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Abstract

For graphs G and H, the size balanced Ramsey multipartite num-
ber m;(G, H) is defined as the smallest positive integer s such that
any arbitrary red/blue coloring of the graph Kjx, forces the ap-
pearance of a red G or a blue H. In the main case of this paper
we generalize methods used in finding bipartite Ramsey numbers for
b(nK2,mK3) to finding the balanced Ramsey multipartite number
mj(nKa2, mK?>).

Introduction

All graphs considered in this paper are without loops and multiple edges.
Let K;x, denote complete balanced multipartite graph with each of the j
partite sets consisting of exactly s elements. The size multipartite Ramsey
number denoted by m;(G, H), is the smallest natural number s such that
any two colouring (red and blue) of K, forces a red G or a blue H as a
subgraph.

Over time mathematicians have attempted to find size multipartite Ramsey
number for various graphs. Burger et al [1], investigated m;(Knx1, Ksxt)
where n,s 2 2. They were successful in finding some small size numbers
and lower and upper bounds for some large size numbers. Syafrizal and et
al [3], established the exact value of m;(Ps, P,) where s = 2,3, j > 2 and
n > 3. They (see [4]) also obtained exact values for m;(P, G) with s = 2,3
and j > 2 where G is a wheel W,,, a star S, a fan F,, or 2 windmill M,
with n > 6, in addition to some lower bounds for m;(Pn, Kjx») where b > 2
and j,n > 2. Extending his work on cycles Syafrizal (see [5]) determined
m;(Ps,Cs) where s > 2, j > 3 and m;(Ps,Cyq) where s > 4.
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Not many results have been found on size multipartite Ramsey number
with regard to stripes. However, stripes and trees in the two colouring
of a complete bipartite graph have bheen studied by Christou et al (see
[2]). They were successful in obtaining the Ramsey numbers Ry(m P, nP,),
Ry(Tm, Tv), Ro(Sm,nPz), Ry(T2,nP) and (Sp,T,). In this paper we ob-
tain the exact value for m;(nK,, mKs) where j > 2 and m < n.

1 Notation

A matching of the graph G = (V, E) is a set of edges such that no two edges
share a common vertex. Given a matching M of a graph G(V, E) of size ¢,
let V(M) denote the 2t vertices adjacent to the edges of matching M and
let V(M)¢ denote the vertices outside this matching of size |V(G)| — 2t.

Consider any red/blue coloring of K;xs. Let Hp denote the graph having
the vertex set V(Kxs) and the edge set consisting of all the red edges.
Similarly let Hp denote the graph having the vertex set V(Kx;) and the
edge set consisting of all the blue edges. We denote such a edge coloring
by Kjxs = Hr ® Hp.

2 Size multipartite Ramsey numbers for Stripes vs.
Stripes

The main aim of this paper is to prove Theorem 8. Theorem 8 is proved
using induction. Lemma 4 and lemma 7 are needed to prove the inductive
step. Lemma 1 and the other propositions are used as a supporting tool to
prove these two pivotal lemmas namely, lemma 4 and lemma. 7, needed to
prove the main theorem.

Lemma 1. m;(nK,, mKj) > ’V where j > 3 and m < n.

2n+m— 1'|
Proof. Let § > 3 and m < n. Consider the red/blue coloring given by

n+m-—-1

K;xs = Hp ® Hp, where s = [ —1, such that K« consists

J
of any 2n — 1 vertices, connected to each other by red edges whenever, two
of these vertices lie in distinct partite sets and all the other edges by blue.

Note that, 5 = [2"_“1‘_1 2n+m -1

J
contain a blue mK, as we would get sj — (2n — 1) < m. Clearly the graph

-1< . Therefore, Hg will not

has no red nKj,. Hence we get, m;(nKz, mKs) > gn-l-+—1 . O
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Figure 1: Three possible cases if a and b belong to distinct partite sets

Proposition 2. Consider a red/blue coloring of Kjx, such that it has no
red nK,y. Suppose M is a red matching of size n — 1 of Kjxs. Ifa and b
are two vertices of V(M)¢ belonging to distinct partite sets then, given any
edge (c,d) of M there exists a vertez of {a, b}, such that it is incident to a
vertez of {¢,d} in blue.

