On The Detour Monophonic Number of a Graph*

P. TITUS AND K. GANESAMOORTHY

Department of Mathematics

Anna University of Technology Tirunelveli

Nagercoil - 629 004, India.

e-mail: titusvino@yahoo.com

e-mail: kvgm_2005@yahoo.co.in

Abstract

For a connected graph G = (V, E) of order at least two, a *chord* of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest x-ymonophonic path is called an x-y detour monophonic path. A set S of vertices of G is a detour monophonic set of G if each vertex v of Glies on an x-y detour monophonic path for some x and y in S. The minimum cardinality of a detour monophonic set of G is the detour monophonic number of G and is denoted by dm(G). For any two vertices u and v in G, the monophonic distance $d_m(u, v)$ from u to v is defined as the length of a u-v detour monophonic path in G. The monophonic eccentricity $e_m(v)$ of a vertex v in G is the maximum monophonic distance from v to a vertex of G. The monophonic radius $rad_m G$ of G is the minimum monophonic eccentricity among the vertices of G, while the monophonic diameter diam_mG of G is the maximum monophonic eccentricity among the vertices of G. It is shown that for positive integers r, d and $n \ge 4$ with r < d there exists a connected graph G with $rad_mG = r$, $diam_mG = d$ and dm(G) = n. Also, if p, d, n are integers with $2 \le n \le p - d + 1$ and $d \geq 3$, there is a connected graph G of order p, monophonic diameter d and detour monophonic number n. Further, we study how the detour monophonic number of a graph is affected by adding some pendant edges to the graph.

Keywords: monophonic distance, detour monophonic set, detour monophonic number.

2010 Mathematics Subject Classification Number:05C12

^{*}Research supported by DST Project No. SR/S4/MS:570/09.

1 Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we refer to Harary [5]. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. The closed neighborhood of a vertex v is the set $N[v] = N(v) \bigcup \{v\}$. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete.

The detour distance D(u,v) between two vertices u and v in G is the length of a longest u-v path in G. An u-v path of length D(u,v) is called an u-v detour. It is known that D is a metric on the vertex set V of G. The closed detour interval $I_D[x,y]$ consists of x,y, and all the vertices in some x-y detour of G. For $S\subseteq V$, $I_D[S]$ is the union of the sets $I_D[x,y]$ for all $x,y\in S$. A set S of vertices is a detour set if $I_D[S]=V$, and the minimum cardinality of a detour set is the detour number dn(G). The concept of detour distance, detour number was introduced [1,3] and further studied in [4,2].

A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called monophonic if it is a chordless path. For any two vertices u and v in a connected graph G, the monophonic distance $d_m(u,v)$ from u to v is defined as the length of a longest u-v monophonic path in G. The monophonic eccentricity $e_m(v)$ of a vertex v in G is $e_m(v) = \max\{d_m(v,u): u \in V(G)\}$. The monophonic radius, rad_mG of G is $rad_mG = \min\{e_m(v): v \in V(G)\}$ and the monophonic diameter, $diam_mG$ of G is $diam_mG = \max\{e_m(v): v \in V(G)\}$. A vertex u in G is a monophonic eccentric vertex of a vertex v in G if $e_m(u) = d_m(u,v)$. The monophonic distance was introduced in [6] and further studied in [7].

A set S of vertices of a graph G is a detour monophonic set if each vertex v of G lies on an x-y detour monophonic path, for some $x,y \in S$. The minimum cardinality of a detour monophonic set of G is the detour monophonic number of G and is denoted by dm(G) [8].

For the graph G given in Figure 1.1, $S_1 = \{x, y, z\}$, $S_2 = \{x, w, z\}$, $S_3 = \{u, z, y\}$, $S_4 = \{x, u, z\}$, $S_5 = \{y, w, z\}$ and $S_6 = \{u, w, z\}$ are the minimum detour monophonic sets of G and so dm(G) = 3.

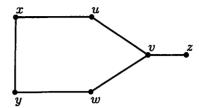


Figure 1.1: A graph G with dm(G) = 3.

The following theorems will be used in the sequel.

Theorem 1.1. [8] Each extreme vertex of a connected graph G belongs to every detour monophonic set of G. Moreover, if the set S of all extreme vertices of G is a detour monophonic set, then S is the unique minimum detour monophonic set of G.

Theorem 1.2. [8] No cut vertex of G belongs to any minimum detour monophonic set of G.

