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Abstract

For a connected graph G = (V, E) of order at least two, a chord of
a path P is an edge joining two non-adjacent vertices of P. A path P
is called a monophonic path if it is a chordless path. A longest z —y
monophonic path is called an x —y detour monophonic path. A set S
of vertices of G is a detour monophonic set of G if each vertex v of G
lies on an = — y detour monophonic path for some z and y in S. The
minimum cardinality of a detour monophonic set of G is the detour
monophonic number of G and is denoted by dm(G). For any two
vertices u and v in G, the monophonic distance dm(u,v) from u to v
is defined as the length of a u — v detour monophonic path in G. The
monophonic eccentricity em(v) of a vertex v in G is the maximum
monophonic distance from v to a vertex of G. The monophonic
radius rad, G of G is the minimum monophonic eccentricity among
the vertices of G, while the monophonic diameter diam,,G of G is
the maximum monophonic eccentricity among the vertices of G. It
is shown that for positive integers 7, d and n > 4 with » < d there
exists a connected graph G with radmG = r, diam,G = d and
dm(G) = n. Also, if p, d, n are integers with 2 < n < p—-d+1
and d > 3, there is a connected graph G of order p, monophonic
diameter d and detour monophonic number n. Further, we study
how the detour monophonic number of a graph is affected by adding
some pendant edges to the graph.
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1 Introduction

By a graph G = (V, E') we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by p and ¢
respectively. For basic graph theoretic terminology we refer to Harary (5].
The neighborhood of a vertex v is the set N(v) consisting of all vertices u
which are adjacent with v. The closed neighborhood of a vertex v is the set
N[v] = N(v) U{v}. A vertex v is an extreme vertez if the subgraph induced
by its neighbors is complete.

The detour distance D(u,v) between two vertices u and v in G is the
length of a longest u — v path in G. An u — v path of length D(u,v) is
called an u — v detour. It is known that D is a metric on the vertex set
V of G. The closed detour interval Ip[z,y] consists of z,y, and all the
vertices in some z — y detour of G. For § C V, Ip[S] is the union of the
sets Ip[z,y] for all z,y € S. A set S of vertices is a detour set if Ip[S] =V,
and the minimum cardinality of a detour set is the detour number dn(G).
The concept of detour distance, detour number was introduced (1, 3] and
further studied in [4, 2].

A chord of a path P is an edge joining two non-adjacent vertices of P. A
path P is called monophonic if it is a chordless path. For any two vertices
u and v in a connected graph G, the monophonic distance d(u,v) from
u to v is defined as the length of a longest ¥ — v monophonic path in G.
The monophonic eccentricity e, (v) of a vertex v in G is ep(v) = max
{dm(v,u) : u € V(G)}. The monophonic radius, rad,G of G is rad,G =
min {ex(v) : v € V(G)} and the monophonic diameter, diammG of G is
diamm,G = max {em(v) : v € V(G)}. A vertex u in G is a monophonic
eccentric vertex of a vertex v in G if e, (u) = dm(u,v). The monophonic
distance was introduced in [6] and further studied in {7}.

A set S of vertices of a graph G is a detour monophonic set if each
vertex v of G lies on an z — y detour monophonic path, for some z,y € S.
The minimum cardinality of a detour monophonic set of G is the detour
monophonic number of G and is denoted by dm(G) [8].

For the graph G given in Figure 1.1, $1={z, y, 2}, So={z, w, z}, S3={x,
z, y}, Sa={=, u, z}, Ss={y, w, z} and S¢ = {u,w, 2z} are the minimum
detour monophonic sets of G and so dm(G)=3.
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Figure 1.1: A graph G with dm(G) =3.

The following theorems will be used in the sequel.

Theorem 1.1. [8] Each extreme vertez of a connected graph G belongs to
every detour monophonic set of G. Moreover, if the set S of all extreme
vertices of G is a detour monophonic set, then S is the unique minimum
detour monophonic set of G.

Theorem 1.2. (8] No cut vertex of G belongs to any minimum detour
monophonic set of G.

Theorem 1.3. [8] If T is a tree with k end vertices, then dm(T') = k.

Throughout this paper G denotes a connected graph with at least two
vertices.

