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Abstract Let IFZI""‘ denote the (n + l)-dimensional singular linear space
over a finite field F,. For a fixed integer m < min{n,l}, denote by LJ*(F7+')
the set of all subspaces of type (t,¢1), where ¢; <t < m. Partially ordered
by ordinary inclusion, one family of quasi-regular semilattices is obtained.
Moreover, we compute its all parameters.
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1 Introduction

It is well known that lattice is an important part of poset’s theory.
Its theory play an important role in many branches of mathematics, such
as computer logical design and procedure theory. In recent times there
has been great interest in constructing more kinds of practical lattices and
semilattices. For examnple, Guo, Gao and Wang (2] constructed lattices
based on d-bounded distance-regular graphs. Wang, Guo, Li [4, 5, 6] con-
structed lattices in singular linear space, totally isotropic flats and classical
spaces, respectively. Wang and Li [7] constructed lattices in vector space
over a finite field. In [3], Guo, Li and Wang constructed semilattices in
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symplectic spaces, we construct a new quasi-regular semilattice in singular
linear spaces and compute its parameters.

The rest of this paper is organized as follows. In section 2, we introduce
some definitions and terminologies about lattice, regular semilattice and
quasi-regular semilattice. In section 3, we construct a family of quasi-
regular semilattices, and then compute its parameters.

2 Preliminaries

In this section, we first recall some definitions and terminologies about
lattice and regular semilattice. The reader is referred to [1] for details. And
then introduce quasi-regular semnilattice in singular linear spaces.

Let (P, <) be a poset. We write a < b whenever a <band a #b. If P
has the minimum (respectively maximum) element, then we denote it by 0
(respectively 1), and say that P is a poset with O (respectively {). A poset
P is said to be a semilattice if a Ab := inf{a, b} exists for any two elements
a,b € P. Let P be a finite poset with 0. If there is a function » from P to
set of all the nonnegative integers such that

(1) r(0)=0,
(2) r(b) =r(a) + 1, ifa <b.
Then 7 is said to be the rank function on P. Note that the rank function

on P is unique if it exists.

Let P be a semilattice, and let P = Xo U X, U---U X,,,, where X; =
{z € P|r(z) =4},i=0,1,--- ,m. The semilattice (P, <) is called regular if
the following three properties hold:

(i) Giveny € X,z € X, with z < y, the number of points « € X, such
that 2 < u <y is a constant p(r, s).

(ii) Given u € X, , the number of points z € X,., such that 2 < u is a
constant v(r, s).

(iii) Givena € X,y € X, with a Ay € X, the number of pairs (b,2) €
Xs X Xm such that b < 2,b < y,a < z is a constant 7(j,7,s).
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In this paper, we define the concept of quasi-regular semilattice.

Let P be a semilattice, and let P = Xo U X; U---U Xy, where X; =
{z € Plr(z) =4} = X°UX}uU---UX},i=0,1,--- ,m,and X)NX* =0 for
j # k. The semilattice (P, <) is called gquasi-regular if the following three
properties hold:

(i) Given y € X™',z € X7 with z < y, the number of points u € X?'
such that z < u < y is a constant p(r(r’), s(s’); m’).

(ii) Given u € X?' , the number of points z € X', such that z < u is a
constant v(r(r’), s(s’)).

(iii) Given @ € X',y € X, withaAy € X}I, the number of pairs
(b,z) € X2 x X7 such that b < 2,b < y,a < z is a constant
m(3(F"),r(r"), s(s'); m').

Pick P = XQu X} u---uX™, Then the quasi-regular semilattice (P, <)
is a regular semilattice.

Let [Fy be a finite field with ¢ elements, where ¢ is a prime power. For
two nonnegative integers n and I, I ;“” denotes the (n + !)-dimensional row
vector space over F,. The set of all (n + 1) x (n + !) nonsingular matrices

over [, of the form
Ty T
0 T )’

where T}; and Ty, are nonsingular n X n and ! x ! matrices, respectively,
forms a group under matrix multiplication, called the singular general linear
group of degree n + ! over F, and denoted by GLy 1 n(F,).

Let P be an m-dimensional subspace of IF;‘“, denote also by P a m x
(n + 1) matrix of rank m whose rows span the subspace P and call the
matrix P a matrix representation of the subspace P . There is an action
of GLnt1,n(Fq) on Fy+! defined as follows

Frtl x GLpy1(F,) — FH
((xlv"' 1y Ty Tntl, " ,-'En-f-l)aT) — (1:1,"' 1y Tny o1y ,xn+l)T-

The above action induces an action on the set of subspaces of ]F'{,‘*l; ie,a
subspace P is carried by T € GLy41,»(Fq) to the subspace PT. The vector
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space ng“ together with the ahove group action, is called the (n 4+ I)-
dimensional singular linear space over F,.