Theorem 1.3. [8] If T is a tree with k end vertices, then dm(T) = k.

Throughout this paper G denotes a connected graph with at least two vertices.

2 Bounds and some realization results for the detour monophonic number of a graph

It is shown in [8] that if G is a connected graph of order $p \geq 2$, then $2 \leq dm(G) \leq p$. Also we have a graph G is complete if and only if dm(G) = p. Also, it is proved that for a connected graph $G = K_1 + \bigcup m_j K_j$, where $\sum m_j \geq 2$ if and only if dm(G) = p - 1. In the following theorem we give an improved upper bound for the detour monophonic number of a graph in terms of its order and monophonic diameter.

Theorem 2.1. If G is a non-trivial connected graph of order p and monophonic diameter d, then $dm(G) \leq p - d + 1$.

Proof. Let $x, y \in V(G)$ such that G contains an x - y detour monophonic path P of length $diam_m G = d$. Let $S = (V(G) - V(P)) \bigcup \{x, y\}$. Since S is a detour monophonic set of G, it follows that $dm(G) \leq |S| \leq p - d + 1$. \square

Theorem 2.2. For every non-trivial tree T of order p and monophonic diameter d, dm(T) = p - d + 1 if and only if T is a caterpillar.

Proof. Let T be any non-trivial tree. Let $P: u = v_0, v_1, ..., v_d$ be a monophonic diametral path. Let k be the number of end vertices of T and l be the number of internal vertices of T other than $v_1, v_2, ..., v_{d-1}$. Then d-1+l+k=p. By Theorem 1.3, dm(T)=k and so dm(T)=p-d-l+1. Hence dm(T)=p-d+1 if and only if l=0, if and only if all the internal vertices of T lie on the monophonic diametral path P, if and only if T is a caterpillar.

For any connected graph G, $rad_mG \leq diam_mG$. It is shown in [6] that every two positive integers a and b with $a \leq b$ are realizable as the monophonic radius and monophonic diameter, respectively, of some connected graph. This theorem can also be extended so that the detour monophonic number can be prescribed when $rad_mG < diam_mG$.

Theorem 2.3. For positive integers r, d and $n \ge 4$ with r < d, there exists a connected graph G with $rad_mG = r$, $diam_mG = d$ and dm(G) = n.

Proof. We prove this theorem by considering two cases.

Case 1. r=1. Then $d\geq 2$. Let $C_{d+2}:v_1,\,v_2,\,...,\,v_{d+2},\,v_1$ be the cycle of order d+2. Let G be the graph obtained by adding n-2 new vertices $u_1,\,u_2,\,...,\,u_{n-2}$ to C_{d+2} and join each vertex $x\in\{u_1,\,u_2,\,...,\,u_{n-2},\,v_3,\,v_4,\,...,\,v_{d+1}\}$ to the vertex v_1 . The graph G is shown in Figure 2.1. It is easily verified that $1\leq e_m(x)\leq d$ for any vertex x in G and $e_m(v_1)=1,\,e_m(v_2)=d$. Then $rad_mG=1$ and $diam_mG=d$. Let $S=\{u_1,u_2,...,u_{n-2},v_2,v_{d+2}\}$ be the set of all extreme vertices of G. Since S is a detour monophonic set of G, it follows from Theorem 1.1 that dm(G)=n.

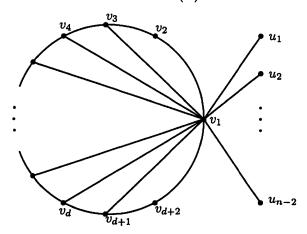


Figure 2.1: *G*

Case 2. $r \geq 2$. Let $C: v_1, v_2, ..., v_{r+2}, v_1$ be the cycle of order r+2 and $W = K_1 + C_{d+2}$ be the wheel with $V(C_{d+2}) = \{u_1, u_2, ..., u_{d+2}\}$. Let H be

the graph obtained from C and W by identifying v_1 of C and the central vertex K_1 of W.