Proof. Let a,b be any two vertices outside M. The four vertices a, b, ¢
and d can fall in to one of the three cases as illustrated in Figure 1, up to
reordering of vertex a with vertex b, vertex ¢ with vertex d.

Suppose that both (b,d) and (a,c) are red. Then, we could replace the red
edge (¢, d) of M by the two red edges (b, d) and (e, c) and obtain a red nKj.
Hence, the proposition follows. O

Proposition 3. Consider a red/blue coloring of K;xs such that it has no
red nKy. Suppose M is a red matching of size n — 1 of Kjx,. If a and
b are two vertices of V(M)° belonging to to the same partite set (say Vi)
then, given any edge (c,d) of M not incident to V, there exists a vertezr of
{a, b} such that it is incident to a vertez of {c,d} in blue.
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Figure 2: If a and b belong to the same partite set V

Proof. Suppose the proposition is false. Then (b,d) and (a,c) must be red.
However, as seen in Figure 2 if this happens, we could replace the red edge
(c,d) of M by the two red edges (b,d) and (a,c), and obtain a red nKj.
a
2n+_m-3] then
J
-‘, for all m € N such that

Lemma 4. Suppose j > 3. If m;((n — 1)Kz,mKj) = [
it follows that m;(nKz,mK>) = I'En_-i-;n_—l
mgn-—1.

Proof. Suppose m;((n—1)K2,mK,) = [21-':%;3

m<n-—1.

-l for 7 2 3 is true and

2 —
By Lemma 1, it suffices to show m;(nKs, mKj) < n—+m—1] , Where

2 3. Consider any two colouring of Ky, where s = 2n+—m—_1

Assume that the coloring is red nKj free. If K., has a blue ng, then
we are done with the proof. So assume Kjx, has no blue mKj,. Then the
2n+m—3

7 -I has no blue mKs, so it has a

subgraph Ky, where so = [

red (n — 1)Ko.
Let M™ consist of the set of all the red matchings of size n — 1. Note that,

|'2n+m-1 >2n+m . Therefore as sj —2(n — 1) 2 m + 1,

we get that for any M € M“, [V(M)¢| = sj—2(n—1) 2 m+1. Thisis
illustrated in the following figure.

For each M € M™ we can construct a blue matching pKs using proposition
2 and proposition 3, where each edge of pK, connects a vertex of V(M) to
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red (n — 1)Ks m + 1 vertices

Figure 3: The m + 1 vertices outside the red matchings of size n — 1

a vertex belonging to V(M) such that each edge of M is connected to at
most one vertex of pKs.

If M € M*, let npy = max{p : pK3 is a blue matching consisting of edges
from V(M) to V(M)°}.

Let k = max{np: M € M*}. Asj > 3 and m+1 > 2, by proposition 2 and
proposition 3 we get k > 1. Suppose kK> corresponds to some M € M*.
Let V(kK;) = W and the edges of the blue kK, be denoted by (a;, b;),
i € {1,...,k} such that a; € V(M)° and b; € V(M). By the definition each
of the b;s are incident to a edge in M. Let ¢; be the vertex of M such that
(biyci), i € {1, ..., k} are elements of M. Since k < m —1 < n — 2, there is
a red edge s’ € M that is not incident to any vertex in W. Thus we are
left to consider two possible cases.

Case 1: (V(M)u W)¢ C V; for some partite set V;.
Case 2: (V(M) U W)° contained in more than one partite set of Kjy,.

Suppose kK, comes under Case 1.
As,sj-2n—-1)—-kz2n+m-1-2(n—1)—k=m+1—k > 2, there
are at least two points (say a, b ) belonging to (V (M) U W)¢. Thus one of
the following subcases must occur.

Subcase 1: Suppose that there exists (b;,¢;}) € M and a blue edge (b;, a;)
of kK, such that a;, bi,c; ¢ V1 (see Figure 4).