For1 < i < n+l, let e; be the row vector in IF,’;‘H whose i-th coordinate
is 1 and all other coordinates are 0. Denote by E the l-dimensional subspace
of F7+! generated by €n41,€n42, "+ ,€ns1. A m-dimensional subspace P of
F7+! is called a subspace of type (m, k) if dim(P N E) = k.

For a fixed integer m < min{n,!}, denote by £"‘(IF‘;‘+') the set of
all subspaces of type (¢,t1), where t; < t < m. If we partially order
,C"‘(IF;‘“) by the ordinary inclusion, then C'"(IF‘I;“) is a semilattice, de-
noted by L7*(F7+!). For any A € L7*(F7*!), the rank function of £,(F7+')
is defined as follows

r(A) = dimn(A).

Let
X; = {B € LT(Fy)|r(B) =i},

and
XZ = {B € X,-|dim(B(‘lE) =]},] =0117°“ ai1
where E = (€n41,€n42, ** ,€ns1) € IFI;“.

In this paper we obtain the following result.

Theorem 2.1 Semilattice LJ(F™*!) is a quasi-regular semilattice. Its
parameters are given by the formulas

u(r(r1),s(s1);my) = gle—s1-r+rimi=s1) [ m-r+r-m ] [ m -7 ]

s=sa1—-r+m s1—m
v(r(r1),s(s1)) = q("—"l)(ax—rl) [3_31] [81] '
rT—rT1 g LT1lyg

and

m(3(31),7(r1), 8(s1);m1)
= by q(s—n—i+i1)(j—j1—i+i1+m1—91)+(31—i1)(51-1':)
0<:i<j,0<h; <

X (1(';::'))__(?__.:;)]‘{ [T,’__,-J;l]qN'(T—*'S —i,r1 + 81 —i;m,min+ 1, n).

Here N'(r 4+ s — 14,71 + 81 — i1;m, my;n+1,n) is given in [§, Lemma 2.3].
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3 Proof of Theorem 2.1

Lemma 3.1 Let0<k; <ky <k<,0<m—ki <mo—kes <m—k<n,
and let Uy, U; and U are subspaces of type (my, k1), (ma, ko) and (m, k) in
F2*, with Uy C Uy C U, respectively. If Us is a subspace of type (ms, ks)
in F3+! with U3 C U and Us N Up = U, then the number of Us is

g(Ba=80)(Ba =8y +k—ka)+ (ka—ku)(kz —k1) 6—ba| [k—k2
H
83— 81], lks— k1],

where 6 =m—k,6; =m; — k;,i=1,2,3.

Proof. Let §; = my — ky, 80 = mg — ka,03 = mg — k3,6 = m — k. By the
transitivity of GLn4;,n(Fq) on the set of subspaces of the same type, we
may assumne that

51 n—61 k} l——k1
1 0 0 0 &
U, =
! (0 o I o) ks

5] (52—-61 n—62 k] kz-—k] l—kz

I 0 0 0 0 0 Y
0 0 0 I 0 0 ky R
U =
0 I 0 0 0 0 86—
0 0 0 0 I 0 ko — ky
and
& 02—-6; b6-82 n—6 k1 ka—ky k—k2 lI-k
I 0 0 0 0 0 0 0 4,
0 0 0 0 I 0 0 0 k1
vl o ! 0 0 0 0 0 0 b2 — &1
| o 0 0 0 ] I 0 0 ko — k1
0 0 I 1] 0 0 0 0 )
0 0 0 0 0 0 I 0 k—ko
Since U3 N Uy = U, and Uz C U, we have
6y 62—-6, 86— n—6 ki ka—ki k—ky l—k
I 0 0 0 0 0 0 0 01
vee| 0 0 0 o I o 0 0 k1 .
=1 o u32 u33 o o uge uzz 0 83 — &y
0 0 0 0 0 u46 u4q7 0 k3 — ky
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where rank u47 = k3 — ky and rank uss = 43 — 6. Note that there are
,:i'_’::l]q choices for u47; and there are [ 6‘:;:‘5521] choices for uss. By the
transitivity of GLy41,(IFg) on the set of subspaces of the same type, the
number of Us’s does not depend on the particular choice of u47 and uas.
Pick ugy = (I%*3=*1) 0) and uzgz = (I1%3=%),0). Then U; has a matrix
representation

8 62-68y v & n-8 ki ka—ky X kK 11—k

I 0 0 0 0 0 0 0 0 0 6

0 0 0 0 0 I 0 0 0 0 ky
0 uz2 I 0 0 0 ugeo O uzre O ¥

0 0 o 0 0 0 u46 I 0 0 A

where 8’ =86 -0y — 03+ 01, k' =k —ko—ka+ k1, 7= 63-—51,)\ k3 —k;.
Therefore the numnber of Uj is equal to

gBa=8)(Br=brbh—kayt(ka—ki)(ka—ky) | 0= 02 ) [k—ka ]
63— 0 a ks — k1 q

Lemma 3.2 Let A€ X', C € X[' and A < C. Then the number of
B e X2 such that A< B < C is equal to