Subcase 1. Both r and d are even. Add n-3 new vertices $w_1, w_2, ..., w_{n-3}$ to the graph H and join each $w_i (1 \le i \le n-3)$ to the vertex v_1 and obtain the graph G of Figure 2.2. It is easily verified that $r \le e_m(x) \le d$ for any vertex x in G and $e_m(v_1) = r, e_m(u_1) = d$. Then $rad_mG = r$ and $diam_mG = d$. Let $S = \{w_1, w_2, ..., w_{n-3}\}$ be the set of all extreme vertices of G. By Theorem 1.1, every detour monophonic set of G contains S. It is clear that S is not a detour monophonic set of G. Also, for any $x, y \in V(H), S \cup \{x\}$ and $S \cup \{x, y\}$ are not detour monophonic sets of G. Let $T = S \bigcup \{u_1, u_{\frac{d+4}{2}}, v_{\frac{r+4}{2}}\}$. It is easily verified that T is a minimum detour monophonic set of G and so dm(G) = n.

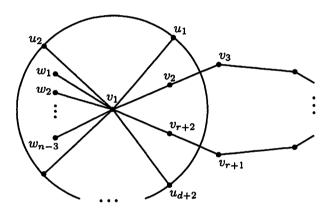


Figure 2.2: *G*

Subcase 2. Both r and d are odd. Add n-3 new vertices $w_1, w_2, ..., w_{n-4}, z$ to the graph H and join each $w_i(1 \le i \le n-4)$ to the vertex v_1 ; and join z to both $u_{\left\lceil \frac{r+2}{2} \right\rceil}$ and $u_{\left\lceil \frac{r+2}{2} \right\rceil+1}$, and obtain the graph G of Figure 2.3. It is easily verified that $r \le e_m(x) \le d$ for any vertex x in G and $e_m(v_1) = r$, $e_m(u_1) = d$. Then $rad_mG = r$ and $diam_mG = d$. Let $S = \{w_1, w_2, ..., w_{n-4}, z\}$ be the set of all extreme vertices of G. By Theorem 1.1, every detour monophonic set of G contains G. It is clear that G is not a detour monophonic set of G. Also, for any $x, y \in V(H)$, $G \cup \{x\}$ and $G \cup \{x, y\}$ are not detour monophonic sets of G. Let $G \subseteq G$ and so $G \subseteq G$ and so $G \subseteq G$ and so $G \subseteq G$.

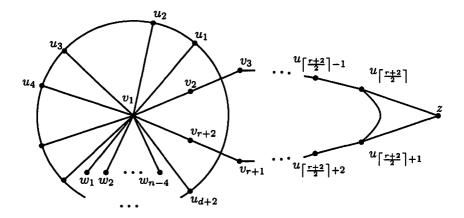


Figure 2.3: *G*

Subcase 3. r is odd and d is even. Add n-2 new vertices $w_1, w_2, ..., w_{n-3}, z$ to the graph H and join each $w_i(1 \le i \le n-3)$ to the vertex v_1 and join z to both $u_{\lceil \frac{r+2}{2} \rceil}$ and $u_{\lceil \frac{r+2}{2} \rceil+1}$, and obtain the graph G of Figure 2.4. It is easily verified that $r \le e_m(x) \le d$ for any vertex x in G and $e_m(v_1) = r$ and $e_m(u_1) = d$. Then $rad_mG = r$ and $diam_mG = d$. Let $S = \{w_1, w_2, ..., w_{n-3}, z\}$ be the set of all extreme vertices of G. By Theorem 1.1, every detour monophonic set of G contains S. It is clear that S is not a detour monophonic set of G. Also, for any $x \in V(H)$, $S \cup \{x\}$ is not a detour monophonic set of G. Let $T = S \cup \{u_1, u_{\frac{d+4}{2}}\}$. It is easily verified that T is a minimum detour monophonic set of G and so dm(G) = n.

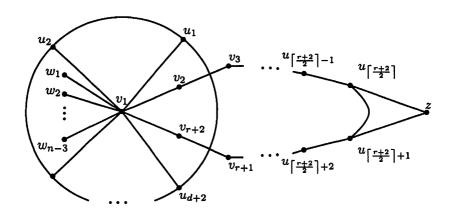


Figure 2.4: *G*

Subcase 4. r is even and d is odd. Add n-4 new vertices $w_1, w_2, ..., w_{n-4}$ to the graph H and join each $w_i (1 \le i \le n-4)$ to the vertex v_1 , and

obtain the graph G of Figure 2.5. It is easily verified that $r \leq e_m(x) \leq d$ for any vertex x in G and $e_m(v_1) = r$, $e_m(u_1) = d$. Then $rad_mG = r$ and $diam_mG = d$. Let $S = \{w_1, w_2, ..., w_{n-4}\}$ be the set of all extreme vertices of G. By Theorem 1.1, every detour monophonic set of G contains G. It is clear that G is not a detour monophonic set of G. Also, for any G, G is G is not a detour monophonic set of G. Also, for any G, G is G is easily verified that G is a minimum detour monophonic set of G and so G is easily verified that G is a minimum detour monophonic set of G and so G is easily verified.