In the first scenario, if (b;,b) is a blue edge keep the set M fixed and
replace the blue edge (b;, a;) of the blue kK3 by the blue edge (b;,b). Then
by applying proposition 2, to the two vertices a; and a belonging to two
distinct partite sets and the edge s’ € M (found earlier such that it is not
incident to any vertex in W), we will be able to increase the value of k¥ which
will contradict the maximality of k. In the second scenario, if (b;, b) is a red
edge, let My = (M U {(b:,b)})\{(bs,c:)}. Then as My, € M*, by applying
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Figure 4: The graph corresponding to subcase 1
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Figure 5: The graph corresponding to subcase 2

proposition 2, to the two vertices ¢; and a belonging to two distinct partite
sets and the edge s’ € M (found earlier) we will be able to increase the
value of &k which will contradict the maximality of k.

Subcase 2: For each i € {1,...,k}, where (bi,c;) € M and (b;,a;) of kK,
one of a;, b;, ¢; will be in V;. Also in order not to contradict the maximality
of k, by proposition 3, every edge of M not incident to a vertex of W (there
are n — 1 — k such red edges) will be incident to some vertex of V.

As illustrated in the above figure, then every edge in red (n — 1)K, will
have a one to one correspondence with some vertex in Vj\{a,b}. Then

-1 -1
s—2>n—1. Thatis M— 2 n+1. Therefore, n >j—-221

J
for any n 2> m + 1. This is a contradiction.

Suppose kK> comes under Case 2. Let a € (V(M)U W) N V; and let
be (V(M)uW)c NV, where V; and V; are distinct partite sets.
By applying proposition 2, to the two vertices a and b belonging to two

362



distinct partite sets and the edge s’ € M, we will be able to increase the
g

value of k which will contradict the maximality of k.
(]

Proposition 5. Consider a red/blue coloring of K;xs such that it has no
blue nKj. Suppose M is a blue matching of sizen —1 of Kjxs. Ifa and b
are two vertices of V(M)¢ belonging to distinct partite sets then, given any
edge (c,d) of M there exists a vertezx of {a,b}, such that it is incident to a
vertez of {c,d} in red.

We skip the proof as its similar to the proof of proposition 2.

Proposition 6. Consider a red/blue coloring of K;xs such that it has no
blue nK,. Suppose M is a blue matching of size n — 1 of Kjxs. If a and
b are two vertices of V(M) belonging to to the same partite set (say V1)
then, given any edge (c,d) of M not incident to Vy, there exists a vertex of
{a, b} such that it is incident to a vertez of {c,d} in red.

We skip the proof as its similar to the proof of proposition 3.

Lemma 7. Suppose j 2> 3. Given that m;(nKs,(n—1)K3) = |'3‘nj- 2-’ it

Jollows that mj(nKs,nKs) = [3nj— 1] , forallne N.

3n-2

Proof. Assume that m;j(nKs, (n — 1)K3) = [ -|, where j > 3. By

Lemma 1, it suffices to show m;(nK2,nKj3) < l'3nj— 1], where 7 2 3.

3n — 1"
7 .
If K;xs has a red nK3, then we are done with the proof. So assume K
3n— 2]

- has no

red nKj. So it has a blue (n — 1)K2. We now assume Kx, has no blue
nK,. Let My consist of the set of all blue matchings of size n — 1. Note

3n—1] . 3n—
that s = | ———| » 22

J J
that for any M € M7y |V(M)¢| = sj — 2(n — 1) 2 n + 1. This is illustrated
in the following figure.

Consider any two colouring (red and blue) of Ky, where s = [

has no red nK;. Then the subgraph Kjxs, where sq = I-

1
. Therefore as sj —2(n — 1) 2 n + 1, we get

For each M € M} we can construct a red matching gK> using proposition
5 and proposition 6, where each edge of ¢K; connects a vertex of V(M) to
a vertex belonging to V(M) such that each edge in M is connected to at
most one vertex of ¢Ks.
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blue (n — 1)K n + 1 vertice

Figure 6: The n + 1 vertices outside the blue matchings of size n — 1

If M € My, let n), = max{g : ¢K> is a red matching consisting of edges
from V(M) to V(M)°}. Let ky = max{ nfy, : M € M}}. Asj > 3 and
n+1 > 2 by proposition 5 and proposition 6 we get k; 2> 1. Suppose k1 K>
corresponds to some M € M;. Let V(k1K;) = W, and the edges of the
red k; K, be denoted by (a:,b;), 7 € {1,...,k1} such that a; € V(M)° and
b; € V(M). By the definition each of the b;s are incident to a vertex in M.
Let c; be the vertex of M such that (b;,¢;), ¢ € {1,...,k1} are elements of
M.