2 Bounds and some realization results for the
detour monophonic number of a graph

It is shown in (8] that if G is a connected graph of order p > 2, then 2 <
dm(G) < p. Also we have a graph G is complete if and only if dm(G) = p.
Also, it is proved that for a connected graph G = K, + |Jm; K], where
Y- m; > 2 if and only if dm(G) = p — 1. In the following theorem we give
an improved upper bound for the detour monophonic number of a graph in
terms of its order and monophonic diameter.

Theorem 2.1. If G is a non-trivial connected graph of order p and mono-
phonic diameter d, then dm(G) <p—-d+1.

Proof. Let z,y € V(G) such that G contains an z — y detour monophonic
path P of length diam,,G = d. Let S = (V(G) - V(P)) U{z,y}. Since S'is
a detour monophonic set of G, it follows that dm(G) < |S| <p-d+1. O

Theorem 2.2. For every non-trivial tree T of order p and monophonic
diameter d, dm(T) = p — d + 1 if and only if T is a caterpillar.
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Proof. Let T be any non-trivial tree. Let P : u = vg, v1, ..., V4 be a mono-
phonic diametral path. Let k be the number of end vertices of T and [
be the number of internal vertices of T other than v;,vs,...,v4—1. Then
d—1+4!+k=p. By Theorem 1.3, dm(T) = k and so dm(T") = p—-d—1+1.
Hence dm(T) = p—d + 1 if and only if I = 0, if and only if all the internal
vertices of T lie on the monophonic diametral path P, if and only if T is a
caterpillar. ]

For any connected graph G, rad,G < diam,G. It is shown in [6] that
every two positive integers @ and b with @ < b are realizable as the mono-
phonic radius and monophonic diameter, respectively, of some connected
graph. This theorem can also be extended so that the detour monophonic
number can be prescribed when rad,G < diam,,G.

Theorem 2.3. For positive integers r, d and n > 4 with r < d, there exists
a connected graph G with rad,,G = r, diam,,G = d and dm(G) = n.

Proof. We prove this theorem by considering two cases.

Case 1. r = 1. Then d > 2. Let Cy42 : v1, V2, ..., V442, U1 be the cycle of
order d+2. Let G be the graph obtained by adding n—2 new vertices u,, us,
«ry Un—2 t0 Cy42 and join each vertex z €{u, uy, ..., Un—2, v3, V4, ..., Vd+1}
to the vertex v;. The graph G is shown in Figure 2.1. It is easily verified
that 1 < em(z) < d for any vertex = in G and e, (v1) = 1, en(v2) = d.
Then rad,,G =1 and diam,G = d. Let S = {u1,ug, ..., un—2,v2,V4+2} be
the set of all extreme vertices of G. Since S is a detour monophonic set of
G, it follows from Theorem 1.1 that dm(G) = n.

Un-2

Vd+2

d+1
Figure 2.1: G

Case 2. r > 2. Let C : vy,vs,...,vr42,v1 be the cycle of order r+2 and
W = Ky + Ci42 be the wheel with V(Cd+2) = {ul,ug, ...,ud+2}. Let H be
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the graph obtained from C and W by identifying v; of C and the central
vertex K; of W.

Subcase 1. Both r and d are even. Add n—3 new vertices wy, wo, ..., Wp—3
to the graph H and join each w;(1 < ¢ < n—3) to the vertex v; and obtain
the graph G of Figure 2.2. It is easily verified that r < en(z) < d for
any vertex r in G and en(v;) = 7,em(u1) = d. Then rad,G = r and
diam,,G = d. Let § = {w),ws,...,wn—3} be the set of all extreme ver-
tices of G. By Theorem 1.1, every detour monophonic set of G contains
S. It is clear that S is not a detour monophonic set of G. Also, for any
z,y € V(H), SU {z} and SU {z,y} are not detour monophonic sets of
G. Let T = SU{u1,uags,vrys }. It is easily verified that T is & minimum

detour monophonic set of G and so dm(G) = n.