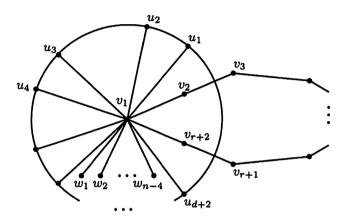


Figure 2.5: *G*

Problem 2.4. For any three positive integers r, d and $n \ge 4$ with r = d, does there exist a connected graph G with $rad_mG = r$, $diam_mG = d$ and dm(G) = n?

Theorem 2.5. If p, d, n are integers with $2 \le n \le p - d + 1$ and $d \ge 3$, there is a connected graph G of order p, monophonic diameter d and detour monophonic number n.

Proof. Let $P_{d+1}: u_0, u_1, u_2, ..., u_d$ be a path of length d. Let G be the graph obtained from the path P_{d+1} by (i) adding n-2 new vertices $v_1, v_2, ..., v_{n-2}$ and joining each vertex $v_i (1 \le i \le n-2)$ to u_1 ; and (ii) adding p-d-n+1 new vertices $w_1, w_2, ..., w_{p-d-n+1}$ and joining each vertex $w_i (1 \le i \le p-d-n+1)$ to both u_0 and u_2 . The graph G has order p and monophonic diameter d. Let $S = \{u_d, v_1, v_2, ..., v_{n-2}\}$ is the set of all extreme vertices of G. Then by Theorem 1.1, every detour monophonic set of G contains S. Clearly S is not a detour monophonic set of G and so dm(G) > n-1. Let $T = S \cup \{u_0\}$. It is easily verified that T is a detour monophonic set of G and so dm(G) = n.

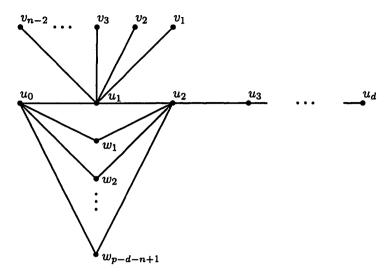


Figure 2.6: *G*

3 Detour monophonic number of a graph by adding some pendant edges

Theorem 3.1. If G' is a graph obtained by adding k pendant edges to a connected graph G, then $\max\{k, dm(G)\} \leq dm(G') \leq dm(G) + k$.

Proof. Let G' be the connected graph obtained from G by adding k pendant edges $u_i v_i (1 \le i \le k)$, where each $u_i (1 \le i \le k)$ is a vertex of G and each $v_i (1 \le i \le k)$ is not a vertex of G. Let S be a minimum detour monophonic set of G. Then $S \cup \{v_1, v_2, ..., v_k\}$ is a detour monophonic set of G' and so $dm(G') \le dm(G) + k$.

Now, we claim that $dm(G) \leq dm(G')$. Suppose that dm(G) > dm(G'). Then let S' be a detour monophonic set of G' with |S'| < dm(G). Since each $v_i(1 \leq i \leq k)$ is an extreme vertex of G', it follows from Theorem 1.1 that $\{v_1, v_2, ..., v_k\} \subseteq S'$. Let $S = (S' - \{v_1, v_2, ..., v_k\}) \cup \{u_1, u_2, ..., u_k\}$. Then S is a subset of V(G) and |S| = |S'| < dm(G). Now, we show that S is a detour monophonic set of G. Let $w \in V(G) - S$. Since S' is a detour monophonic set of G', w lies on an x - y detour monophoic path, say P, in G' for some vertices $x, y \in S'$. If neither x nor y is $v_i(1 \leq i \leq k)$, then $x, y \in S$. If exactly one of x, y is $v_i(1 \leq i \leq k)$, say $x = v_i$. Then w lies on the $u_i - y$ detour monophonic path in G obtained from F by removing F is on the F is on the F in F is a detour monophonic path in F obtained from F by removing F is an F is a detour monophonic set of F. Hence F is an F is a detour monophonic set of F. Hence F is an optimized from F by removing F is an optimized from F by removing F is a detour monophonic set of F. Hence F is an optimized from F by removing F is an optimized from F is a detour monophonic set of F.

since G' contains k pendant vertices, by Theorem 1.1, $dm(G') \ge k$. Thus $dm(G') \ge max\{k, dm(G)\}$.

