z) = (x — Tp(ey) (@)™ ™™ - (6, (2,0))
ny
. H (x2 bt FA(Gz)(JJ):t - A,(Gl) -
t=1
= (z —Taey) (@)™ ™ - ($(A(G2); 2)
ny

TI (2% - Tan (@ - 2(G1) -

i=1

)
-
)
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(2) By the equation ¢ (L(G) © G); z) = (-1)IV(€10C) ¢ o6, (—z, 1), for
an arbitrary graph G, with ng vertices , we have the coronal of Laplacian
matrix 'z(q;) = - 1(c,) = 22, the minmun eigenvalues of Laplacian ma-
trix is 0, as we know X\;(Gy) = 1 — u:(G1)(¢ = 1,2, ...,m;) and by Theorem

3.1
¢ (L(G1 © G2);x)
= (=)D (B, (—z + 1,1))™ - (2 - T4 n2z = Top(oy(—z +1))™1 7™

ny
TI@E* = @+ +n2)z = (r1 = 2P ey (=7 + 1) + 2r1 + nary = A(G1) — 1)

i=1

— (pd m)—ny I : ™1
=(z° = 3+ n2)z+2) -H(@"l"“t(GZ))

i=2

ni
TI (=° = @+ r1+n2)a® + 24 1 4 rana + wi(G1)z = 4i(G))

i=1
(3) By the equation ¢ (Q(G1 © G2); ) = ®6,006,(z, —1), as we know A\;(G,) =
vi(G1) - m1(1=1,2,...,n1) and by Theorem 3.1
- #(Q(G1 ©Ga)ix)
ni
= (z - 2—nzz— FQ(oz)(x - 1))"‘1—"1 . (<I>c2(x -1, '-].))m1 . I_I (:c2
i=1

- (2+r1 +‘n2)1 - (I - T])Pq(az)(.‘l-’ - l) + 2r; + nary —~ A,‘(Gl) - 1‘1)

ny
= (z - 2 - naz — Tgeay (@ — )™ 7™ - ($(Q(Ga)iz — )™ - ] (a*

i=1

= (@411 +nz)r— (z - n)lqG,y)(z — 1)+ 2r +ngry — u.-(G;))

3.2 Some conclusions of A-spectrum of G; © G,

Corollary 3.4. Let G, be an r-regular graph on n, vertices and m, edges,
and Gy an ro-regular graph on ny vertices. Then the A-spectrum of G,0G,
consists of: (a) Xi(G2), repeated m, times, for eachi =2,3,...,n; (b) two
roots of the equation z2 —rox —ny = 0, each Toot repeated my —n; times; (c)
three roots of the equation 23 —ryx2 —(r1+X;(G1)+n2)z+ro(r1 +X;(G1)) =
0, for each 7 =1,2,...,n;.

Corollary 3.5. Let G be an r-regular graph on n vertices and m edges
with m > n, and let p,q > 1 be integers. Then the A-spectrum of GO K, 4
consists of : (a) 0, repeated m(p+q—2) times; (b) three roots of the equation
z3 — (pg +p+q)z — 2pq = 0, each root repeated m — n times; (c) four roots
of the equation z* — (pg +p + g + 7 + X\i(G))x? — 2pgz + pa(r + Xi(G)) = 0,
foreachi=1,2,...,n.
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Similar to Corollary 2.6, the subdivision-edge coronae enable us to con-
struct infinite families of A-integral graphs by using Corollary 3.4. Note

that the A-spectrum of Kn, © Ky, is (£v/2n1 — 2 + n3) !

(v =2 F ng)n‘-l, (£ym2)™ ™, 0mia=D+m1 Then K, © K, is

A-integral if and only if \/2n; — 2 + na, v/ — 2 + ng and /ng are integers.
Corollary 3.4 implies that the A-spectrum of Ky, n, © Ky, consists

of (iml_’l'_nz)l, (:b\/m)%:—?’ (:I:\/ﬁg_)ml_%r“, Q2rit+minz—my
Thus Kp, n, © Kn, is A-integral if and only if v/2n; + n3, v/n1 + nz and
/M2 are integers. Then we have the following two constructions of A-
integral graphs (see Figure 3 for an example of Corollary 3.7).

Fig. 3: Ks © K7 with A-spectrum (+3)*, (£2)*%, (£1)°, 0°.

Corollary 3.8. K, © K,, is A-integral if ny = 2t +3 and ny = t2 for
t=1,2,....

Corollary 3.7. Kn, ., © Ky, is A-integral if ny = 4st?(2s2 + 3s +1) and
ng =t2(2s2 —1)% fors =1,2,3,...,t=1,2,3,....

3.3 Some conclusions of L-spectrum of G; © Gs

Corollary 3.8. Let G, be an ry-regular graph on n, vertices and my
edges, and Gy an arbitrary graph on ngy vertices. Then t(G; © G3) =

my—n ng mi
2™ ‘-(2+7’1+1‘1‘n2)ﬂ.)'C(Gl)-ni=2 (ui(Gz)‘f‘l)
ni+my+ming ’

Corollary 3.9. Let G be an r-reqular graph on n; vertices and m,
edges, and Gy an arbitrary graph on ng vertices. Then Kf(G) © G3) =
(m1(1 +n2) + nq)x( (3+"“)m’“2(”2"'1)7"“2+2:H'D T2 +2+r‘n";”"’ Kf(G1)+

+ri+rinz
n.
Yk o)
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