Figure 2.2: G

Subcase 2. Both r and d are odd. Add n—3 new vertices w;, ws, ..., Wn—4, 2
to the graph H and join each w;(1 £ ¢ £ n — 4) to the vertex v;; and
join z to both U2 and Urg2) 410 and obtain the graph G of Figure
2.3. It is easily verified that r < en(z) < d for any vertex z in G and
em(v1) =7, en(u1) = d. Then radyG = r and diam,,G = d. Let S =
{wy,wsa,...,Wn—4, z} be the set of all extreme vertices of G. By Theorem
1.1, every detour monophonic set of G contains S. It is clear that S is not
a detour monophonic set of G. Also, for any z,y € V(H), SU {z} and
S U {z,y} are not detour monophonic sets of G. Let T = SU {u,, ug,us}.
It is easily verified that T is a minimum detour monophonic set of G and
so dm(G) = n.

37



U2

T g,

RE

Ure1 Y[mE2]42

Ud+2

Figure 2.3: G
Subcase 3. r is odd and d is even. Add n—2 new vertices w;, ws, ..., Wn—_3, 2
to the graph H and join each w;(1 < i < n — 3) to the vertex v; and
join z to both U4 and Ul zg2] 410 and obtain the graph G of Figure
2.4. It is easily verified that r < en(z) < d for any vertex z in G and
em(v1) = r and e, (u)) = d. Then rad,,G = r and diam,,G = d. Let S =
{w1,wsa,...,wn-3, z} be the set of all extreme vertices of G. By Theorem
1.1, every detour monophonic set of G contains S. It is clear that S is not
a detour monophonic set of G. Also, for any z € V(H), S|J{z} is not a
detour monophonic set of G. Let T = S| J{ui,u 1#} It is easily verified

that T is a minimum detour monophonic set of G and so dm(G) = n.
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Figure 2.4: G

Subcase 4. r is even and d is odd. Add n — 4 new vertices wy,ws, ..., Wn_4
to the graph H and join each w;(1 < i £ n — 4) to the vertex v;, and



obtain the graph G of Figure 2.5. It is easily verified that » < e,,(z) < d
for any vertex z in G and en(v1) =7, em(u;) = d. Then rad,,G = r and
diam,G = d. Let S={w;, ws, ..., wn—4} be the set of all extreme vertices of
G. By Theorem 1.1, every detour monophonic set of G contains S. It is clear
that S is not a detour monophonic set of G. Also, for any z,y,z € V(H),
SuU{z}; SU{=z,y}; and SU {z,y, 2} are not detour monophonic sets of G.
Let T =SU {’U.I,UQ,U3,'ULF}. It is easily verified that T is a minimum

detour monophonic set of G and so dm(G) = n. O

Figure 2.5: G

Problem 2.4. For any three positive integers r, d and n > 4 with r = d,
does there exist a connected graph G with rad,,G = r, diam,,G = d and
dm(G) =n?

Theorem 2.5. Ifp, d, n are integers with2 <n<p-d+1 andd > 3,
there is a connected graph G of order p, monophonic diameter d and detour
monophonic number n.

Proof. Let Pyy1 : ug,u1, U2, ..., 44 be & path of length d. Let G be the graph

obtained from the path Py, by (i) adding n—2 new vertices v, v2,...,Un—2
and joining each vertex v;(1 <i<n— 2) to uy; and (ii) adding p—d—n+1
new vertices wj,ws,...,Wp—d—n4+1 8nd joining each vertex w;(1 < i <

p—d—n+1) to both up and uz. The graph G has order p and monophonic
diameter d. Let S = {ug4,v1,v2,...,Un-2} is the set of all extreme vertices
of G. Then by Theorem 1.1, every detour monophonic set of G contains S.
Clearly S is not a detour monophonic set of G and so dm(G) >n—1. Let
T = SU {uo}. It is easily verified that T is a detour monophonic set of G

and so dm(G) = n. O
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Figure 2.6: G

3 Detour monophonic number of a graph by
adding some pendant edges

Theorem 3.1. If G’ is a graph obtained by addz;ng k pendant edges to a
connected graph G, then maz{k,dm(G)} < dm(G ) < dm(G) + k.

Proof. Let G’ be the connected graph obtained from G by adding k pendant
edges u;v;(1 < i < k), where each u;(1 < i < k) is a vertex of G and each
vi(1 £ i < k) is not a vertex of G. Let S be a minimum detour monophonic
set of G. Then S J{v1,v2,..., vk} is a detour monophonic set of G’ and so
dm(G') < dm(G) + k.