Case 1: (V(M) U W;)¢ C V; for some partite set V.
Case 2: (V(M) U W})€ contained in more than one partite set of K.

Suppose k1 K2 comes under Case 1. Then there are at least two points (say
a,b) belonging to (V(M)UW))®since sj ~2(n—1)—k1 2n+1-k; > 2.
Thus one of the following subcases must occur.

Subcase 1: Suppose that there exists (bi,¢;) € M and a red edge (b;,a;)
of k1 Ky such that a;, b;,¢; € V] (see Figure 7).

Suppose that k; = n — 1. First note that, (a,a;) and (b, a;) have to be red
in order to avoid a blue nK;. Next (a,c;) and (b,c;) have to be blue in
order to avoid a red nKy. But then (a,b;) cannot be a red edge as it will
force a red nK, and (a,b;) cannot be a blue edge as it will force a blue
nK,. Therefore k; = n — 1 cannot occur.

Therefore, we may assume that, k; < n — 1. Then there is a blue edge
s’ € M that is not incident to any vertex in Wj. In the first scenario, if
(bi,b) is a red edge keep the set M fixed and replace the red edge (b;,a:) of
the red k; K2 by the red edge (b;, b).

Then by applying proposition 5 to the two vertices a; and a belonging to
two distinct partite sets and the edge s’ € M (found earlier such that it is
not incident to any vertex in W), we will be able to increase the value of
ki which will contradict the maximality of k;. In the second scenario, if
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Figure 7: The graph corresponding to subcase 1

Figure 8: The graph corresponding to subcase 2

(b, b) is a blue edge, let My = (MU {(b;,b)})\{(bi,¢i)}. Then as My € My,
by applying proposition 5, to the two vertices ¢; and a belonging to two
distinct partite sets and the edge s’ € M (found earlier), we will be able to
increase the value of k; which will contradict the maximality of k;.

Subcase 2: For each i € {1, ..., k; }, where (b;,¢;) € M and (b;, a;) of k1 K>
one of a;, b;, c; will be in V;. Also in order not to contradict the maximality
of k;, by proposition 6, every edge of M not incident to a vertex of W,
(there are n — 1 — k; such blue edges) will be incident to some vertex of
V1. That is every edge in M will have a one to one correspondence with
some vertex in Vj\{a,b}. This is illustrated in the above figure. Then

s—22n-1. That is _1-| = n+ 1. Therefore, 3n—1 > j 2 3. This

is a contradiction.
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Suppose k1 K5 comes under Case 2.

Then let a and b be two points of (V (M) U W;)¢ belonging to two partite
sets of K;x, namely V| and V; respectively. ,

Suppose that k3 = n — 1. Then (a,b) cannot be a red edge as it will force
a red nK, and (a,b) cannot be a blue edge as it will force a blue nKs.
Therefore k3 = n — 1 cannot occur.

Therefore, ky < n—1. Then there is a blue edge s’ € M that is not incident
to any vertex in W;. Applying proposition 5 to the blue edge s’ € M with
respect to the points a and b we can increase the value of k;, which will
contradict the maximality of k. a

Theorem 8. If m < n then,
n+m-—1 ifj=2

m;j(nKz,mKp) =

l'2n+;n—1'| iFi>3

Proof. The result corresponding to j = 2 follows from [2]. So we are left

2n+m —

to prove m;(nKz, mKsy) = ! for 7 > 3. When j > 3 clearly

result is true for n = m =1 as m;(K>, K3) = 1. By induction on n (using
lemma 4 and lemma 7) the result follows. O
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