Remark 3.2. The bounds for dm(G') in Theorem 3.1 are sharp. Consider a tree T with number of end vetices $n \geq 3$. Let $S = \{v_1, v_2, ..., v_n\}$ be the set of all end vertices of T. Then by Theorem 1.3, S is the unique minimum detour monophonic set of T. If we add a pendant edge to an end vertex of T, then we obtain another tree T' with n end vertices. Hence dm(T) = dm(T'). On the other and, if we add k pendant edges to a cut vertex of T, then we obtain another tree T'' with n + k end vertices. Then by Theorem 1.3, dm(T') = dm(T) + k.

Now, we proceed to characterize graphs G for which dm(G) = dm(G'), where G' is obtained from G by adding k pendant edges.

Theorem 3.3. Let G' be a graph obtained from a connected graph G by adding k pendant edges $u_iv_i(1 \le i \le k)$, where $u_i \in V(G)$ and $v_i \notin V(G)$. Then dm(G) = dm(G') if and only if $\{u_1, u_2, ..., u_k\}$ is a subset of some minimum detour monophonic set of G.

Proof. Let $\{u_1,u_2,...,u_k\}$ is a subset of some minimum detour monophonic set S of G. Let $S'=(S-\{u_1,u_2,...,u_k\})\bigcup\{v_1,v_2,...,v_k\}$. Then |S'|=|S|. Claim that S' is a detour monophonic set of G'. Let $z\in V(G')-S'$. If $z=u_i(1\leq i\leq k)$, then z lies on every v_i-w detour monophonic path in G', where $w\in S'$, since u_i is the only vertex adjacent to v_i . So we may assume that $z\neq u_i(1\leq i\leq k)$. Since z is a vertex of G and S is a detour monophonic set of G, it follows that z lies on some x-y detour monophonic path P in G for some $x,y\in S$. Then by an argument similar to the one used in the proof of Theorem 3.1, we can show that S' is a detour monophonic set of G'. Hence $dm(G') \leq |S'| = |S| = dm(G)$. Now, the result follows from Theorem 3.1.

Conversely, let dm(G) = dm(G'). Let S' be a minimum detour monophonic set of G'. Since each $u_i (1 \le i \le k)$ is a cut vertex of G', it follows from Theorem 1.2 that $u_i \notin S'$ for $1 \le i \le k$. Since $v_i (1 \le i \le k)$ is an end vertex of G', it follows from Theorem 1.1 that $v_i \in S'$ for $1 \le i \le k$. Let $S = (S' - \{v_1, v_2, ..., v_k\}) \bigcup \{u_1, u_2, ..., u_k\}$. Then $S \subseteq V(G)$ and |S| = |S'|. Then, as in the proof of Theorem 3.1, S is a detour monophonic set of G. Since |S| = |S'| = dm(G') = dm(G), it follows that S is a minimum detour monophonic set of G that contains $\{u_1, u_2, ..., u_k\}$.

Acknowledgements

The authors are thankful to the referee for his valuable comments.

References

- [1] F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley, Redwood City, CA, (1990).
- [2] G. Chartrand, H. Escuadro, and P. Zhang, Detour Distance in Graphs,
 J. Combin. Math. Combin. Comput. 53 (2005) 75-94.
- [3] G. Chartrand, G.L. Johns, and P. Zhang, The Detour Number of a Graph, Utilitas Mathematica 64 (2003) 97-113.
- [4] G. Chartrand, G.L. Johns, and P. Zhang, On the Detour Number and Geodetic Number of a Graph, Ars Combinatoria 72 (2004) 3-15.
- [5] F. Harary, Graph Theory, Addison-Wesley, 1969.
- [6] A.P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, Vol. 3, No. 2 (2011) 159-169.
- [7] A.P. Santhakumaran and P. Titus, A Note on "Monophonic Distance in Graphs", Discrete Mathematics, Algorithms and Applications, to appear (2012).
- [8] P. Titus, K. Ganesamoorthy and P. Balakrishnan, The Detour Monophonic Number of a Graph, J. Combin. Math. Combin. Comput., to appear(2012).