Now, we claim that dm(G) < dm(G'). Suppose that dm(G) > dm(G").
Then let S” be a detour monophonic set of G with |S’| < dm(G). Since
each v;(1 < i < k) is an extreme vertex of G, it follows from Theorem 1.1
that {vy,vs,.. ,'Uk} c S. Let S = (S - {’Ul,'uz, ,'Uk}) U {ul,ug, uk}
Then S is a subset of V(G) and |S| = |S'| < dm(G). Now, we show that
S is a detour monophonic set of G. Let w € V(G) — S. Since § is a
detour monophonic set of G, w lies on an x — y detour monophoic path,
say P, in G’ for some vertices z,y € S . If neither z nor y is vi(1 <i<k),
then z,y € S. If exactly one of z,y is v;(1 < i < k), say £ = v;. Then
w lies on the u; — y detour monophonic path in G obtained from P by
removing v;. If both z,y € {v1,v2,...,vx}, then let z = v; and y = v;
where i # j. Hence w lies on the u; — u; detour monophonic path in G
obtained from P by removing v; and v;. Thus § is a detour monophonic
set of G. Hence dm(G) < |S| < dm(G), which is a contradiction. Also,
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since G’ contains k pendant vertices, by Theorem 1.1, dm(G’) > k. Thus
dm(G") > maz{k,dm(G)}. O

Remark 3.2. The bounds for dm(G') in Theorem 3.1 are sharp. Consider
a tree T with number of end vetices n > 3. Let S = {vy,va,...,0n} be
the set of all end vertices of T. Then by Theorem 1.3, S is the unique
minimum detour monophonic set of T'. If we add a pendant edge to an
end vertex of T, then we obtain another tree T with n end verties. Hence
dm(T) = dm(T"). On the otherhand, if we add k pendant edges to a cut
vertex of T, then we obtain another tree T" with n+ k end vertices. Then
by Theorem 1.3, dm(T") = dm(T) + k.

Now, we proceed to characterize graphs G for which dm(G) = dm(G’),
where G is obtained from G by adding k pendant edges.

Theorem 3.3. Let G’ be a graph obtained from a connected graph G by
adding k pendant edges u;v;(1 < i < k), where u; € V(G) and v; ¢ V(G).
Then dm(G) = dm(G') if and only if {u1,u2,...,ux} is a subset of some
minimum detour monophonic set of G.

Proof. Let {u, uy, .. .,ur } is a subset of some minimum detour monophonic
set Sof G. Let §' = (S — {uy, ug, ..., ux}) U{v1, v2, ..., % }. Then |S’| =|S|.
Claim that S’ is a detour monophonic set of G’. Let z € V(G') — 5. If
z = ui(1 < ¢ < k), then z lies on every v; — w detour monophonic path
in G/, where w € §’, since u; is the only vertex adjacent to v;. So we
may assume that z # u;(1 < i < k). Since z is a vertex of G and S is a
detour monophonic set of G, it follows that z lies on some = — y detour
monophonic path P in G for some z,y € S. Then by an argument similar
to the one used in the proof of Theorem 3.1, we can show that S’ is a
detour monophonic set of G'. Hence dm(G’) < |S’| = |S| = dm(G). Now,
the result follows from Theorem 3.1.

Conversely, let dm(G) = dm(G’). Let S’ be a minimum detour mono-
phonic set of G’. Since each u;(1 < i < k) is a cut vertex of G, it follows
from Theorem 1.2 that u; ¢ S’ for 1 <i < k. Since v;(1 < ¢ < k) is an end
vertex of G, it follows from Theorem 1.1 that v; € S’ for 1 < i < k. Let

= (8" — {v1,v2, ..., e }) U{u1, 22, ..., ux}. Then S C V(G) and |S| = |9’
Then, as in the proof of Theorem 3.1, S is a detour monophonic set of G.
Since |S| = |§'| = dm(G') = dm(G), it follows that S is a minimum detour
monophonic set of G that contains {u1,u, ..., ux}. a
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