B(r(r1), s(s1); ml)—-q("‘l"'+fl)(rn1—sx)[ —rtr-m ] [m1—r1 ] .
S—81—r1+4+mnr 81 —1

Proof. By the transitivity of GLn4+1(F,) on the set of subspaces of the
same type, we may assume that

r—r n—r4+r 1 l-n

A= I 0 0 0 T—=T1
0 0 I 0 ™
and
r—rr m' n r m-r l-m
I 0 0 0 0 0 r—nm
0 0 o I 0 0 T ,
C=

0 I 0 0 0 0 m'
0 0 0 0 I 0 my —T
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where m' =m —my; —r 4+ r;,n' =n —m + m,. Since

AL<B<LC,
we have
r—r m oy m-r l-m
I 0 0 0 0 0 rT—7
B= 0 0 0 I 0 0 1 ,
- 0 U32 0 0 U3s 0 S'
0 0 0 0 U4qs 0 81—

where ' =m-m|—r4+nr, " =n—m+m;,s =s—8 —r+7r], ws
denotes the (s; —r1)-subspace in F™1~ " and u3; denotes the (s—s; —r+7r;)-
P q

subspace in Fg‘"'"‘ 7471 Note that there are [';‘1‘::"] choices for u45 and
q

there are [";'_':':1_::_':‘] choices for uzz. By the transitivity of GLn41(Fq)

on the set of subspaces of the same type, the number of B’s does not

depend on the particular choice of ug4s and uz;. Pick ugs = (I(2=™1),0)

and ugp = (I{*~%:~7+71) 0). Then B has a matrix representation

§o 63—382 61 -63 n—-86 rn, s1—-r1 mp-s8 l-m

I 0 0 0 0 0 0 0 42

0 0 0 0 I 0 0 0 1 .
0 I 0 0 0 0 uzgs2 0 83 — &2

0 0 0 0 0 I 0 0 8 -1

where 8, = m —m,0; =7 — 11,83 = s — s1. Therefore the number of B
is equal to

q(s—s,—r-i-rl)(m,—s;) m-—r+7r—m m) —Ty
§—81—7+m $1—71

Lemma 3.3 If B € X3!, then the number of A € X' such that A< B
is equal to

V(r(r1), s(s1)) = g e =) [3_31] [sl] '
q q

r—"n ™
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Proof. By the transitivity of G,41,(IF;) on the set of subspaces of the
same type, we may assumne that

s—8; n—s+s s -3

I 0 0 0 s— 8
B‘(o 0 I 0) s1

A= Uiy 0 U3 0 r—rr ,
“\o 0 Ug3 0 s
where rank u;; = r — r; and rank ugs = r;. Note that there are [f,:]
q

choices for uz3. By the transitivity of GLy,4(F,) on the set of subspaces of
the same type, the number of A’s does not depend on the particular choice
of ug3. Pick upz = (J¢") 0). Then A has a matrix representation

$—8 n—s+s8 1 s -1y l—5
Uy 0 0 U132 0 T—"T
0 0 I 0 0 1

Therefore the number of subspace A is equal to

v(r(r1),s(s1)) = g me=m) [s - SIL [SIL '

T—T1 ™

O

Lemma 3.4 Let A€ X' and B € X2. Assume that ANB € X;‘, end
(C,D)e X' x X+ . IfC < D,C < B,A < D, then the number of (C, D)
is equal to

w(§ (1), r(r1), s(s1);m1)
= qls—s1—i+) G- —itii+my—s)+(s1—i1)(G1-i1)

0<i<;,0<i3 Smin{ij; }

b (m_m‘)_(j_j‘)] ["“‘j‘] N'(r+s—i,r1+s81 —iym,myin+1,n).

7 q

(s—3y)=(i—-1y) 8] —iy

Here N'(r + s —1i,71 + 81 —iy;m,my;n+1,n) is given in (4, Lemma 2.5].
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Proof. Since A < D,C < B, we have
ANC<L<AABZLD.

Since
C <D,

and
CA(AAB)=AA(BAC)=AAC € X}',0<14<30<4 <minfi,j;}.

For i € [0,7] and #; € [0,min{%,j;}], by Lemma 3.1, the number of C is
equal to

e =G —i— i+ Emy—s1) Ho1 =) G —i) [(m —-m1) - (j ~j1) [rm -.7'1] .
(s=s1)—(i—i1) lgla1~i1 ],

Since C < D,A< D,C+ A< D. It follows from AAC € Xf‘ that
A+ C is a subspace of type (r +s — 1,71 + 85 — i1). Therefore, the number
of D is equal to N'(r 4+ s —i,71 + 81 —i1;m, m1; n+1,n). Hence the desired
result follows. o

Combining Lemnma 3.2, Lemma 3.3 and Leinma 3.4, we complete the

proof of Theorem 2.1.
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